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Abstract: For people in their 40s and 50s, lifestyle programs have been shown to improve metabolic health. For older
adults, however, it is not clear whether these programs are equally healthy. In the Growing Old Together study, we
applied a 13-weeks lifestyle program, with a target of 12.5% caloric restriction and 12.5% increase in energy
expenditure through an increase in physical activity, in 164 older adults (mean age=63.2 years; BMI=23-35 kg/mz). Mean
weight loss was 4.2% (SE=2.8%) of baseline weight, which is comparable to a previous study in younger adults. Fasting
insulin levels, however, showed a much smaller decrease (0.30 mU/L (SE=3.21)) and a more heterogeneous response
(range=2.0-29.6 mU/L). Many other parameters of metabolic health, such as blood pressure, and thyroid, glucose and
lipid metabolism improved significantly. Many ‘H-NMR metabolites changed in a direction previously associated with a
low risk of type 2 diabetes and cardiovascular disease and partially independently of weight loss. In conclusion, 25%
reduction in energy balance for 13 weeks induced a metabolic health benefit in older adults, monitored by traditional
and novel metabolic markers.

INTRODUCTION it in a highly heterogeneous fashion [2]. Hence, there is

an urge to stimulate healthy ageing among the
Worldwide, the proportion of older and highly aged increasing group of older adults. Metabolic health can
people in the population is rising fast [1]. Metabolic and successfully be improved by lifestyle changes, such as
physical health generally decline among older adults, be dietary restriction and/or increased physical activity [3-
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9], thereby reducing the risk for cardiovascular disease
(CVD). An example of a lifestyle intervention showing
this metabolic improvement in young adults (28-45
years of age) is the CALERIE study, a 6-month lifestyle
intervention reducing energy balance by 25% in 12
overweight individuals (body mass index (BMI) 25-30
kg/m®) [6]. As yet, it is unclear whether a 25%
reduction in energy balance likewise improves
metabolic health in older adults and is feasible in this
age group.

Poor metabolic health is generally marked by high
levels of total cholesterol, glucose, insulin, triglycerides,
and blood pressure and low levels of HDL cholesterol,
free triiodothyronine (fT3), and adiponectin [10-13],
except in highly aged individuals (above 75 years)
[14,15]. Remarkably, the majority of parameters of poor
metabolic health inversely associate with familial
longevity, as shown by comparison of middle-aged
offspring of long-lived subjects and their spouses [16-
19]. Besides clinical markers, metabolic health can also
be monitored by novel technologies, such as Nuclear
Magnetic Resonance (NMR), which are able to measure
large numbers of metabolites in an affordable and
standardized way. Distinct profiles of metabolites have
been demonstrated to associate with intake of specific
food components [20,21], (future) type 2 diabetes
(T2D) [22-24] and CVD [18,25,26], showing the
potential of metabolomics to monitor metabolic health.
However, it has not yet been established which optimal
set of markers monitors the metabolic effects of a
lifestyle change in older adults.

In the Growing Old TOgether (GOTO) study we
investigated the effect of a lifestyle intervention in older
adults by both clinical and metabolomic profiles.
Participants reduced energy balance by 25% for 13
weeks, targeted by 12.5% reduction in caloric intake
and 12.5% increase in physical activity, corresponding
to one of the three intervention conditions previously
applied in the CALERIE study [6]. In CALERIE, 12
participants received this intervention. The GOTO study
consisted of 164 individuals (mean age 63.2 years) with
a BMI of 23-35 kg/mz, which are mostly couples of
whom one was member of a longevity family and the
other their spouse. Since fasting insulin was one of the
markers that showed a reduction within three months in
the CALERIE study [6], this parameter was used as our
primary outcome. In addition, we measured the
response to the intervention by other established
markers of metabolic health, state-of-the-art metabolic
profiles measured with Hydrogen-1 NMR ('H-NMR),
and quality of life (QoL).

