
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
Aging is the most important risk factor for morbidity 
and mortality in Western society today.  Due to the 
parallel rise in the risk for many different conditions, 
individuals often present with multiple comorbidities, 
and there is a limit to the benefit that can be obtained 
through therapies for any individual disease. For example, 
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it has been estimated that a complete cure for cancer 
would extend the average human lifespan by about 3 
years [1].  On the other hand, reducing calorie intake by 
~40% while maintaining adequate nutrition slows the 
progression of most age-related changes simultaneously 
and extends life by 30-50% in rodents [2, 3].  
Unfortunately, dietary restriction (DR) has major 
limitations as an approach to improve human health and 
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Abstract: Rapamycin extends lifespan in mice, but can have a number of undesirable effects that may ultimately limit its 
utility in humans.  The canonical target of rapamycin, and the one thought to account for its effects on lifespan, is the 
mammalian/mechanistic target of rapamycin, complex 1 (mTORC1).  We have previously shown that at least some of the 
detrimental side effects of rapamycin are due to “off target” disruption of mTORC2, suggesting they could be avoided by 
more specific targeting of mTORC1.  However, mTORC1 inhibition per se can reduce the mRNA expression of mitochondrial 
genes and compromise the function of mitochondria in cultured muscle cells, implying that defects in bioenergetics might 
be an unavoidable consequence of targeting mTORC1 in vivo.  Therefore, we tested whether rapamycin, at the same doses 
used to extend lifespan, affects mitochondrial function in skeletal muscle.  While mitochondrial transcripts were 
decreased, particularly in the highly oxidative soleus muscle, we found no consistent change in mitochondrial DNA or 
protein levels.  In agreement with the lack of change in mitochondrial components, rapamycin-treated mice had 
endurance equivalent to that of untreated controls, and isolated, permeabilized muscle fibers displayed similar rates of 
oxygen consumption.  We conclude that the doses of rapamycin required to extend life do not cause overt mitochondrial 
dysfunction in skeletal muscle.   
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longevity.  First, it is likely that many would be 
unwilling or unable to maintain the requisite lifestyle 
[4].  Second, the regimen must be started early in life to 
obtain the maximal benefit [5-7].  Finally, studies in 
primates have yielded conflicting results.  While there is 
general agreement that DR improves health and 
decreases age-related diseases, only one of the two 
ongoing studies has demonstrated an effect on overall 
survival [6, 8].  Identifying new, more generally 
applicable ways to target the aging process is an 
important goal for gerontology, and a promising 
approach to the prevention and treatment of age-related 
diseases. 
 
Rapamycin, an inhibitor of the mammalian/mechanistic 
target of rapamycin (mTOR), presents a tantalizing 
possibility for a longevity drug [9].  It is the only 
compound that has extended both mean and maximum 
lifespan in both genders of mice by the rigorous 
standards of the National Institute on Aging’s 
Intervention Testing Program [10, 11], and has been 
shown to slow the progression of multiple age-related 
phenotypes in mice [12-16].  Rapamycin works even 
when treatment is delayed until 20 months of age 
(equivalent to ~60 years for a human), and would not 
require any dietary modification.  Because rapamycin 
has been used clinically as an immunosuppressant and 
chemotherapeutic, there is an extensive body of 
literature documenting its tolerability and side effects 
[17].  Rapamycin increases the risk of developing 
diabetes [18-20], increases cardiovascular risk factors 
[17, 21], causes hair, skin, and nail problems [21, 22], 
and has complex effects on the immune system [22, 23]. 
Although it has been suggested that the diabetes-like 
condition induced by rapamycin might be benevolent, 
resembling starvation-induced diabetes [24], the 
complete spectrum of side effects is likely to mask any 
anti-aging effects in humans, and to have a detrimental 
effect on lifespan overall.  Thus, it is unlikely that 
rapamycin in its current form would have a beneficial 
effect in healthy humans, and it remains uncertain 
whether mTOR signaling could ever be targeted without 
the development of side effects. 
 
