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Abstract: | discuss a very obscure activity of p53, namely suppression of senescence (gerosuppression), which is also
manifested as anti-hypertrophic, anti-hypermetabolic, anti-inflammatory and anti-secretory effects of p53. But can

gerossuppression suppress tumors?

INTRODUCTION

Wt p53 can induce apoptosis, cell cycle arrest and
senescence, which are sufficient to explain tumor
suppression by p53 [1]. A recent paper in Cell
described that these activities are dispensable for
tumor suppression [2]. Mutant p53 (p53°*%) that
cannot cause arrest, senescence and apoptosis still
suppressed tumors in mice [2, 3]. Why do then wt p53
induce apoptosis, cell cycle arrest and senescence?
Before entertaining this intriguing question, [ will
focus on suppression of senescence (gerosuppression)
by p53, overlapping with its anti-hypertrophic, anti-
hypermetabolic, anti-inflammatory and anti-secretory
effects.

P53 suppresses the conversion from arrest to
senescence (geroconversion)

How can p53 suppress senescence, if it also can cause
senescence? As recently suggested, induction of
senescence is not an independent activity of p53 but a
consequence of cell-cycle arrest [4-8]. This predicts that
any mutant p53 that cannot cause arrest will not cause
senescence too. In agreement, p53°*® did not cause
senescence [2]. This is not trivial. To create p533KR, wt
p53 was altered to abolish apoptosis and cell-cycle
arrest only [2]. Li et al did not modify p53 to abolish
senescence as an independent activity. It was not
needed, simply because p53 does not induce senescence
as an independent effect. (Note: Seemingly in contrast,
it was reported that mutant p53, which cannot induce

arrest in response to DNA damage, can cause
senescence [9]. Although this mutant p53 did not cause
instant arrest, it still arrested proliferation later and then
senescence developed [9]. So there is no exception).
p53 cannot induce senescence without inducing arrest.
But p53 can induce quiescence, a reversible condition
characterized by low protein synthesis and metabolism
(see detailed definitions in ref. [7, 8]). It was assumed
that when p53 causes quiescence, it simply fails to
induce senescence. But another possibility is that in
such cases p53 suppresses the conversion from cell-
cycle arrest to senescence (geroconversion). How can
that be tested? In some cell lines, induction of ectopic
p21 causes irreversible senescence, whereas induction
of p53 causes quiescence [4]. Does p53 suppresses a
senescent program? This question can be answered by
simultaneously inducing both p53 and ectopic p21.
When both p21 and p53 were induced, then cells
become quiescent not senescent [4]. p53 was dominant,
actively suppressing senescence caused by p21... or by
something else? In fact, p21 merely causes cell cycle
arrest and does not inhibit mitogen-activated, nutrient-
sensing and growth-promoting pathways such as Target
of Rapamycin (mTOR) [4]. During several days, these
pathways (gerogenic pathways, for brevity) convert
p21-induced arrest into senescence. Rapamycin can
decelerate geroconversion [10-13]. Also, p53 can inhibit
the mTOR pathway [4-6, 14-17]. In some conditions,
p53 can suppress senescence during arrest [4-6]. Wt p53
induces arrest and then if it fails to suppress senescence,
then senescence prevails. Rather than p53, gerogenic
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pathways drive senescence during cell-cycle arrest [18].

In summary, wt p53 seems to have three independent
effects: apoptosis, cell-cycle arrest and gerosuppression.
By inducing arrest, wt p53 primes cells for senescence,
unless p53 is able or “willing” to suppress
geroconversion. At high levels, gerosuppression by p53
is limited by apoptosis [6]. This predicts that p533 KR
would potently suppress senescence because gero-
suppression by p53°** will not be limited by apoptosis.

Hyper-metabolic senescent phenotype

Senescent cells are hyper-functional: hypertrophic,
hypermetabolic, hyper-secretory and hyper-
inflammatory [8]. Also, senescent cells may accumulate
lipids, becoming not only large but also “fat” (Figurel).
Induction of p53 decreased both cellular hypertrophy
and fat accumulation (Figure 1). This is in line with
numerous metabolic effects of p53 including inhibition
of glycolysis and stimulation of fatty acids oxidation
[19-32]. Importantly, p53°*® retained the ability to
inhibit glycolysis and reactive oxygen species (ROS)
[2]. (Noteworthy, ROS and mTOR co-activate each
other [33] and N-Acetyl Cysteine (NAC), which
decreases ROS, also inhibits mTOR [34]). Also, p53
decreases hyper-secretory phenotype also known as
SASP [35] and suppresses a pro-inflammatory
phenotype [36, 37]. How might gerosuppression
contribute to tumor suppression? There are several
overlapping explanations, from different points of view
of the same process.