RESULTS

Longevity family members and controls are largely
similar on baseline

Of the 164 individuals who started the intervention
study, one dropped out prior to completion of the study
(Fig. 1). A selection of the clinical baseline
characteristics of the participants according to familial
background, i.e. longevity family member or control, is
depicted in Table 1 (complete clinical baseline
characteristics are provided in Supplementary Table
1A). Baseline characteristics of 'H-NMR metabolites
are shown in Supplementary Table 1B. Gender
differences were observed for many parameters. In
contrast to the Leiden Longevity Study as a whole, in
which many metabolic parameters differ significantly
between longevity family members and controls
[16,18,19], we observed only few significant
differences in the parameters at baseline between the
small groups included in the GOTO study. Therefore,
we studied the effects of the intervention in both groups
combined.

Intervention improves and
metabolic health

body composition

The effect of the 13-weeks lifestyle change on clinical
parameters is depicted in Table 2 and Supplementary
Table 2A. For the primary outcome, i.e. fasting insulin,
a minor mean (SE) decrease of 0.30 mU/L (3.21 mU/L)
and a considerable heterogeneity (range -11.5-10.5
mU/L) was observed (Supplementary Fig. 1). Measures
of body composition generally improved, as shown by a
mean weight loss of 3.3 kg (0.18 kg), i.e. 4.2% (2.8%)
of baseline weight (Fig. 2), a body fat mass decrease of
11.7% (8.9%), and a fat free mass decrease of 0.7 kg
(0.1 kg). Measures of health and functioning showed a
significant decrease of 4.3 mmHg (1.0 mmHg) in
systolic and 1.7 mmHg (0.6 mmHg) in diastolic blood
pressure. We noted that the changes in weight and
systolic blood pressure (Fig. 3), but not in insulin levels,
were dependent on baseline levels.

Resting energy expenditure (REE) significantly
decreased with 49.2 kcal/day (8.0 kcal/day). Hand grip
strength was not changed by the lifestyle change, but
physical functioning, mental QoL in women, and the
Framingham Risk Score improved. The diagnostic
measures showed a significant decrease in total and
LDL cholesterol, HDL cholesterol in women, fT3, and
leptin levels and an increase in adiponectin levels in
men.
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1.050 invited by letter

318 ineligible:
e Lost to follow-up (N=56)
® Not reached before completion of inclusion (IN=262)

732 assessed for eligibility

554 Excluded

® 226 Ineligible:
e Age (N=4)
e BMI out of range/weight instability (N=97)
e Medical conditions or medication (N=78)
e Partner not willing or excluded (N=9)
e Already dieting (N=8)
e Other (deaf, memory complaints, other

178 screened

research, weak-sighted, badly reachable,
second thoughts, deceased) (N=30)
® 328 Withdrew during screening process

6 Ineligible after screening

® BMI out of range (N=5)
® Diabetes type 2 (N=1)
8 Withdrew after screening

164 included in study

1 Withdrew because of knee surgery

163 included in analysis

Figure 1. Flow chart of participants in the trial.

Plasma metabolite profile changes due to 3 months
lifestyle intervention

To determine the overall effect of the intervention on the
'H-NMR  metabolites, we performed Principle
Component Analysis. This analysis indicated that a major
part of the variation in the metabolites (PC1, explaining
32.4% of the total variance) could be attributed to the
effects of the lifestyle intervention (Fig. 4). As shown in
Supplementary Fig. 2, the intervention effect, as
represented by PC1, coincides with many of the
measured 'H-NMR metabolites. The effects of the
intervention on the single 'H-NMR metabolites in fasting

blood are depicted in Fig. 5 and Supplementary Table
2B. Multiple amino acids levels changed significantly
and include a decrease of the branched-chain amino acid
leucine and the aromatic amino acid tyrosine. In addition,
the levels of multiple glycolysis-related metabolites,
ketone bodies, fatty acids, metabolites involved in fluid
balance and inflammation, apolipoproteins, lipid
concentrations, and lipoprotein particle sizes showed a
significant decrease. Citrate levels, large HDL cholesterol
concentrations, and HDL particle size, on the other hand,
increased after the lifestyle change. For several HDL-
related metabolites we observed an opposite effect of the
intervention in men and women.
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Table 1. Baseline characteristics of parameters of body composition, health and functioning, and diagnostic