There are two major protein complexes that contain 
mTOR, mTORC1 and mTORC2 [25].  Although 
rapamycin has been considered a specific inhibitor of 
mTORC1, chronic exposure to the drug can also disrupt 
mTORC2 in some cell lines [26] and in vivo [27].  We 
have previously demonstrated that rapamycin-induced 
insulin resistance is caused mainly by the “off-target” 
disruption of mTORC2, and that more specific targeting 
of mTORC1 using a genetic strategy can extend life 
without interfering with glucose metabolism [27].  This 
raises the hope that more specific pharmacological 

targeting of mTORC1 will be possible, and could 
replicate the beneficial aspects of rapamycin treatment 
with fewer negative consequences. 
 
While it remains to be tested whether mTORC1 
inhibition per se accounts for many of the detrimental 
effects of rapamycin, it is clear that this complex 
mediates the drug’s effects on mitochondria in 
mammalian cells.  Rapamycin decreases the expression 
of mitochondrial mRNAs in cultured muscle cells [28, 
29] and suppresses oxygen consumption [28, 30, 31].  
Decreased mitochondrial respiration is observed even in 
short-term experiments, suggesting that the effects of 
rapamycin are mediated in part by a post-translational 
mechanism.  These effects are replicated by loss of 
mTORC1 function, but not by loss of mTORC2 
function [28, 30].  Moreover, mTORC1 binds to the 
promoters of affected mitochondrial transcripts [29], 
providing further evidence that mTORC1, and not 
mTORC2, mediates the mitochondrial effects of 
rapamycin.  These findings raise the possibility that 
rapamycin-treated mice might become frail and prone to 
bioenergetic failure, despite having increased longevity.  
Such effects in the face of mTORC1 inhibition might be 
considered a trade-off that could compromise survival 
in the wild, and possibly in humans, but would lead to 
increased longevity in the protected setting of a mouse 
colony.  Therefore, we tested whether defects in 
mitochondrial biogenesis and function are apparent in 
the skeletal muscles of rapamycin-treated mice.  
 
RESULTS 
 
Rapamycin treatment (2 mg/kg daily by intraperitoneal 
injection) decreased the mRNA expression of genes 
involved in mitochondrial biogenesis, including 
mitochondrial transcription factor A (TFAM), nuclear 
respiratory factor 1 (NRF1), and estrogen-related 
receptor α (ERRα), as well as genes involved in 
oxidative phosphorylation, including cytochrome c 
oxidase subunit 5B (COX5b), ATP synthase subunit O 
(ATP5O), and cytochrome c in gastrocnemius and 
soleus muscles, but not in the liver (Figures 1 and S1).    
These changes were most prominent in the highly 
oxidative soleus muscle, consistent with the findings of 
Cunningham et al. [29] and Blattler et al. [32]. 
 
Despite clear changes in message levels, we found that 
the expression of mitochondrial proteins involved in 
oxidative phosphorylation was unchanged by rapamycin 
treatment.  We employed a series of monoclonal 
antibodies that detect representative subunits of each 
oxidative phosphorylation complex.  This approach is 
predicted to give a reliable indication of overall 
complex assembly, since the subunits targeted by the 
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monoclonal antibodies are labile when not properly 
incorporated into their respective oxidative 
phosphorylation complexes.  No consistent changes in 
mitochondrial protein expression were observed in either 
the gastrocnemius or soleus muscles (Figure 2),  or  in the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

