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Abstract: Dermal white adipose tissue ({WAT) is increasingly appreciated as a special fat depot. The adipocytes in this
depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant
modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has
been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by
fibrotic structures. This is likely to be caused by the recently uncovered process described as “adipocyte-myofibroblast
transition” (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported
by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in
different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at

counteracting skin aging.

INTRODUCTION

Skin aging is a continuous process which can be caused
by both internal and external factors [1, 2]. It is thought
that intrinsic (chronological) and extrinsic (photo-
induced) aging are realized through different pathways
and can even cause different visual alterations of the
skin [3, 4]. These pathways are generally viewed to be
connected with modifications of the connective tissue.
This is featured in models for classical skin aging that
implicate a progressive accumulation of senescent
fibrocytes, leading to a subsequent reduction of collagen
production and content in the aging skin [5]. Additional
scenarios include the excessive generation of
superoxides leading to oxidative damage to DNA [6],
the local overproduction of matrix metalloproteinases as
a result of inflammation or UV irradiation (UVR) [7, 8]
and the reduced production of heat shock proteins [9].

Existing theories of skin aging exclude almost
completely the involvement of any adipose tissue
components. Whereas intrinsic aging is known in
general to correlate with a continuous reduction of
subcutaneous white adipose tissue (SWAT) and concur-

rent accumulation of visceral fat [10], extrinsic aging
was till now considered to be fully independent of the
state of adipose tissue. The reason for omitting adipose
tissue from the equation is related to the low penetration
depth of UVR into the human skin. The penetration of
light waves into the skin is inversely related to its
wavelength [11]. UVR is traditionally subdivided into
three classes — UVA (320-400 nm), UVB (280-320 nm)
and UVC (100-280 nm). UVA has the highest and the
UVC the lowest penetration depth. The light energy
transmission through a 70 pm thick epidermis was
assessed to be about 0.27% at 290 nm and 9.5% at 313
nm [12]; penetration depths in the forearm skin were
measured to be 20 pum at 290 nm and up to 60 pm at
320 nm [13]. Taking into account the characteristic
thickness of the facial dermis layer of approximately 1-
1.5 mm [14], it is clear that only a fractional part of
UVR applied to the skin surface can reach the interface
dermis/sWAT and thus directly influence the
subcutaneous adipocytes.

These properties of UVR should exclude adipose tissue
from the list of global players in extrinsic skin aging.
However, based on the results obtained during the recent
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past, we have reason to believe that adipose tissue
should be considered as an important component of the
process, in light of the presence and the properties of
dermal adipocytes.

Dermal white adipose tissue — from little-known
structure to a global player in skin physiology?

Dermal white adipose tissue (dAWAT) appears in murine
skin as a layer of adipocytes separated from sWAT by
the panniculus carnosus [15]; in human and porcine
skin, it appears in the form of so called “dermal cones”
[16, 17], giving raise to the superficial layer of SWAT
(Fig. 1). This adipose tissue depot [15, 18] received
much recent attention. dWAT is involved in
physiologically distinct processes, such as the cycling of
hair follicles (HF) [19, 20], wound healing [21],
homeostatic temperature regulation of the skin [22, 23],
skin protection against infection [24] and cutaneous
fibrosis [25]. Moreover, it was hypothesized that dermal
adipocytes can be involved in the long-term effects of
soft tissue fillers [26], skin hyper-pigmentation,
development of hypertrophic scars and at least some
skin efflorescences [27, 28]. Important reasons for such
unusually multi-functional properties of dermal
adipocytes are their high plasticity and the ability to
change their phenotype in a very short time [27].

Dermal adipocytes can protrude up to the upper dermis
and produce the spatial “fat bridges” between the skin
surface and the sWAT (Fig. 1B), thus connecting the

regions which can be directly affected by UVR with
much deeper fat layers. Paracrine signaling activity of
dermal adipocytes discussed in [27] may be responsible
for the transduction of the direct response to UVR
induced in dWAT to the SWAT layer, providing long-
range, deep effects of UVR. At the same time, dWAT
has the property to modulate its structure with rates that
are much higher than the turnover rates characteristic
for adipocytes in sWAT [27]. This can prompt quick
structural and functional responses to different external
physical insults. These properties provide dWAT the
ability to be one of the first-line responders to UVR in
the skin.

Evolution of dWAT during intrinsic aging

Experimental systems to investigate the chronological
evolution of damage to the human skin in vivo are very
limited. For example, confocal microscopy allows the
evaluation of the epidermis and upper dermis; however,
alterations in the reticular dermis and in the superficial
layer of sSWAT cannot be assessed properly with this
method, since penetration depth of the laser in the skin
is very limited [29]. For this reason we will restrict
ourselves mainly on the discussion of aging processes in
murine skin where dWAT can be clearly visualized and
quantified. To analyze the experimental results
concerning the temporal modulation of dAWAT, we have
o take into account that dWAT demonstrates significant
sexual dimorphism [30]. Thus, only animals of the same
gender can be compared with each other.