measurements.
Characteristic n  Longevity family members n  Controls
Women, n (%) 39 (43.3) 42 (56.8)
Age, mean (SD) [range], years 90 63.4(5.4)[49.1-75.1] 74 62.4(6.1)[46.7-73.5]
Body composition, mean (SD) [range]
Weight, kg 89  79.8 (9.6) [62.5-105.7] 73 79.0(10.2) [60.5-102.4]
Men 50 84.3(8.0)[67.2-105.7] 31 85.4(8.1)[70.1-102.4]
Women 39 74.1(8.4)[62.5-95.4] 42 74.1(8.9) [60.5-100.4]
BMI, kg/m’ 89 27.0(2.6) [22.9-34.2] 73 26.9(2.4) [22.9-33.5]
Waist circumference, cm 90 96.2(7.9) [74-122] 74 96.1(8.2) [77-112]
Men 51 98.1(7.4)[80-122] 32 100.1 (6.4) [89-112]
Women 39 93.6(7.9)[74-112] 42 93.0(8.1)[77-111]
Health and functioning, mean (SD) [range]
Systolic blood pressure, mm Hg" 65 135.4(159)[111-196] 48 137.8(17.1)[101-173]
Diastolic blood pressure, mm Hg" 65 83.5(7.4)[64-101] 48 84.7(9.2) [65-108]
Medication use, n (%)
Lipid-lowering agent 90 11(12.2) 74 18 (24.3)
Antihypertensive agent 90 23(25.6) 74 26(35.1)
Diagnostic measurements, mean (SD) [range]
Fasting glucose, mmol/L 90 5.0(0.5)[3.6-6.5] 74 5.0(0.6) [4.0-7.6]
Fasting insulin, mU/L" 90 9.4(5.1)[2.0-29.6] 74 9.0 (3.9)[2.0-22.6]
HOMA-IR 88 1.2(0.6)[0.4-3.8] 72 1.2(0.5)[0.4-2.7]
Total cholesterol, mmol/L* 79 5.5(1.0)[3.3-8.6] 56 5.5(1.0)[3.2-8.0]
HDL cholesterol, mmol/L* 79 1.6 (0.4)[0.6-3.1] 56 1.4(0.4)[0.6-2.3]
Men 43 1.4(0.3)[1.0-2.0] 23 1.1(0.2) [0.6-1.6]
Women 36 1.7(0.5)[0.6-3.1] 33 1.6(0.3)[1.2-2.3]
LDL cholesterol, mmol/L° 79 3.5(0.8)[1.8-6.4] 56 3.4(0.9)[1.6-6.0]

? Individuals using antihypertensive agents were removed before analysis.

b .
Natural log transformed parameter was used for analysis.

¢ Individuals using lipid-lowering agents were removed before analysis.
Parameters were analysed separately in men and women if there was a significant gender-difference at baseline. BMI, body
mass index; HOMA-IR, homeostatic model assessment - insulin resistance; HDL, high density lipoprotein; LDL, low density

lipoprotein.

Effects of lifestyle intervention at old age (partly)
independent of weight loss

To investigate whether the observed response mainly
coincides with the change in weight, we adjusted for
weight loss. For most of the parameters of health and
functioning, diagnostic measurements, and 'H-NMR

metabolites, adjustment for weight loss reduced the
effects of the intervention. However, the changes in fT3,
total, VLDL, LDL, and IDL cholesterol, as well as those
in phosphoglycerides, cholines, sphingomyelines, and
some glycolysis intermediates, remained largely
unchanged after this adjustment (Table 2, Supplementary
Table 2A and Supplementary Table 2B).
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Finally, the beneficial effects on physical functioning and Hence, the effect of the lifestyle change on many of the
mental QoL in women were also largely independent of metabolic parameters and well-being in this study occurs
weight loss (Table 2 and Supplementary Table 2A). partly or fully independent of the observed loss in weight.

Table 2. Effects of the intervention on parameters of body composition, health and
functioning, and diagnostic measurements.