liver (Figure S2).  Therefore, expression of mitochondrial 
proteins in the skeletal muscles of C57BL/6 mice was not 
affected by two weeks of intraperitoneal injection of 
rapamycin at a dose sufficient to cause metabolic 
dysfunction and to extend life. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Rapamycin decreases expression of mitochondrial genes in skeletal muscle.  (A, B) Transcript 
levels for mitochondrial transcription factors (PGC-1α, TFAM, NRF1 and ERRα) and mitochondrial DNA encoded 
genes (ATP5O, COX5b and cytochrome c) were measured in (A) soleus and (B) gastrocnemius (gastroc) muscles 
following 2 weeks of daily rapamycin treatment.  (C) Relative mitochondrial DNA copy number was measured in 
gastrocnemius muscles by determining the ratios of two mtDNA-encoded genes (MT-CO1 and MT-ND1) to the 
nuclear gene NDUFV1.  Data were obtained from C57BL/6 mice following an overnight fast after the last rapamycin 
injection.  Open columns, control; Filled columns, rapamycin. *p<0.05, **p<0.01. Error bars show s.e.m; n=5. 
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Given the range of dosing strategies that have been used 
for rapamycin [9], as well as the long half-life of some 
mitochondrial proteins [33], we chose to examine the 
expression of mitochondrial proteins under the specific 
conditions that have been shown to increase longevity.  
Accordingly, these experiments employed HET3 mice 
(offspring of a cross between Balb/cByJ x C57BL/6J F1 
mothers and C3H/HeJ x DBA/2J F1 fathers), which are 
expected to be free from any recessive defects present in 
the parental lines, display a long lifespan, and are 
known to respond to DR [34, 35].  Young or old HET3 
mice were fed a diet containing encapsulated rapamycin 
at 14 ppm for 2 or 5 months and compared to age-
matched controls fed the same diet lacking rapamycin.  
The effects of this regimen on glucose homeostasis 
were described previously [36].  As was the case in 
C57BL/6 mice injected with rapamycin, mitochondrial 
protein expression was unchanged in HET3 mice fed the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rapamycin-containing diet for up to five months (Figure 
3).  Therefore, we were not able to detect any consistent 
change in mitochondrial protein expression using the 
rapamycin treatment regimen that extends mean and 
maximum lifespan in mice. 
 
Our previous studies in cultured myoblasts suggested 
that rapamycin can impact mitochondrial function even 
in the absence of changes in protein expression [28], 
consistent with findings in two previous reports that 
employed other cell types [30, 31].  To determine 
whether mitochondrial performance might be impaired 
in rapamycin-treated animals, we studied treadmill 
endurance in a second cohort of animals.  Rapamycin-
treated mice were able to run the same distance as 
untreated littermates (Figure 4), suggesting that there 
was no overt deficit in skeletal muscle mitochondrial 
function. 

Figure 2. Rapamycin has no major effects on mitochondrial protein levels.  Representative 
subunits of each electron transport complex were detected by Western blotting using a cocktail of 
monoclonal antibodies from MitoSciences.  Because the complex IV subunit was not detected using 
the cocktail, a separate COXIV antibody was also used.  The identities of the probed subunits are as 
follows: complex I – NADH dehydrogenase 1 beta subcomplex 8 (NDUFB8); complex II – succinate 
dehydrogenase subunit B (SDHB); complex III – ubiquinol-cytochrome c reductase core protein 2 
(UQCRC2); complex V –ATP synthase subunit alpha (ATP5A). Proteins were measured in (A) soleus 
or (B) gastrocnemius (gastroc) muscle following 2 weeks of rapamycin treatment.  Data were 
obtained from C57BL/6 mice following an overnight fast.  
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Figure 3. Rapamycin does not change mitochondrial 
protein expression in Het3 mice from invention 
testing program. Mitochondrial oxidative phosphoryla-
tion complexes were measured in (A) young (6-month-old) 
or (B) old (21-month-old) HET3 mice treated with 
rapamycin-containing diet for 2 months or 5 months.  
Antibodies as described for figure 2. 
 

 

Figure 4. Rapamycin does not affect 
treadmill endurance.  8 week old male C57BL/6 
mice were injected with rapamycin (2mg/kg/day) 
for 2 weeks, then subjected to exercise capacity 
test. (A) Exercise protocol - mice were placed on 
treadmill and given a 10-minute warm up period, 
followed by increases in speed at 12-minute 
intervals. (B) Total running distance.  Error bars 
show s.e.m; n=9.  (C, D) Cumulative shocks for 
individual (C) or pooled (D) control and rapamycin 
treated mice.   
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To directly test mitochondrial function after rapamycin 
treatment in vivo, oxygen consumption was measured in 
isolated, permeabilized soleus muscle fibers by high 
resolution respirometry using an Oroboros Oxygraph 
2K.  Under all conditions tested, respiration was 
equivalent in soleus muscles isolated from rapamycin-
treated or control mice (Figure 5).  Thus, we were not 
able to detect any consequence of rapamycin treatment 
on mitochondrial function in vivo.  This result contrasts 
somewhat with the findings of Cunningham et al., who 
were able to detect a decrease in respiration from soleus 
muscle homogenates following rapamycin treatment, 
albeit using a slightly higher dose in a different strain 
[29].  In order to test whether the permeabilization 
regimen might have masked any differences in oxygen 
consumption in our experiments, we also studied 
cultured myoblasts before and after the addition of 
digitonin.  The decrease in oxygen consumption in 
intact cells that had been pre-treated with rapamycin 
remained readily apparent following the addition of 
digitonin and exogenous substrates (Figure 6), 
indicating that the permeabilization step would not have 
masked any differences in oxygen consumption 
between treated and control soleus muscles. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISCUSSION 
 
