
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
Several studies have demonstrated that exceptional 
longevity can have a strong familial component. 
Specific sibships have been described in which the 
presence of multiple siblings achieving extreme old age 
was extremely unlikely to have occurred by chance and 
these siblings must have genetic and/or environmental 
factors in common facilitating such clustering [1].  
Sibship studies reveal high relative risks for surviving to 
90+ years for the siblings of centenarians and these 
relative risks increase with the older and older ages of 
the proband [2-8], thus suggesting an influential  genetic  
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component. Tan and colleagues have noted that the 
power of a sample for the discovery of genetic variants 
associated with exceptional longevity increases when 
the sample includes centenarians versus nonagenarians 
[9]. Finally, the accuracy of a genetic model composed 
of multiple genetic markers to differentiate between 
centenarians and referent cohort subjects increased with 
the ages of the centenarians, especially those surviving 
beyond 106+ years, suggesting that the genetic 
component of exceptional longevity (EL) increases with 
increasing age beyond 100 years [10, 11]. Additionally, 
centenarians are not only a human model of exceptional 
longevity, but they are also a human model of healthy 
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Abstract: Case control studies of nonagenarians and centenarians provide evidence that  long‐lived  individuals do not
differ in the rate of disease associated variants compared to population controls. These results suggest that an enrichment
of novel protective  variants,  rather  than a  lack of disease associated  variants, determine  the  genetic predisposition  to
exceptionally  long  lives. Using  data  from  the  Long  Life  Family  Study  (LLFS), we  sought  to  replicate  these  findings  and
extend them to include a larger number of disease‐specific risk alleles. To accomplish this goal, we built a genetic risk score
for each of four age‐related disease groups: Alzheimer’s disease, cardiovascular disease and stroke, type 2 diabetes, and
various cancers and compared the distribution of these scores between older participants of the LLFS, their offspring and
their spouses.  The analyses showed no significant differences in distribution of the genetic risk scores for cardiovascular
disease and stroke,  type 2 diabetes, or cancer between  the groups, while participants of  the LLFS appeared  to carry an
average 1% fewer risk alleles for Alzheimer’s disease compared to spousal controls and, while the difference may not be
clinically relevant,  it was statistically significant. However, the statistical significance between  familial  longevity and the
Alzheimer’s disease genetic  risk score was  lost when a more stringent  linkage disequilibrium  threshold was  imposed  to
select independent genetic variants.  
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aging as many centenarians, and super-centenarians in 
particular, compress morbidity and disability towards 
the ends of their lives [12].  
 
Both the New England Centenarian Study and the 
Leiden Longevity Study have found that genetic 
variants associated with age-related diseases were just 
as prevalent in their centenarian and nonagenarian 
samples as in general population samples [11, 13]. 
Similar results were recently shown in a small group of 
centenarians of Ashkenazi Jewish descent [14]. 
Therefore it seems likely that what sets these 
individuals apart from those who do not achieve 
exceptional longevity is, in part, an increased 
prevalence of protective genetic variants. The increased 
prevalence of protective genetic variants has also been 
suggested by work from the Ashkenazi Jewish 
Centenarian Study in which numerous subjects were 
observed to achieve extreme old age despite a history or 
presence of bad health habits otherwise associated  with  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

premature mortality. The authors suggest that protective 
variants must be present to facilitate survival to extreme 
old age in these subjects [15]. With access to Long Life 
Family Study (LLFS) data, we set out to determine if 
the number of disease-associated genetic variants is 
different between subjects selected because of familial 
longevity and spousal controls. By developing disease-
specific genetic risk scores and utilizing a variety of 
modeling techniques, we compare the number of age-
related disease risk alleles between those with familial 
longevity and those without to see if a difference exists.  
 
RESULTS 
 
Table 1 summarizes the characteristics of 1562 LLFS 
participants in generation one (G1), and 3102 in 
generation two (G2). Approximately 55% of subjects in 
generation one died since enrollment and the median 
age at death was 95 years for males and 97 years for 
females as of June, 2014.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Distribution of Generation 1 and 2 Individuals with genotype data 
Generation 1 (N = 1562) 