Characteristic, mean (SE) n Difference P-value®

Body composition

Weight, kg 161 -3.34(0.18) <0.001
Men 80 -3.42(0.27) <0.001
Women 81 -3.25(0.23) <0.001
BMI, kg/m’ 161 -1.13 (0.06) <0.001
Waist circumference, cm 163 -4.3(0.4) <0.001
Men 82 -4.4 (0.6) <0.001
Women 81 -4.2 (0.6) <0.001
Body fat, % 161 -2.26 (0.16) <0.001
Men 80 -2.22(0.23) <0.001
Women 81 -2.29 (0.21) <0.001
Fat free mass, kg2 161 -0.67 (0.10) <0.001
Men 80 -0.83 (0.16) <0.001
Women 81 -0.51 (0.13) <0.001
Health and functioning
Systolic blood pressure, mm Hg" 113 -4.33 (0.98) <0.001*
Diastolic blood pressure, mm Hg" 113 -1.66 (0.61) 0.007
REE, kcal/day 126 -49.2 (8.0) <0.001*
Men 65 -46.59 (11.76) <0.001
Women 61 -51.94 (10.79) <0.001*
Handgrip strength, kg 153 0.38 (0.32) 0.25
Men 76 0.24 (0.53) 0.65
Women 77 0.51 (0.38) 0.18
Physical functioning 159 0.14 (0.05) 0.008*
Physical quality of life 157 -0.18 (0.61) 0.77
Men 82 -0.72 (0.83) 0.39
Women 75 0.42 (0.92) 0.65
Mental quality of life 157 0.9 (0.70) 0.19
Men 82 -1.13 (0.84) 0.18
Women 75 3.13 (1.12) 0.005%*
FRS, % 163 -0.51 (0.23) 0.03
Men 82 -0.65 (0.43) 0.13
Women 81 -0.37 (0.15) 0.01
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Table 2. Effects of the intervention on parameters of body composition, health and
functioning, and diagnostic measurements. (continued)

Characteristic, mean (SE) n Difference P-value®
Diagnostic measurements
Fasting glucose, mmol/L 163 -0.06 (0.04) 0.16
Fasting insulin, mU/L* 163 -0.05 (0.03) 0.04
HOMA-IR 153 -0.03 (0.03) 0.33
Total cholesterol, mmol/L* 135 -0.29 (0.06) <0.001"
HDL cholesterol, mmol/L? 135 -0.01 (0.02) 0.49
Men 66 0.04 (0.02) 0.11
Women 69 -0.06 (0.03) 0.02%*
LDL cholesterol, mmol/L* 135 -0.26 (0.05) <0.001"
Triglycerides, mmol/L*¢ 135 -0.04 (0.03) 0.11
fT3, pmol/L 163 -0.14 (0.03) <0.001"
fT4, pmol/L 163 -0.07 (0.09) 0.44
TSH, mU/L* 163 -0.04 (0.03) 0.17
DHEAS, nmol/L* 163 -0.02 (0.01) 0.20
Men 82 -0.01 (0.02) 0.47
Women 81 -0.02 (0.02) 0.28
Leptin, ng/L° 163 -0.26 (0.03) <0.001*
Men 82 -0.29 (0.04) <0.001*
Women 81 -0.23 (0.03) <0.001*
Adiponectin, mg/L" 163 0.04(0.01) 0.005
Men 82 0.09 (0.02) <0.001
Women 81 -0.01 (0.02) 0.76
IGF-1, nmol/L 163 0.10 (0.24) 0.67
Men 82 0.36 (0.31) 0.24
Women 81 -0.17 (0.35) 0.64
IGFBP-3, mg/L 163 -0.05 (0.05) 0.37
IGF-1:1GFBP-3 163 0.004 (0.003) 0.21
Men 82 0.009 (0.006) 0.14
Women 81 -0.001 (0.003) 0.82
CRP (high-sensitivity), mg/L° 163 -0.11 (0.07) 0.09

* P_value < 0.05 after adjustment for weight loss. * P-value < 0.001 after adjustment for weight loss.

® P-value refers to difference between baseline and end.

® Individuals using antihypertensive agents were removed before analysis.

 Natural log transformed parameter was used for analysis.