Gerogenic conversion and oncogenic transformation
In proliferating epithelial cells, pro-gerogenic
conversion may contribute to carcinogenesis directly.
The PI3K/mTOR pathway is universally activated in
cancer [38-49]. p53 can inhibit the PI3K/mTOR
pathway [4-6, 14-17, 50]. Like p53, many other tumor
suppressors such as PTEN, AMPK, TSC2, LKB1, NF1
inhibit the PI3K/mTOR pathway [51].

Geroconversion of stromal cells creates carcinogenic
microenvironment

First, senescence creates a selective disadvantage for
normal cells, thus selecting for cancer [52-54]. Also,
senescent stromal cells secrete factors that favors pre-
cancer and cancer growth [37, 54-62]. Third, the
senescent stroma is hyper-metabolic and thus promotes
cancer by fueling cancer growth [59, 60, 63-71]. In a
model of accelerated host aging, mTOR activity was
increased in normal tissues [72]. This pro-senescent
microenvironment accelerated growth of implanted
tumors. The tumor-promoting effects of pro-senescent
microenvironment were abrogated by rapamycin [72].

Cancer is an age-related disease

The incidence of cancer is increased exponentially in
aging mammals. Manipulations that slow down aging
delay cancer [73]. For example, calorie restriction
delays cancer [74-76] including cancer in p53-deficient
mice [77, 78]. Rapamycin, which decelerates aging,
also postpones cancer in animals [73, 79-81] and in
patients after renal transplantation [82-86].

Nutlin-3a decreased
senescence. HT-p21 cells were treated with IPTG, nutlin-3a and IPTG+nutlin-3a (as
indicated) for 3 days as described previously [4-6] and cells were stained with “oil red O” for
lipids. In HT-p21 cells, IPTG induces ectopic p21 and senescence. As described previously,
nutlin-3a induces endogenous p53 and suppresses IPTG-induced senescence [4-6].

Figure 1.

lipid accumulation during

IPTG-induced
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Is aging accelerated in p53-deficient mice?
Inactivation of tumor suppressors accelerates both aging
and cancer [87]. It was thought that p53 is an exception.
Yet, given that pS3 can suppress geroconversion, it may
not be the exception after all. A complex role of p53 in
cellular senescence and organismal aging was discussed
[88-91]. Mice with increased, but normally regulated,
p53 lives longer [92]. p53 knockout mice have both
accelerated carcinogenesis and decreased longevity [93-
98]. p53-/- mice have a pro-inflammatory phenotype
characteristic of accelerated aging [36,37].  Also,
atherosclerosis is accelerated in p53-/- animals [99-
102]. While loss of p53 by itself makes cells prone to
become tumorigenic, an increased rate of organismal
aging in the absence of p53 may further accelerate
carcinogenesis.

Rapalogs and p53

Rapamycin (sirolimus) and other rapalogs (everolimus
and temsirolimus) are pharmacological tumor
suppressors. Noteworthy, like p53, rapamycin decreases
glycolysis [103] and lactate production [34] and
stimulates oxidation of fatty acids [104, 105].
Furthermore, rapamycin slows cellular proliferation, and
s0, not surprisingly, p53**® inhibits clonogenicity too
[2]. Yet, pS3 affects metabolism and aging not only via
mTOR but also via direct transactivation of metabolic
enzymes, rendering it a more potent tumor suppressor.

Puzzles remain

Still, even if gerosuppression and anti-hypermetabolic
effects can in part explain tumor suppression, puzzles
remain. Why does wt p53 cause “unneeded” apoptosis
and “instant” (p21-dependent) arrest? Why is p53
needed at all? In the wild, most mice die from
external/accidental causes and only a few would live
long enough to die from cancer, regardless of p53
status. In the wild, starvation (natural calorie restriction)
would delay cancer further. Yet, p53 is also needed very
early in life, or technically speaking, even before life
has begun, because p53 plays role in fertility and
reproduction [106-113]. And is tumor suppression a late
life function?

Alternatively, tumor suppression is a primary function
of p53. And each of the three activities (apoptosis,
arrest, gerosuppression) is partially sufficient for cancer
prevention. In their combination, these activities are the
most effective tumor suppressor. And each activity may
be partially dispensable in some mice strains and in
some conditions. For example, the gerosuppressive
activity of p53 may be preferentially important in
peculiar strains of laboratory mice, or mice fed ad
libitum, which constantly activates mTOR and
accelerates aging. In fact, calorie restriction, which

deactivates mTOR and decelerates aging, partially
substitutes for the loss of p53 in mice.
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