Rapamycin impairs mitochondrial biogenesis and 
function in cultured muscle cells, which suggests a 
potential complication of targeting mTOR signaling as a 
means of promoting longevity in healthy humans.  
Interventions that promote longevity, including dietary 
restriction and genetic manipulations, often lead to 
increased mitochondrial biogenesis, and this has been 
hypothesized to contribute to the effects on lifespan [37-
41].  Moreover, a growing body of evidence supports 
the concept that mitochondrial “reserve” capacity 
declines with age and is a major determinant of the 
ability to overcome stresses [42].  Thus, the inhibition 
of mitochondrial function by rapamycin despite 
extending longevity appears somewhat paradoxical.  
Our results suggest that rapamycin does not decrease 
mitochondrial protein expression or impair function in 
skeletal muscle in vivo.  Although this conclusion 
resolves the paradox, it is also necessary to note that our 
findings imply that rapamycin extends life in the absence 
of any obvious increase in mitochondrial biogenesis, 
calling into question the concept that tissue mitochondrial 
content might be limiting for lifespan in mice. 
 

 
 

Figure 5. Oxygen consumption in isolated soleus muscles is 
not affected by prior in vivo rapamycin treatment.  After a 
one week recovery period, with continued rapamycin dosing, 
soleus muscle fibers were isolated form the animals represented 
in figure 4, permeabilized with digitonin, and subjected to 
respirometry in the presence of mitochondrial substrates and 
inhibitors using an Oxygraph-2K chamber (Oroboros).  GM: 
Glutamate and Malate; ADP; Rot: Rotenone; Suc: Succinate; Ama: 
Antimycin A; TMPD/Asc: tetramethylphenylenediamine and 
ascorbate; Cyt C: Cytochrome c.  Error bars show s.e.m; n=5. 
 

Figure 6.  The reduced oxygen consumption of rapamycin-
treated cells is maintained following permeabilization.  
Oxygen consumption was measured before and after digitonin-
permeabilization in C2C12 myoblasts that had been exposed to 
500 nM rapamycin for 24 hr. The following additions were made 
sequentially: 0.08 mg/ml digitonin, 2 mM glutamate plus 0.4 mM 
malate, 200 µM ADP, 2 µM rotenone. Rates of oxygen 
consumption were expressed as nanoatoms of oxygen consumed 
per minute per million cells using each substrate for three 
independent experiments.  Error bars show s.e.m; n=3. *p<0.05.  
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We found that rapamycin clearly decreased the mRNA 
expression of mitochondrial genes in skeletal muscle, 
consistent with its effects in cell culture [29], and the 
observations of Blattler et al. [32].  The ultimate effect 
on protein levels might be predicted to be even more 
dramatic, since inhibition of mTORC1 can also have a 
negative influence on translation [43].  Therefore, it was 
somewhat surprising to see that mitochondrial protein 
expression and endurance were not significantly 
affected.  Although these results could be reconciled by 
reduced turnover of mitochondria in the presence of 
rapamycin, we do not favor this explanation because 
inhibition of mTORC1, if anything, should increase 
degradation of cellular components via autophagy [44].  
Indeed, during the preparation of this manuscript, Drake 
et al. [45] have provided direct evidence that 
mitochondrial protein turnover in skeletal muscle is 
unaffected by rapamycin treatment.  Another possibility 
is that decreases in the mRNA abundance for 
mitochondrial genes are compensated by increased 
translation.  Nuclear-encoded mitochondrial transcripts 
display distinguishing structural characteristics in the 
untranslated regions that can contribute to preferential 
translation under specific conditions, such as dietary 
restriction [46, 47], and translation of mtDNA-encoded 
transcripts is subject to many factors that remain 
incompletely understood [48].  A third possibility is that 
the assembly of oxidative phosphorylation complexes is 
better coordinated in the presence of rapamycin, which 
might prevent the degradation of partial or misfolded 
complexes [49].  The mechanism by which 
mitochondrial abundance is maintained in the presence 
of fewer transcripts will be an interesting area for 
further investigation. 