4 Individuals using lipid-lowering agents were removed before analysis.

Parameters were analysed separately in men and women if there was a significant gender-difference at
baseline. BMI, body mass index; REE, resting energy expenditure; FRS, Framingham risk score; HOMA-IR,
homeostatic model assessment - insulin resistance; HDL, high density lipoprotein; LDL, low density
lipoprotein; fT3, free triiodothyronine; fT4, free thyroxine; TSH, thyroid stimulating hormone; DHEAS,
dehydroepiandrosterone-sulfate; IGF-1, insulin-like growth factor 1; IGFBP-3, insulin-like growth factor
binding protein 3; CRP, C-reactive protein.
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Figure 2. Effect of the intervention on weight by gender.

60 —
40 —
—
—_— 20 — !
2 N -
: & s s
) PR $ 8
) oo
c
©
: S
O 20 ] : :
—
-40 —
-60
<140 mmHg 140-160 mmHg 2160 mmHg

Baseline [mmHg]

Figure 3. Effect of the intervention on systolic blood pressure
by baseline systolic blood pressure.
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Figure 4. Effect of age, gender, and intervention on "H-NMR
metabolite-based PC’s. The colour of the blocks represents the
magnitude of the effect, while the P-value is mentioned
between brackets.

DISCUSSION

A 13-weeks lifestyle change among older adults aimed
at combining 12.5 % decreased energy intake and
12.5% increased physical activity improved parameters
of body composition, relevant clinical markers, such as
fasting insulin, our primary endpoint, blood pressure,
glucose, lipid and thyroid metabolism, and 'H-NMR
metabolites. In addition, physical functioning and
mental QoL in women improved. For most of the
parameters, the improvements were, at least partly,
independent of weight loss, indicating that we
monitored aspects of metabolic health additional to
weight loss.

The GOTO study shows that one of the intervention
conditions previously pioneered by the CALERIE study
in younger and more overweight subjects [6] seems
generally feasible, since only one drop-out was
observed and metabolic health was generally improved.
The older adults in GOTO generally lost weight during
the intervention and the mean change in weight was
comparable to CALERIE. The mean change in fasting
insulin, however, was much smaller in GOTO (0.30

mU/L) than in CALERIE (2.06 mU/L) and the
heterogeneity in response was much larger (range -
11.5 — 10.5 mU/L and -8 — 2 mU/L, respectively).
There could be several explanations for this difference.
First, the sample size of the GOTO study is almost 14
times as large as the ‘calorie restriction with exercise’
study group in CALERIE and may have estimated the
effect of the intervention more accurately. Second, the
baseline and response variation in insulin and other
metabolic variables was larger in GOTO than in
CALERIE, which might be caused by the higher mean
age of our population (mean age 63 years (GOTO)
versus 39 years (CALERIE)) and broader range in
baseline BMI. Third, because the intervention in
GOTO was less controlled, the outcome was likely
more heterogeneous. Heterogeneous responses to
lifestyle interventions should be further explored and
carefully monitored in even larger studies of older
adults.

The potential improvement of metabolic health is
reflected in the change of clinical parameters as well as
metabolites. The observed decrease in leucine, tyrosine,
glucose, pyruvate, glycerol, total fatty acids,
monounsaturated fatty acids, a-acid glycoprotein, lipid
concentrations, and VLDL particle size and increase in
fatty acid chain length and citrate imply a decreased
future CVD risk based on a previous prospective study,
including older adults, using the same 'H-NMR assay
[26]. This would correspond with reduced FRS in
women after the lifestyle change. In addition, the
observed decrease in leucine, tyrosine, glucose, 3-
hydroxybutyrate, and creatinine and increase in glycine
is considered beneficial with respect to (risk of) T2D
[22-24]. The observed gender difference in HDL
metabolites in response to the intervention may be due
to the fact that women already displayed more
beneficial levels at baseline as compared to men, while
the observed decrease in HDL metabolites in men may
be caused by a decrease in alcohol intake [27].