Relation Number of 
Individuals (Alive1) Mean Age2 Male/Female 

Proband 511 (177) 97.8 264/247 
Sibling of Proband 862 (419) 93.3 392/470 
Half Sibling of Proband 14 (6) 91.6 5/9 
Spouse of Proband (control) 37 (22) 91.4 1/36 
Spouse of Sibling of Proband (control) 134 (93) 87.3 37/97 
Sibling of Spouse of Proband (control) 2 (1) 91.0 2/0 
Sibling of Spouse of Sibling of Proband 
(control) 2 (1) 92.5 0/2 

Generation 2 (N = 3102) 

Relation Number of 
Individuals (Alive1) Mean Age2 Male/Female 

Offspring of Proband 731 (699) 68.0 283/448 
Offspring of Siblings 1577 (1505) 65.8 690/887 
Offspring of Half Siblings 13 (12) 72.8 7/6 
Half Sibling of Offspring of Proband 1 (1) 55.0 1/0 
Half Sibling of Offspring of Sibling 10 (10) 68.7 7/3 
Offspring of Sibling of Spouse of Sibling 
(control) 1 (1) 62.0 1/0 

Spouse of Offspring (control) 769 (722) 66.9 409/360 
1 Alive as of June 2014 
2 Mean Age at Last Contact as of June 2014 
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We analyzed the four major age-related disease groups: 
Alzheimer’s disease, cardiovascular disease and stroke, 
type 2 diabetes, and cancers and, using the selection 
procedure described in the methods, we created a GRS 
with 93 SNPs associated with Alzheimer’s disease (Table 
S1), a GRS with 239 SNPs associated with cardio-
vascular disease and stroke (Table S2), a GRS with 155 
SNPs associated with type 2 diabetes (Table S3), and a 
GRS  with  431  SNPs  associated   with  various  cancers  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Table S4). Supplement Figures S1 through S4 show the 
distribution of the rate of risk alleles in generation one 
(proband, siblings and their spouses), and in generation 
two (offspring and their spouses) for the four disease 
groups. Summaries of the analysis based on Poisson 
mixed effects models are displayed in Table 2. 
Additional results based on the alternative approaches 
described in the methods are displayed in the Supplemen-
tal Online Material (Supplement Tables S6—S12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.  Association of familial longevity with GRS in four age-related disease groups 

Alzheimer’s Disease 

  
LD threshold of r2 > 0.8  

(93 SNPs) 
LD threshold of r2 > 0.2 

(83 SNPs) 
Published GRS  

(8 SNPs) 
Data β1 Z-Stat pval β1 Z-stat pval β1 Z-Stat pval 
Generation One -0.01512 -1.50 0.133 -0.00622 -0.60 0.546 -0.02100 -0.67 0.503 
Generation Two -0.00974 -1.90 0.057 -0.00473 -0.89 0.371 -0.01230 -0.76 0.447 
Both Generations -0.01067 -2.320 0.020 -0.00568 -1.20 0.230 -0.01535 -1.07 0.285 

CVD and Stroke 

  
LD threshold of r2 > 0.8  

(239 SNPs) 
LD threshold of r2 > 0.2 

(218 SNPs) 
Published GRS  

(20 SNPs) 
Data β1 Z-Stat pval β1 Z-stat pval β1 Z-Stat pval 
Generation One -0.00361 -0.62 0.535 -0.00380 -0.62 0.535 0.02640 1.36 0.174 
Generation Two -0.00022 -0.07 0.944 -0.00134 -0.43 0.667 0.00527 0.53 0.596 
Both Generations -0.00119 -0.45 0.653 -0.00211 -0.76 0.447 0.00809 0.92 0.358 

Type 2 Diabetes 

  
LD threshold of r2 > 0.8  

(155 SNPs) 
LD threshold of r2 > 0.2 

(137 SNPs) 
Published GRS  

(14 SNPs) 
Data β1 Z-Stat pval β1 Z-stat pval β1 Z-Stat pval 
Generation One 0.00319 0.48 0.631 0.00376 0.53 0.596 0.01409 0.64 0.522 
Generation Two 0.00410 1.20 0.230 0.00339 0.93 0.352 0.01397 1.23 0.219 
Both Generations 0.00348 1.14 0.254 0.00313 0.96 0.337 0.01510 1.50 0.134 

Cancer 

 
LD threshold of r2 > 0.8  

(431 SNPs) 
LD threshold of r2 > 0.2  

(386 SNPs) 
Data β1 Z-Stat pval β1 Z-stat pval 
Generation One -0.00074 -0.17 0.865 -0.00161 -0.36 0.719 
Generation Two 0.00026 0.12 0.905 -0.00052 -0.23 0.818 
Both Generations -0.00019 -0.10 0.920 -0.00083 -0.40 0.689 