 
It is known that total loss of mTORC1 in skeletal 
muscle, due to deletion of the essential subunit Raptor, 
or the catalytic subunit mTOR, causes profound 
mitochondrial dysfunction [50, 51].  Mitochondria are 
also affected in mice lacking YY1, the transcription 
factor that recruits mTORC1 to many mitochondrial 
genes [32].  The fact that rapamycin-treated mice are 
able to compensate for the reduction in mTORC1 
activity suggests a number of possibilities.  First, it may 
be that only a small fraction of normal mTORC1 
activity is required to maintain mitochondrial function, 
and that higher or continuously delivered doses of 
rapamycin, or more potent mTOR inhibitors, will 
indeed cause overt mitochondrial dysfunction.  In 
support of this, Cunningham et al detected a reduction 
in the respiratory capacity of soleus muscle (but not 
gastrocnemius muscle) using only a slightly higher dose 
than the present study (2.5 mg/kg in 6-week old Balb/c 
mice, [29]).  Alternatively, mTORC1 activity may be 
more important for establishing a healthy pool of 

mitochondria during development than in adult mice, or 
the rapamycin-resistant functions of mTORC1 [52] may 
be sufficient to preserve mitochondria.  Interestingly, 
mTORC1 activity is not an absolute requirement for 
healthy mitochondria, as mitochondrial function can be 
restored in mice lacking mTOR through the genetic or 
pharmacological stimulation of mitochondrial 
biogenesis pathways [53].  
 
In these experiments, we have focused on skeletal 
muscle because the impairment of mitochondrial 
biogenesis by rapamycin has been previously 
demonstrated in myotubes [29], which is consistent with 
our own findings, and because mTORC1 inactivation 
has been shown to cause mitochondrial dysfunction in 
muscle in vivo [50, 51].  Although we also observed no 
significant effects of rapamycin on the expression of 
mitochondrial components in the liver, we cannot 
exclude the possibility that rapamycin may impair 
mitochondrial function in other tissues or cell types.  
For instance, neurons have very high energetic demands 
and are reliant on mitochondrial function [54].  
Although the effects of rapamycin on neuronal 
mitochondria have not been measured directly, it is 
interesting to note that the drug has therapeutic effects 
in several neurodegenerative disease models [55], 
which might alleviate concerns that it could be 
inhibiting bioenergetics.  Nevertheless, a comprehen-
sive assessment of rapamycin’s effects on mitochondria 
throughout the body is still lacking, and the possibility 
of impaired mitochondrial function in a specific tissue 
should be considered carefully in relation to any effects 
of rapamycin in vivo. 
 
Developing therapeutic approaches to target the 
underlying aging process has the potential to delay or 
prevent multiple age-related diseases.  Inhibition of 
mTOR signaling with rapamycin has provided some of 
the strongest evidence to date that this might be possible 
in mammals.  Rapamycin itself is unlikely to have a net 
benefit in healthy humans due to its side effects, but it 
remains unclear whether more specific targeting of 
mTORC1 would alleviate enough of these concerns to 
constitute a viable strategy.  Our present results argue 
that inhibiting mTORC1 sufficiently to prolong life 
does not lead to depletion of mitochondrial proteins in 
skeletal muscle or impair exercise performance in mice.  
However, many other detrimental side effects of 
rapamycin have been observed, and some of these may 
also be mTORC1-dependent.  Given the potential 
benefit of slowing the changes that lead to age-related 
diseases in humans, understanding and overcoming 
these side effects should be a high priority for future 
studies.  
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METHODS 
 
Materials. OXPHOS antibody cocktail (MS604/D1848) 
was from MitoSciences (Eugene, OR, USA). GAPDH 
antibody (JC1641540) was from Millipore (Billerica, 
MA, USA).  β-Actin antibody (A5316) was from 
Sigma-Aldrich (St. Louis, MO, USA).  Protease and 
phosphatase inhibitor cocktail tablets were from Roche 
(Basel, Switzerland, 11836153001 and 04906845001, 
respectively).  Rapamycin was purchased from 
Calbiochem (Billerica, MA, USA, 553210).  DMEM, 
fetal bovine serum (FBS), horse serum, insulin, and 
Trizol were obtained from Invitrogen (Grand Island, 
NY, USA).  Other chemicals were purchased from 
Sigma (St. Louis, MO, USA) unless noted. 
 