Unlike insulin, blood pressure levels, and the
Framingham Risk Score, parameters indicative of lipid
and thyroid metabolism, as well as several 'H-NMR
metabolites, changed largely independent of the
reduction in body weight. Such changes may point at
the occurrence of metabolic shifts in response to dietary
changes and increase in physical activity, exemplified
by decreased fT3 levels, which were also observed in
the CALERIE study after 3 months [6]. Basically, our
data suggest that the effects of the intervention on
metabolic health can be monitored by a combination of
weight, fT3 levels, and a single 'H-NMR metabolite
assay.
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Figure 5. Effects of the intervention on 'H-NMR metabolites. Effect sizes are per 1-SD log-transformed metabolite concentration
and adjusted for age and gender. Squares indicate mean and error bars denote 95% confidence intervals. Blue squares indicate
males, red squares indicate females. Individuals using lipid-lowering agents were removed before analysing fatty acids, fatty acids
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very low density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density lipoprotein; HDL, high density lipoprotein.
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Next to metabolic health, we observed an improvement
of mental health status in women, which was
independent of weight loss. The positive effect of social
interaction by participating in a trial may underlay this
improvement. However, physical activity has also been
described to improve mental health [28,29]. This effect
was not observed in men, which may be explained by
their better mental health at baseline. Mental health
improvements may stimulate compliance to a lifestyle
change over time. In our study, an additional
questionnaire showed that 66% of the participants
indicated that they maintained their new lifestyle one
year after the intervention, possibly contributed by a
‘buddy’ effect for these older adult couples.

In conclusion, reducing energy balance by 25% for 13
weeks by a modest change in dietary habits and
physical exercise seemed generally feasible in older
adults (mean age 63 years) and resulted in a weight
change comparable to younger adults. Despite a
considerable heterogeneity in response, metabolic
health was generally beneficially influenced, as
reflected by most markers of body composition, blood
pressure, physical functioning, glucose, lipid, and
thyroid metabolism, and a range of metabolites that
could be measured with a well-standardized '"H-NMR
assay. We conclude that monitoring of the response to
an intervention among elderly is optimized by applying
metabolomics assays in addition to clinical markers of
metabolic health. The response to the lifestyle
intervention applied in GOTO, as measured by
metabolomics profiles and parameters of wellbeing, can
be used as reference for more specific dietary
interventions that the ageing field is planning [30].

METHODS

Study population. Participants for the GOTO study were
recruited from the Leiden Longevity Study (LLS), a
longitudinal cohort consisting of 421 families of long-
lived Caucasian siblings, together with their offspring
and the partners thereof [31]. For the current
intervention couples consisting of offspring from the
long-lived siblings and their current partners were
included. In case one of the two was not eligible to
participate, single offspring or controls were included to
obtain the required sample size. Individuals of ages
between 46 and 75 years and having a BMI >23 <35
kg/m® were recruited between February and October
2012. Potential participants underwent a telephonic
screening and a screenings home visit. Exclusion
criteria were: type I or type II diabetes (on diabetic
medication); fasting blood glucose level >7.0 mmol/L;
weight change >3 kg over the past 6 months;
engagement in heavy/intensive physical activity (top

sport or physically heavy work); any disease or
condition that seriously affects body weight and/or body
composition including active types of cancer; heart
failure (NYHA 1II/VI), COPD (GOLD III/VI); recent
(<3 months prior to intervention) immobilisation for >1
week; psychiatric or behavioural problems; use of
thyroid medication, immunosuppressive drugs (e.g.
prednisone, methotrexate, biologicals (TNF-alpha
antagonists); concurrent participation in any other
intervention study or weight management program, or
not having a general practitioner. The Medical Ethical
Committee of the Leiden University Medical Center
approved the study and all participants signed written
informed consent. All experiments were performed in
accordance with relevant and approved guidelines and
regulations. This trial was registered at the Dutch Trial
Register (http://www.trialregister.nl) as NTR3499.

Intervention. The intervention comprised 13 weeks of
25% lowered energy balance by 12.5% reduction in
energy intake and 12.5% increase in physical activity.
Baseline energy intake and expenditure were assessed by
an online version of a 150-item food frequency
questionnaire (FFQ) [32] and by the International
Physical Activity Questionnaire- Short Form (IPAQ-SF)
[33]. The IPAQ-SF collects information on time spent
walking, in moderate and vigorous physical activity, and
sitting over the last seven days to estimate the total
metabolic equivalent (MET) in minutes per week.