 

1 β Estimate is for the regression coefficient for the familial longevity indicator (0=control, 1=proband or relative of proband), in log-
scale for the analysis of generation one subjects (N=1562), generation two subjects (N=3102), and aggregated data from both 
generations. The results of generation one and two are adjusted for sex. The results of aggregated data from both generations are 
adjusted for sex and generation. Results from 3 types of GRS are presented: GRS with LD threshold of r2 > 0.8 and r2 > 0.2 included 
SNPs with LD of 0.8 or less, and 0.2 or less; published GRS were shown to be significantly associated with disease in the literature.  
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Table 2 reports the results of the association between 
familial longevity and the GRS for Alzheimer’s disease 
after adjusting for sex. Familial longevity is 
significantly associated with the genetic risk score in the 
analysis with aggregated data from the two generations 
at the 0.05 level (p-value 0.020) but did not reach 
statistical significance in either generation alone, 
although the association was borderline significant in 
the offspring with a p-value of 0.057. The results from 
the aggregated data analysis shows that, on average, 
LLFS individuals with familial longevity carry 1.06% 
fewer risk alleles than controls since the ratio between 
expected number of risk alleles is exp(-0.01067)=0.989. 
It is interesting to note that once the data from both 
generations are combined, not only is the association 
significant at the 0.05 level, but the significance of the 
association is stronger in the full data than either 
generation alone. This indicates that an association 
between GRS and familial longevity in the older 
generation may actually be present, but, as our power 
simulations showed, the relatively small sample size did 
not provide sufficient power to detect that association 
(Table 4).  However, we should also note that when we 
impose an LD threshold of r2 > 0.2, the statistical 
significance of this association is lost. Table 3 shows 
the results of the analyses in which (1) both SNPs 
rs2075650 in TOMM40 and rs769449 (which is in high 
LD with rs2075650) were removed, (2) rs7412 in 
APOE was removed, or (3) all three of these SNPs were 
removed from the GRS. The association between 
familial longevity and the score without rs2075650 in 
TOMM40 and rs769449 is borderline significant (p-
value 0.051) only in the analysis with aggregated data 
from both generations and the effect is small: LLFS 
subjects carry on average 0.88% fewer Alzheimer’s 
disease alleles than controls. Removing rs7412 in 
APOE from the genetic score has less of an impact in 
the full data analysis with a 1.04% smaller rate of 
disease alleles carried in those with familial longevity 
compared to controls and statistical significance was 
retained (p-value 0.025). When all three SNPs were 
removed from the GRS, the association of the GRS with  
 
 
 
 
 
 
 
 
 
 
 
 

familial longevity was no longer significant in any of 
the samples – those with familial longevity have, on 
average, 0.85% fewer risk alleles than controls (p-value 
0.067). 
 
The results for the GRS of type 2 diabetes are markedly 
different. Instead of seeing a decreased number of risk 
alleles for type 2 diabetes in subjects with familial 
longevity when compared to controls, we actually see a 
slightly increased number of risk alleles within those 
with familial longevity, and while these results were not 
statistically significant (p-value > 0.1) in the Poisson 
mixed effects model, Tables S7 and S8 show that, under 
the Poisson GLM with GEE using an exchangeable 
correlation structure and the Linear Mixed Effects 
Model with the Kinship matrix, this association is 
significant at the 0.05 level. This indicates that the 
number of risk alleles related to type 2 diabetes is not 
smaller among subjects with familial longevity 
compared to those without, and may, in fact, be higher.  
The results of the analyses for cardiovascular disease 
and stroke show that LLFS participants with familial 
longevity have, on average, lower genetic risk scores 
than control individuals. However, these results did not 
reach statistical significance (smallest p-value 0.36 in 
the analysis of data from both generations using the 
published type 2 diabetes GRS).  
 