Animal. Male C57BL/6 mice were obtained from 
Taconic at approximately 8 weeks of age.  Chronic 
rapamycin treatments were performed by injecting 8-10 
week old mice intraperitoneally once daily with 
rapamycin (2 mg/kg) or vehicle (saline) for 2 or 3 
weeks. HET3 mice were produced at the Jackson 
Laboratory from Balb/cByJ x C57BL/6J F1 mothers 
and C3H/HeJ x DBA/2J F1 fathers. Young (6 month 
old) and old (21 month old) mice were fed a rapamycin 
containing diet or a matched control diet for 2 or 5 
months as previously described [36].  The rapamycin 
diet contains 14 ppm rapamycin encapsulated in chow, 
from LabDiet®5LG6 (PMI Nutrition International, 
Bentwood, MO, USA).  All experiments were approved 
by the appropriate Institutional Animal Care and Use 
Committees and were performed under the supervision 
of the MIT Department of Comparative Medicine 
(MIT) or University Laboratory Animal Resources 
(Penn). 
 
Quantitative real time RT-PCR assay. Total RNA was 
extracted using TRIzol reagent. The concentration and 
purity of RNA were determined by absorbance at 
260/280 nm.  1 µg of total RNA was reverse transcribed 
using a high-capacity cDNA reverse transcription kit 
(Applied Biosystems, Grand Island, NY, USA) 
according to the manufacturer’s instructions.  The 
cDNA was subjected to real time PCR using SYBR Q-
PCR master mix (Applied Biosystems).  Primer 
sequences used to produce gene-specific amplicons are 
as follows: PGC-1α: forward: 
ACTATGAATCAAGCCACTACAGAC; reverse: 
TTCATCCCTCTTGAGCCTTTCG, GAPDH: forward: 
GGTGAAGGTCGGAGTCAACGGA; reverse: 
GAGGGATCTCGCTCCTGGAAGA, TFAM: forward: 
AAGACCTCGTTCAGCATATAACATT; reverse: 
TTTTCCAAGCCTCATTTACAAGC, NRF1: forward: 
AATGTCCGCAGTGATGTCC; reverse: 
GCCTGAGTTTGTGTTTGCTG, COX5b: forward: 

ACCCTAATCTAGTCCCGTCC; reverse: 
CAGCCAAAACCAGATGACAG, ATPO: forward: 
TCTCGACAGGTTCGGAGCTT; reverse: 
AGAGTACAGGGCGGTTGCATA, ERR-α: forward: 
ACTGCCACTGCAGGATGAG; reverse: 
CACAGCCTCAGCATCTTCAA, Cytochrome c:  
forward: GGAGGCAAGCATAAGACTGG; reverse: 
TCCATCAGGGTATCCTCTCC, 36B4: forward: 
GAAACTGCTGCCTCACATCCG; reverse: 
GCTGGCACAGTGACCTCACACG.  A typical 
reaction contained 250 nmol/l of forward and reverse 
primer, 1 µl cDNA and the final reaction volume was 
20 µl. The reaction was initiated by preheating at 50ºC 
for 2 min, followed by 95ºC for 10 min. Subsequently, 
40 amplification cycles were carried out with 15 s 
denaturation at 95ºC and 30s annealing and extension at 
60ºC. Gene expression was normalized to GAPDH or 
36B4. 
 