Individual guidelines were prescribed by respectively a
dietician and physiotherapist in consultation with the
participant to match the subjects’ preferences and
physical capabilities. The dietary guidelines were as
much as possible according to the ‘Dutch Guidelines for
a healthy diet’ [34]. Participants were advised to
increase the amount of physical activity in such a way it
fitted in their daily life pattern, as couple or alone, by
walking, cycling, adjusted activities in and around the
house and participation in local sport activities and
facilities.

During the intervention participants had weekly contact
with the dietician and physiotherapist by phone, email
or at the participants home (alternating schedule) to
check and stimulate adherence to the intervention and to
discuss practical problems and solutions. To optimally
guide the participants, both dietician and
physiotherapist combined elements from the Attitude,
Social influence and self-Efficacy model (ASE) [35],
the Stages of Change Model [36] and Motivational
Interviewing [37].

Participants daily recorded their eating behaviour and
physical activity in a diary. To quantitatively assess
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dietary intake two telephonic 24-h recalls were
performed during the first month and two during the last
month of the intervention. Days of the recall were
unannounced to the participant and randomized to
obtain a good distribution of the different days of the
week, including weekend days. During the monthly
home visits body weight and body composition were
measured. To quantitatively determine physical activity
prior to the intervention and at the end of the
intervention accelerometers worn at home during seven
days on wrist and ankle (GENEActiv, Activinsights,
Kimbolton, UK) were used.

Anthropometrics. Height and weight were measured to
the nearest 0.1 cm and 0.1 kg, respectively (Seca Clara
803, Seca Deutschland, Hamburg, Germany), with the
person dressed in light clothing and without shoes.
Waist circumference was measured to the nearest cm at
the midpoint between the lowest rib and the top of the
iliac crest with a non-elastic tape in standing position
without shoes. Fat free mass and fat mass were
measured using the In-Body 720 body composition
analyser (Biospace, Cerritos, CA, USA).

Blood pressure. Trained staff members measured blood
pressure in sitting position after a 10-minute rest on the
dominant arm using a validated blood pressure device
(Maxi-Stabil 3, Welch Allyn, Leiden, the Netherlands).
Blood pressure was measured 4 times, twice in the first
part of the afternoon and twice at the end of the
afternoon. Systolic and diastolic blood pressures were
calculated as the average of the four measurements.

Energy metabolism. Resting metabolic rate was
measured 65 minutes after a standardized meal by
indirect calorimetry, using a ventilated hood system
(Care Fusion Canopy Jaeger Oxycon Pro, CareFusion
Germany, Hoechberg, Germany). The standardized
meal was 500 kcal and consisted of one raisin bun, one
whole-wheat bun with margarine and 20 grams of
Gouda cheese and a cup of tea without milk or sugar.
Participants were lying on a bed under the ventilated
hood in a quiet, temperature controlled room for 30
minutes. The initial 5 minutes of the measurement were
not used for the analysis. VO2 and VCO2 were
measured every minute. Resting energy expenditure
(REE) and respiratory quotient (RQ) were calculated
using the formulas:

REE=3.91 VO2 +1.10 VCO2 — 1.93N.
RQ=VC02/VO0O2

To exclude outliers in energy expenditure, the degree of
variation based on the coefficient of variation (CV) was
examined based on the mean and the SD of five data

points that were used. Data per 5 consecutive minutes
was included if the RQ data over these 5 minutes had a
CV <5%.

Physical performance. Physical performance was
assessed by the short physical performance battery
(SPPB), which consisted of three components: balance,
gait speed, and chair rise ability [38]. Handgrip strength
was determined by three consecutive measures using a
hand dynamometer (Jamar, Lafayette Instrument,
Lafayette, IN, USA) at both hands.

Quality of life. Quality of life was assessed using the
Short Form Health Survey-12 (SF-12). This
questionnaire [39] distinguishes physical and mental
health, each assessed by six items.

Framingham risk score. The Framingham risk score
(FRS), which estimates the 10-year risk for developing
coronary heart disease, was calculated using the criteria
proposed by the Expert Panel on Detection, Evaluation,
and Treatment of High Blood Cholesterol in Adults
[40]. The score is based on the age, gender, total and
HDL cholesterol serum level, smoking status, and
systolic blood pressure of an individual.