For the analyses of the cancer GRS, the results are 
somewhat mixed. From Table 2, we see that it appears 
there is a decreased rate of risk alleles among those with 
familial longevity compared to controls in the older 
generation as well as when both generations are 
combined. However, when looking at the offspring 
alone, we see a slightly increased rate of risk alleles 
among those with familial longevity. In all cases, 
however, the beta coefficients corresponding to familial 
longevity are very small, so it is not surprising that we 
see some coefficients greater than 0 and others smaller. 
This indicates that there is no statistical difference in the 
number of risk alleles for cancers comparing those with 
familial longevity to participants without. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Alzheimer's Results from Poisson Generalized Linear Model without APOE SNPs 

  Removed rs2075650 & rs769449 Removed rs7412 Removed rs2075650, rs769449, 
and rs7412 

Data β1 Z-Stat pval β1 Z-stat pval β1 Z-Stat pval 
Generation One -0.01324 -1.34 0.179 -0.01583 -1.55 0.121 -0.01329 -1.30 0.193 
Generation Two -0.00739 -1.46 0.145 -0.00934 -1.79 0.073 -0.00737 -1.41 0.158 
Both Generations -0.00884 -1.95 0.051 -0.01049 -2.25 0.025 -0.00857 -1.83 0.067 
1  β Estimate is the regression coefficient for the familial longevity indicator (0=control, 1=proband or relative of proband), in log‐scale 
for the analysis of generation one subjects (N=1562), generation two subjects (N=3102), and aggregated data from both generations. 
As in Table 2, the results of generation one and two are adjusted for sex, while the results of aggregated data from both generations 
are adjusted for sex and generation. SNP rs2075650 is in TOMM40  while SNP rs7412 is in APOE. 
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Overall, the results were similar from all secondary 
analyses – when other statistical models were used for 
all disease-specific genetic risk scores, when the LD 
threshold was lowered or analyses were limited to SNPs 
in published GRSs that were shown to be associated 
with disease risk, and when the controls within 
generation one were removed and we substituted 
younger controls from the New England Centenarian 
Study (see SOM). The most notable difference was that 
reducing the number SNPs in the Alzheimer’s disease 
GRS resulted in a loss of statistical significance of the 
association between the GRS and familial longevity. 
This indicates that our initial results could have been 
due to the effect of co-segregated SNPs implying that 
Alzheimer’s disease is not an exception to the rule and 
the number of risk alleles does not significantly differ 
between controls and individuals with familial 
longevity.  
 
DISCUSSION 
 
Our data show that with the potential exception of 
Alzheimer’s disease, LLFS participants with familial 
longevity do not appear to have fewer age-related disease 
risk alleles when compared to controls. The results are 
robust and similar conclusions were reached with 
alternative statistical analyses described in the SOM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sebastiani et al recently reported that compared to 
subjects not selected for familial longevity, the older 
generation LLFS subjects have lower hazards for cancer, 
cardiovascular disease, severe dementia, diabetes, 
hypertension, osteoporosis, and stroke [16]. The age at 
which 20% of the LLFS siblings and probands had one or 
more age-related diseases was approximately 10 years 
later than the controls. Thus, as with most centenarians, 
and particularly those beyond the age of 103 years [12], 
LLFS members of families that cluster for exceptional 
longevity not only live longer but also have extended 
health-spans. Also similar to centenarians [11, 13], this 
“resistance” to age-related diseases that are responsible 
for much of the morbidity and mortality in the elderly 
appears not to be associated with a decreased rate of 
genetic variants previously found to be associated with 
these diseases. LLFS participants also exhibit lower 
cognitive impairment in both generations [17] and we 
recently showed that even compared to centenarians from 
the New England Centenarian Study, LLFS participants 
from generation one have significantly lower prevalence 
of Alzheimer’s disease and significantly older age of 
onset [16]. The GRS for Alzheimer’s disease included 93 
SNPs pointing to 50 genes. We cannot determine the 
relative pathogenic contribution of any single variant 
contributing to the GRS since the score reflects a 
collective risk.  

Table 4. Results of Power Simulations 
1% Difference (β = -0.0101) 

Data Alzheimer's Disease  CVD and Stroke  Type 2 Diabetes  Cancers 
Generation One 0.38 0.73 0.65 0.93 
Generation Two 0.78 1.00 1.00 1.00 
Both Generations 0.91 1.00 1.00 1.00 

5% Difference (β = -0.0513) 
Data Alzheimer's Disease  CVD and Stroke  Type 2 Diabetes  Cancers 
Generation One 1.00 1.00 1.00 1.00 
Generation Two 1.00 1.00 1.00 1.00 
Both Generations 1.00 1.00 1.00 1.00 

10% Difference (β = -0.1054) 
Data Alzheimer's Disease  CVD and Stroke  Type 2 Diabetes  Cancers 
Generation One 1.00 1.00 1.00 1.00 
Generation Two 1.00 1.00 1.00 1.00 
Both Generations 1.00 1.00 1.00 1.00 