mtDNA determination. Muscle tissue was digested with 
7.5 µl proteinase K (10 mg/ml) in a 250 µl total volume 
of proteinase K buffer (100 mM Tris-HCL PH 8.5, 5 
mM EDTA, 0.2% SDS, 200 mM NaCl) overnight at 
55ºC. A further 10 µl proteinase K was added the next 
day, and the reaction was allowed to proceed for one 
more hour.  250 µl proteinase K buffer and 170 µl 5M 
NaCl were added and samples were mixed for 1 min, 
then centrifuged at maximum speed for 15 minutes at 
4ºC. Supernatants were collected and 1 ml ethanol was 
added, after which the tubes were inverted several times 
to mix. Samples were centrifuged at max speed for 15 
minutes at 4ºC, supernatants were discarded and the 
DNA pellet was washed with 70% ethanol. The DNA 
pellet was air dried and resuspended in 50 µl TE buffer. 
Primer sequences used to produce mitochondrial (MT) 
and nuclear specific DNA products for quantification of 
mtDNA/nuclear DNA ratio are as follows: cytochrome c 
oxidase I (MT-CO1): forward: 
TGCTAGCCGCAGGCATTAC; reverse: 
GGGTGCCCAAAGAATCAGAAC, NADH 
dehydrogenase 1 (MT-ND1): forward: 
GTGGCTCATCTACTCCACTGA; reverse: 
TCGAGCGATCCATAACAATAA, NADH 
dehydrogenase flavoprotein1 (NDUFV1): forward: 
CTTCCCCACTGGCCTCAAG; reverse: 
CCAAAACCCAGTGATCCAGC.  
 
Western blotting. Tissue samples were homogenized 
using a Tissuemiser Homogenizer (Fisher Scientific, 
Waltham, MA, USA) in cold RIPA buffer 
supplemented with phosphatase inhibitor and protease 
inhibitor cocktail tablets.  Tissue lysates were incubated 
at 4ºC with gentle rocking for 15 minutes, then 
centrifuged at 12,800 rpm for 15 minutes at 4ºC to 
remove insoluble material. Protein concentration was 
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determined by Bicinchoninic Acid (BCA) Assay (Pierce 
Biotechnology, Rockford, IL, USA).  20ug proteins 
were separated by sodium dodecylsulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) on 8-
16% gradient or 7.5% resolving gels.  Some of the 
animals represented in Figure 2 (the right side of each 
blot) received an intraperitoneal injection of 0.75U/kg 
insulin 15 minutes prior to sacrifice in order to assess 
changes in signaling for a prior study [27].  Since this 
treatment had no appreciable effect on mitochondrial 
protein levels, insulin status was not considered in the 
present analysis.  
 
Endurance exercise. 8-week-old male C57BL/6 mice 
were injected intraperitoneally with saline or rapamycin 
(2mg/kg) once daily for two weeks.  During the third 
week of injection, 9 control mice and 9 rapamycin-
treated mice were tested for endurance on a treadmill 
(Columbus Instruments Treadmill 3.2, Columbus, OH, 
USA).  Mice were provided with a 10-minute warm up 
period where speed incrementally increased to 6 m/min. 
After the 10-minute warm up, mice were subjected to 
increased speeds at 12-minute increments.  Each cycle 
consisted of 10 minutes of constant speed, followed by 
2 minutes of acceleration to 2 m/min faster.  Exhaustion 
was defined as the time point when a mouse had 
cumulatively received 50 electric shocks from a grid at 
the back of the treadmill, a point that has been found to 
reveal differences in endurance in other systems [56].  
The number of shocks, total running time and distance 
were recorded. 
 
Muscle fiber oxygen consumption. Fresh soleus muscle 
was isolated from male C57BL/6 mice treated with 
either 2 weeks of intraperitoneal rapamycin or saline 
vehicle.  Skeletal muscle tissue (2 mg) was placed in 
cold biopsy preservation solution (BIOPS) consisting of 
50 mM K+-MES, 20 mM taurine, 0.5 mM dithiothreitol, 
6.56 mM MgCl2, 5.77 mM ATP, 15 mM 
phosphocreatine, 20 mM imidazole (pH 7.1 adjusted 
with 5 N KOH at 0°C), and 10 mM Ca-EGTA buffer. 
While in cold BIOPS, connective tissue was removed 
and the muscle fibers were mechanically separated with 
fine forceps. Muscle fibers were then permeabilized 
using saponin (50 μg/ml BIOPS). Muscle fibers were 
added to ice cold saponin/BIOPS and gently agitated for 
30 minutes. Fibers werehen transferred into ice-cold 
mitochondrial respiration medium (MiRO5) with 
catalase (280 units/ml) and gently agitated on ice for an 
additional 10 minutes.  MiRO5 consists of 110 mM 
sucrose, 60 mM K+-lactobionate, 0.5 mM EGTA, 3 mM 
MgCl2, 20 mM taurine, 10 mM KH2PO4, 20 mM 
HEPES adjusted to pH 7.1 with KOH at 37°C; and 1 
g/L BSA essentially fatty acid free). After weighing, 1 
mg of permeabilized fibers were transferred to 