Diagnostic measurements. All measurements were
performed in fasted serum collected by venipuncture.
Cholesterol, free thyroxine (fT4), glucose, high-density
lipoprotein (HDL) cholesterol, triglycerides, high-
sensitivity C-reactive protein (hsCRP), and thyroid
stimulating hormone (TSH) were measured on the
Roche/Hitachi Modular P800 analyzer (Roche
Diagnostics, Almere, The Netherlands). Dehydro-
epiandrosterone sulfate (DHEAS), insulin, insulin-like
growth factor 1 (IGF-1), and insulin-like growth factor 1
binding protein 3 (IGF-BP3) were assessed on the
Immulite 2000 XPi (Siemens, Eschborn, Germany).
Adiponectin and leptin were determined using Human
Adiponectin and Leptin RIA kits (EMD Millipore
Corporation, Billerica, MA, USA). Free triiodothyronine
(fT3) was determined using the ARCHITECT Free T3
assays (Abbott Laboratories, Abbott Park, IL, USA) on
the Hitachi Modular E170 analyzer (Roche Diagnostics).
Coefficients of variation for all laboratory analyses were
<8%. Low-density lipoprotein (LDL) cholesterol was
calculated using the Friedewald formula [41], while the

homeostasis model assessment-estimated  insulin
resistance (HOMA-IR) was calculated using the
publically available HOMA calculator

(https://www.dtu.ox.ac.uk/homacalculator) [42].

Hydrogen-1 Nuclear Magnetic Resonance metabolites.
'H-NMR metabolites were measured using a previously
described platform [43]. For our analysis we used the
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total lipid concentrations, fatty acid composition, and
low-molecular-weight metabolites, including amino
acids, glycolysis-related metabolites, ketone bodies and
metabolites involved in fluid balance and immunity. All
metabolite concentrations were natural log-transformed
and scaled to standard deviation units before analysis.

Statistical analysis. Baseline differences between
longevity family members and controls were calculated
using a linear mixed model adjusted for age, gender
(fixed effects), and household (random effects). The
effects of the intervention were determined using a
linear mixed model adjusted for age, gender, status
(longevity family member or control) (fixed effects),
household, and individual (random effects). Parameters
were analyzed separately in men and women if there
was a significant gender-difference at baseline. For
additional analyses, weight was added to the model to
determine weight loss-independent effects.

Principle Component Analyses and the following
association analyses with age, gender and intervention
were performed in R [44]. Principle Components (PCs)
were computed using the function prcomp of the stats
package [44]. Association analyses with the obtained
PCs were performed using mixed linear models,
function Imer, of package ImerTest [45]. Heatmaps
were drawn to visualize the magnitude of the statistics
from the association analyses using labeledHeatmap of
the WGCNA package [46].

Sample size calculation was based on fasting insulin as
primary end point, whereby we assumed a decrease of
21% (9.75 to 7.69 pulU/mL), since this was observed
after 3 months in the calorie restriction with exercise
group of the CALERIE study [6], which is comparable
to our study. As the mean fasting insulin levels
(uIU/mL) in longevity family members and controls in
the complete LLS cohort were 6.93 (SD=4.3) and 8.70
(SD=6.6), respectively, and a correlation of 0.6 between
repeated insulin measurements was assumed [47], we
based our power calculation on an expected mean
decrease of 1.65 plU/mL, SD 4.9. With a power of 80%
and an o of 5% this translates in a required sample size
of 72 individuals. In a recent large meta-analysis,
genetic background did not influence the association of
healthy diet with fasting glucose or insulin [48].
Nevertheless, we doubled the sample size of our study
to account for potential differences between longevity
family members and controls in response to the
intervention. Taking into account a dropout rate of 10%,
we aimed to include 80 couples in the intervention.

All statistical analyses were performed with STATA/SE
11.2 (StataCorp LP, College Station, TX, USA) and

SPSS Statistics v20 (IBM Corp, Armonk, NY, USA)
and a P<0.05 was considered significant.
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