Simulations were performed to assess the power to detect 1, 5, and 10 percent differences  in number of risk alleles for 
those  with  familial  longevity  compared  to  those  without.  The  values  in  the  cells  indicate  the  power  to  detect  each 
difference for all four GRSs. 
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The increased risk for AD associated with the ApoE ɛ4 
allele is well known [18], and its frequency has 
previously been noted to be very low in centenarians 
[19, 20]. Schupf et al [21] showed that, compared to 
their spouses, LLFS offspring had a 30% lower chance 
of carrying the G allele of SNP rs2075650 in TOMM40, 
which is in moderate linkage disequilibrium with the 
APOE ɛ4 allele. This SNP is one of the 93 SNPs 
included in the GRS for Alzheimer’s disease (Table 
S1). The additional analyses in which this SNP, 
rs769449, and/or rs7412 in APOE were removed from 
the GRS for Alzheimer’s disease suggest that additional 
Alzheimer’s disease-associated genetic variants appear 
to be less frequent in the older generation of LLFS 
participants while generally, for other age-related 
diseases, such a relative lack of disease associated 
variants amongst exceptional survivors does not seem to 
be the case. For example, in more random samples such 
as the New England Centenarian Study, similar 
differences in rates of Alzheimer’s and dementia 
associated alleles were not noted [11]. One of the 
eligibility requirements of LLFS was that the proband 
and at least one living sibling were able to provide 
informed consent and therefore had some cognitive 
competence at old age [22]. This requirement may have 
resulted in a sample of exceptional survivors with a lack 
of Alzheimer’s disease predisposing variants. 
 
A limitation of this study is that we cannot exclude with 
certainty that the spouses of probands, their siblings and 
offspring in the LLFS have familial longevity. Inclusion 
of such controls would bias our results toward the null 
hypothesis of no difference with respect to number of 
risk alleles and invalidate the conclusions. Probands of 
the LLFS were enrolled based on evidence of familial 
longevity that was scored using the Familial Longevity 
Selection Score (FLoSS) [23], and families with an 
eligible score are very rare in the population. For 
example, we estimated that fewer than one percent of 
families enrolled in the Framingham Heart Study would 
achieve a FLoSS that makes them eligible to be in the 
LLFS. Therefore, the likelihood that the spousal 
controls have longevity running in their own families to 
the degree observed in LLFS families is unlikely.   
 
The results of our power simulations (Table 4) indicate 
that, given our sample size, we had sufficient power to 
detect a 1% difference in GRSs comparing those with 
familial longevity to controls – had it been present. 
Thus, the results generated from our analyses of the 
genetic risk scores related to cardiovascular disease and 
stroke, type 2 diabetes, and cancer support the 
hypothesis that individuals with familial longevity do 
not have a smaller number of age-related disease risk 
alleles compared to controls. Therefore it is likely, as 

has been posited by the New England Centenarian 
Study [10, 11] and Leiden Longevity Study [13], that 
people with familial longevity have a relatively 
increased prevalence of protective genetic and 
environmental factors that confer decreased risk for the 
diseases that we looked at in this study. Uncovering 
these protective factors could lead to screening, 
prevention strategies and perhaps even therapeutic 
interventions to facilitate healthy aging. Another point 
to stress is the predictive value of disease-associated 
variants or lack thereof in assessing a person’s risk of 
developing age-related diseases. Our findings suggest 
that single variants, particularly in isolation and not 
interpreted in the context of other disease associated 
variants or protective variants are highly unreliable 
predictors. 
 
Finally, understanding the epidemiologic relative 
importance of disease associated and protective variants 
may lend clues to drugable pathways and targets. 
 
METHODS 
 
Subjects and Genotype Data. The LLFS enrolled 583 
families with evidence of familial longevity based on 
the Family Longevity Selection Score [23]. Family 
members included probands, siblings and their spouses 
(generation G1), their offspring and spouses (generation 
G2). Enrollment occurred between 2006 and 2009 and 
participants have been followed annually since 2010. 
Table 1 provides a summary of the participants included 
in the analysis. DNA samples of participants were 
genotyped at the Center for Inherited Disease Research 
(CIDR) using the Illumina Omni 2.5 platform, and 
genotype calls were cleaned following a strict quality 
control process described in [24]. Genotype data were 
imputed to the 1000 genomes using MACH 
(http://www.sph.umich.edu/csg/abecasis/MACH/downl
oad/).  Genotyped data are available from dbGaP 
(phs000397.v1.p1). 
 