anOxygraph-2k chamber (Oroboros Instruments, 
Austria) and suspended in MiRO5 plus catalase at 37°C. 
After stabilization (~ 10 minutes), oxygen consumption 
was measured in real-timeafter adding mitochondrial 
complex substrates and inhibitors sequentially. 
Complex I dependent respiration was measured by add 
glutamate (10 mM), malate (2 mM) and then ADP (5 
mM); Complex II dependent respiration was then 
determined by adding rotenone (0.5 μM) and succinate 
(10 mM), and finally complex IV dependent respiration 
was determined by adding Antimycin A (2.5 μM); 
tetramethylphenylenediamine (TMPD, 0.5 mM) 
ascorbate (2 mM) and Cytochrome c (10 μM). 
 
Cell culture. The C2C12 mouse myoblasts were grown 
in Dulbecco's modified Eagle's medium supplemented 
with 10% fetal bovine serum and 1% 
penicillin/streptomycin. The C2C12 cells were treated 
with 500 nM rapamycin for 24 hours, which we have 
previously been shown to inhibit respiration [28]. 
 
Myoblast oxygen consumption. Oxygen consumption 
by C2C12 myoblasts was measured using a standard 
oxygen electrode (Strathkelvin Instruments, North 
Lanarkshire, Scotland) in a magnetically stirred, 
thermostatically regulated chamber at 30°C. 
Approximately 500,000 cells were suspended in a total 
volume of 0.15 ml of mitochondrial respiration medium 
(MiR05 [57], 110 mM sucrose, 60 mM K+-lactobionate, 
0.5 mM EGTA, 3 mM MgCl 2, 20 mM taurine, 10 mM 
KHPO4, 20 mM HEPES adjusted to pH 7.1 with KOH 
at 37°C; and 1 g/l BSA essentially fatty acid free). 
Oxygen consumption was measured before and after 
each sequential addition of 0.08 mg/ml digitonin, 2 mM 
glutamate plus 0.4 mM malate, 200 µM ADP, plus 2 
µM rotenone. Rates of substrate oxidation were 
expressed as nanoatoms of oxygen consumed per 
minute per million cells. 
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Supplemental Figure S1. Rapamycin does not affect 
expression of mitochondrial genes in liver.  Transcript levels 
for mitochondrial transcription factors (PGC-1α, TFAM, NRF1 and 
ERRα) and mitochondrial DNA encoded genes (ATP5O, COX5b and 
cytochrome c) were measured in liver following 2 weeks of daily 
rapamycin treatment.  Data were obtained from C57BL/6 mice 
following an overnight fast after the last rapamycin injection.  
Open columns, control; Filled columns, rapamycin. Error bars show 
s.e.m; n=5. 
 

Supplemental Figure S2. Rapamycin has no major effects 
on mitochondrial protein levels in liver.  Representative 
subunits of each electron transport complex were detected by 
Western blotting using a cocktail of monoclonal antibodies from 
MitoSciences.  Because the complex IV subunit was not detected 
using the cocktail, a separate COXIV antibody was also used.  The 
identities of the probed subunits are as follows: complex I – NADH 
dehydrogenase 1 beta subcomplex 8 (NDUFB8); complex II – 
succinate dehydrogenase subunit B (SDHB); complex III – 
ubiquinol-cytochrome c reductase core protein 2 (UQCRC2); 
complex V – ATP synthase subunit alpha (ATP5A). Proteins were 
measured in liver following 2 weeks of rapamycin treatment.  Data 
were obtained from C57BL/6 mice following an overnight fast.  
 