Figure 1. Typical layered dWAT structures in rodents and humans. (A) Section of the dWAT from the
C57/BI6 mouse. This dWAT depot has the layered form placed parallel to the panniculus carnosus. (B) Human
dermal adipocytes in the form of “dermal cones” around the pilosebaceous units. Single “dermal cones” can
protrude into the upper dermis. These dermal cones are connected on the other end with sWAT. Pictures
courtesy of Drs. Min Kim (A) and Travis Vandergriff (4), UT Southwestern Medical Center and published in [32].
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Different experiments revealed an age-dependent
evolution of the dWAT thickness in murine skin. One of
the most accurate studies of this parameter was
provided in [31], where the dWAT thickness was
determined in BDF1 female mice for young (6-10
weeks), intermediate (13-19 weeks) and older adult (26-
34 weeks) animals. Additionally, these animals were
divided into subgroups according to the stage of the hair
follicle cycle, since dWAT thickness is known to be
dependent on this parameter [19]. This is the reason for
the spatially heterogeneous structure of dWAT, even in
the same body area [32]. The results reported
demonstrate the periodic evolution of AWAT: dWAT is
present in 6-week-old mice (anagen phase of HFs),
depleted in 9-week-old mice (telogen phase),
significantly increased in 12-week-old mice (anagen
phase) over its value in 6-week-old animals, reduced in
18-week-old mice (telogen phase) and then strongly
increased in adult 31-week-old mice. Interestingly, this
dWAT evolution is significantly correlated with skin
stiffness, thereby demonstrating the inverse dependence
of dWAT on skin thickness, being the lowest in 31-
week-old mice. Similar behavior of dWAT was
observed in C57BL/6 mice where the dWAT thickness
is significantly increased in 12-month-old animals
compared to the 2-month-old ones, and this property
was found to be sex independent [33]. We also have to
consider that the life-span of the C57BL/6 mice, which
are often used in these experiments, is on average 29
months in males and 26.5 months in females [34]; thus
the evolution between 2 and 12 months can be
considered as “maturing”, but not as a “true” aging.

At the same time, age-dependent modifications of
dWAT can easily be observed in different knock-out
mouse models demonstrating accelerated aging
phenotypes. 12-month-old mice carrying a deletion in
the cannabinoid 1 receptor gene (Cnrl-/-) demonstrate
strongly accelerated aging and have significantly
reduced dWAT layers. Such a reduction was observed
both in relation to the 2-month-old Cnrl-/- mice and the
12-month-old wild type mice. Another model which is
useful in chronological aging studies is the PASG
(proliferation associated SNF-2-like gene) null mouse,
which also displays distinct signs of premature aging.
PASG-/- skin exhibits almost complete depletion of
dWAT comparing to the PASG+/H+ skin [35]. In
addition, p53 mutant mice displaying an early aging-
associated phenotype demonstrate depleted dWAT
structures in 24-month-old animals (which can be
considered as very old), whereas the wild type mice of
the same age show significantly reduced but still present
dWAT layers [36].

Recapitulating, the chronological evolution of dWAT in

intact mice seems to be associated with a periodic
modulation of the volume of this depot till mid-age and
its subsequent continuous strong involution in old
animals. The last feature could be interpreted as a sign
of a “true” aging.

UVR can modulate the metabolism of SWAT

UVR can significantly modulate sSWAT metabolism. This
effect is observable not only in chronically sun-damaged
human skin, but even after a single UV exposure of a
non-damaged skin [37]. These authors have shown that
the free fatty acid and triglyceride content in SWAT of
sun-exposed skin (forearm) is significantly lower than in
the buttocks (sun-protected area) of the same subjects. At
the same time, young subjects did not demonstrate such
differences, which points to the UV-induced effect and
not just to the regional variations in fat metabolism.
Additionally, both chronic and single UVR exposure
significantly reduces master adipogenic factors such as
peroxisome proliferator-activated receptor y (PPARY);
this reduction was rapid and remained stable for at least
72 h after acute UVR exposure. To explain these results,
the authors assumed that some soluble factors (such as
IL-6, IL-8, MCP-3 and PIGF) produced in upper dermis
during UV exposure diffuse into the SWAT and trigger
modification of sWAT metabolism. This idea was
supported by the fact that the treatment of mature
adipocytes from sWAT with these cytokines provides a
reduction of triglyceride content. The list of cytokines
which could be involved in signal transduction from the
skin to the sSWAT was further extended in [38], where it
was shown that the exposure of preadipocytes to
conditioned medium from solar irradiated epidermal-
dermal equivalents, containing such inflammatory
cytokines as IL-1a, IL-6, IL-11 and TNF-q, inhibited the
differentiation of these cells into mature adipocytes. At
the same time, application of antibodies neutralizing
these cytokines was able to reduce the failure to
differentiate significantly. This lead to the conclusion,
that inflammatory cytokines are involved in the loss of
SWAT during extrinsic aging.