Calculation of Disease-Specific Genetic Risk Scores. 
The list of single nucleotide polymorphisms (SNPs) 
associated with specific age-related diseases was based 
on the Catalog of Published Genome-Wide Association 
Studies (http://www.genome.gov/26525384) compiled 
by The National Human Genome Research Institute and 
was downloaded on July 26, 2014 [25]. From this 
catalog, a list of 1143 SNPs that were genome-wide 
significantly associated (p < 5 x10-8) with age-related 
diseases and had reported allele(s) associated with 
disease was compiled. Four disease-specific genetic risk 
scores (GRSs) were created for the main age-associated 
diseases: Alzheimer’s disease (Table S1), cardio-
vascular diseases and stroke (Table S2), type 2 diabetes 
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(Table S3), and cancers (Table S4).  SNPs that were 
listed as having more than two common variants using 
the SNPper annotation tool (SNPper.chip.org) were 
omitted.  To avoid inflating the effects of some loci that 
were overrepresented by many SNPs in strong linkage 
disequilibrium (LD), one of each pair of SNPs that were 
in LD (r2 > 0.8) were randomly removed. A total of 20 
SNPs associated with Alzheimer’s disease, 58 
associated with all types of cancer, 90 associated with 
cardiovascular disease and 55 associated with type 2 
diabetes were removed with this filtering. In the case of 
Alzheimer’s disease, the Catalog of Published Genome-
Wide Association Studies contained 103 associated 
SNPs. Additional literature review revealed 10 SNPs 
associated with Alzheimer’s disease that had not been 
included in the Catalog and these SNPs were also 
included in our list [26-32]. This procedure identified a 
total of 93 SNPs associated with Alzheimer’s disease, 
239 SNPs associated with cardiovascular disease and 
stroke, 155 SNPs associated with type 2 diabetes, and 
431 SNPs associated with various cancers for a total of 
N=918 SNPs. Genetic risk scores for each LLFS 
participant i were computed as: 
 

ܴܩ  ܵ ൌ  ݔ



ୀଵ

 

 
where xij is the number of risk alleles (0, 1, 2) at the jth 
SNP, and m is the total number of SNPs within each 
disease group (e.g. m=93 for the Alzheimer’s disease 
GRS). We computed unweighted scores to focus 
attention on the absolute number of disease alleles 
rather than their estimated genetic effect.    
 
Statistical Analysis. The distributions of GRSs for each 
age-related disease were compared between members of 
families selected for longevity and spouses using 
Poisson regression with a log-linear link. The four 
genetic risk scores were the outcome variable in all the 
analyses and, because the GRS is an integer, we 
assumed that this variable followed a Poisson 
distribution. To avoid loss of power due to missing 
values, we used an offset term equal to the log of twice 
the number of SNPs in the GRS for which each person 
had genetic data. Thus, the rate of risk alleles was 
modeled as opposed to the count of risk alleles.  We 
created a binary variable to indicate whether or not a 
person was a proband or genetically related to a 
proband (1=yes, 0=no). Those who married into the 
proband’s family were considered controls in all of the 
analyses (See Table 1). This indicator variable 
represented familial longevity in the regression 
analyses, and the exponential of the regression 
coefficient represents the ratio of risk alleles between 

subjects with and without familial longevity. We first 
performed generation-specific analyses and then 
performed full data analyses adjusting by generation. In 
each analysis, we estimated the crude relationship 
between familial longevity and GRS and then adjusted 
the association for sex. Age at enrollment was not 
included because it is correlated with the indicator of 
familial longevity. To account for the correlation among 
individuals, we fit Poisson linear mixed effects models 
with a log-link function, an offset equal to the number 
of SNPs included in each person’s GRS, and a random 
intercept for each family using the glmer function in 
lme4 package of the R statistical software.  In these 
analyses, R automatically determined the correlation 
structure based on the random effects. All analyses were 
performed in R version 3.0.2. Statistical significance of 
the coefficients was tested using the likelihood ratio test 
[33]. To assess the robustness of the results to the model 
specification, we also conducted additional analyses 
using (1) Generalized Linear Models in which the 
within-family correlation was ignored; (2) Generalized 
Estimating Equations with a sandwich estimator to 
reduce the inflation of the test statistics compared to 
standard Generalized Linear Models, and (3) Linear 
Mixed Effects Models with kinship correction assuming 
an approximate normal distributions for the rate of risk 
alleles. The results of these three additional analyses are 
in the supplementary material (Supplement Tables 6—
8) and were similar to the analysis based on Poisson 
linear mixed effects model analysis. In addition to the 
previously described methods, a thorough sensitivity 
analysis was conducted.  
 
To confirm that our results were not a product of our 
rather lenient LD threshold, we ran a secondary analysis 
where one SNP from each pair of SNPs with an r2 > 0.2 
was randomly deleted. This additional filtering left us 
with 83 SNPs associated with Alzheimer’s disease, 218 
SNPs in our GRS for cardiovascular disease and stroke, 
137 SNPs associated with type 2 diabetes, and 386 
SNPs associated with various cancers.  Results of these 
analyses are displayed in Table 2 as well as Tables S6-
S12. 
 
We also performed a literature review to identify 
published genetic risk scores that had been shown to 
accurately discriminate cases and non-cases for three of 
our four age-related diseases: Alzheimer’s disease [34], 
cardiovascular disease [35], and type 2 diabetes [36]. 
Because our GRS for cancer contains various types of 
cancer, we were unable to find a published genetic risk 
score of the same scope for discriminating between cases 
and controls. We then re-ran analyses limiting to SNPs in 
each of the published GRSs. In Verhaaren et al.’s paper 
[34], 11 SNPs were included in their GRS that was 
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associated with prevalent Alzheimer’s disease. Of these 
11 SNPs, two of the SNPs were removed from our 
analyses because the GWAS catalog did not list a risk 
allele and a third was removed due to ambiguous coding, 
leaving us with 8 SNPs in our GRS for Alzheimer’s 
disease. 29 SNPs were used by Thanassoulis et al. to 
construct a GRS that was associat-ed with prevalent 
cardiovascular disease [35].  From these 29 SNPs, we 
excluded 6 SNPs from our analyses due to multiple risk 
alleles recorded in the GWAS catalog. An additional 3 
SNPs were removed due to poor imputation quality or 
ambiguous coding. Thanassoulis et al. also saw 
statistically significant associations between a 13 SNP 
GRS and prevalent cardiovascular disease, of these 13 
SNPs, 12 were included in our secondary analyses. A 
genetic risk score comprised of 18 SNPs was published 
by Meigs et al. after being shown to be associated with 
prevalent type 2 diabetes [36]. Of these 18 SNPs, our 
GRS contained 14 – one was excluded because no risk 
allele was supplied in the GWAS catalog and another 
three were ambiguously coded and were thus removed. 
Results from these analyses were consistent and are 
shown in Tables 2 and S6-S12. 
 
Finally, it was of concern that the controls for 
generation one were nearly as old as the participants 
with familial longevity which may have accounted for 
their relatively similar distribution of age-related 
disease risk alleles. Thus, as another test of the 
robustness of our results, all previously described 
methods were repeated in a dataset where the controls 
for generation one were replaced with the control 
participants from the New England Centenarian Study 
(NECS) [10]. The NECS controls were, on average, 8.6 
years younger than the LLFS generation one controls. 
The GRSs in these analyses were limited to those SNPs 
commonly available between the LLFS data and NECS 
data (numbers shown in supplementary tables). The 
corresponding results were concordant with those using 
only LLFS participants (see Tables S9-S12).  
 
To ensure that we had sufficient power to detect a 
difference in GRSs between individuals with familial 
longevity and controls, should it exist, we ran power 
simulations. For these power simulations, we used the 
family structure and sample size of the LLFS. We then 
generated a random intercept for each family and built a 
linear predictor for each individual using this random 
intercept and beta coefficients for the effect of familial 
longevity corresponding to 1, 5, and 10 percent 
differences between GRSs. For example, for a 1% 
difference in GRS comparing those with familial 
longevity to those without, the beta coefficient was 
log(0.99) = -0.0101. Then, for each individual, their 
simulated GRS was drawn from a Poisson distribution 

with λ equal to the exponential of their linear predictor.  
We then fit a Poisson mixed effects model with a 
random intercept per family and assessed whether or not 
the familial longevity indicator was significantly 
associated with the GRS. This process was repeated 100 
times for each GRS. The results of these simulations are 
shown in Table 4.  
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