A single low-dose (1.6 J/cm2) of UVB irradiation to
Hos:HR-1 hairless mice decreases adiponectin levels in
serum and even in peri-ovarian adipose tissue within 24
h after irradiation [39]. This reduction correlated with
the observed decreased levels of PPARy in peri-ovarian
adipose tissue. Since the level of serum amyloid A in
this study was shown to be significantly increased, the
effect of UVB on remote adipose tissue depots was
explained through endocrine responses mediated by
amyloid A. In addition, reduced obesity was recently
demonstrated after chronic exposure of C57BL/6 male
mice to UVR independent of vitamin D production [40].
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In all experimental studies mentioned above, it was
assumed that the targets for UVR are in the epidermis
and/or dermis and that the observed reaction of adipose
tissue is of an indirect nature. However, since human
dWAT structures can spatially reach the upper dermis
(Fig. 1B), a direct effect of UVR on the dermal
adipocytes cannot be fully excluded. While the lower
parts of “dermal cones” (also known as “fat domes”)
transverse the dermis and penetrate into the SWAT, the
whole reaction chain leading to sWAT modifications
can be theoretically realized through adipose tissue
directly.

If this model is correct, the rate of extrinsic aging in
humans should demonstrate spatial correlations with
dWAT structures. Correlations of different pathological
processes in the skin with its dWAT content are not
unusual and were described, for example, in
hypertrophic  scarring [16], which predominantly
appears in the areas having a high content of “dermal
cones”. Analyzing the effects of UVR, these areas must
additionally be separated into the sun-exposed and non-
exposed areas. The most prominent sun-exposed body
areas containing the “dermal cone” structures are the
cheek, neck, dorsal hand and forearm; corresponding
non-exposed areas containing “dermal cones” are the
chest, abdomen, buttock and thigh. Body areas without
dermal adipocytes are the palm and scalp [16].

From this point of view dWAT content correlates with a
much more pronounced extrinsic aging process in the
dorsal hand comparing to the palm area. Chronological
skin aging demonstrates similar but not as pronounced
differences in aging processes in palmar and dorsal
regions of the hand. This can be an indication that UVR
accelerates the processes of skin aging, whereas their
basic components are determined by some other factors,
one of which could be the local dWAT content. This
can make skin aging not only body area dependent, but
also spatially heterogeneous in the same body area,
since dWAT can have a spatially heterogeneous
structure [32]. This model allows the appearance of the
“mosaic” structure of the aging skin.

Effects of UVR on the adipocytes in vitro

Irradiation of human adipose-derived stem cells
(ADSCs) with UVA in vitro demonstrated suppression
of adipogenic differentiation potential of these cells.
Such suppression could be observed already by very
low fluence of 0.05 J/cm2 and was gradually more
severe as fluence increased up to 5.0 J/cm2 [41]. This
effect was connected with an observed significant
down-regulation of PPARYy expression caused by UVA
and demonstrated strong dose- dependent -effects.

Accumulation of triglycerides in UVA-irradiated cells
in this study was also significantly reduced in a dose-
dependent manner. Taking into account that UVA of
such low fluence as 0.05 J/cm2 was able to induce the
pronounced effect on the ADSCs, we can assume that a
direct effect of UVR on dermal adipocytes is possible,
since such fluences can easily be realized in vivo in the
lower dermis. Later, the same group demonstrated that
UVA in similar doses also modulates the “stemness” of
ADSCs [42].

These results demonstrate that adipocytes can react
even to low doses of UVR with a suppression of PPARy
expression and adipogenic differentiation as well as
with a reduced accumulation of triglycerides in mature
adipocytes. This additionally supports the idea that not
only systemic pathways, but also direct local responses
in dWAT, can be involved in the reaction of SWAT to
UVR in vivo, as observed in [37].

UVR can cause a reduction of dWAT and trigger
cutaneous fibrosis

Chronic (five times weekly, 20 weeks, 16.3 J/em2 per
session) UVA irradiation of hairless mice produced
some thickening of the epidermis but no effects in either
the upper or lower dermis [43]. However, this
irradiation caused the disappearance of dermal
adipocytes, the production of fibrosis and a significant
increase of hyaluronan content in the lower dermis
compared to control animals. Since it was possible to
prevent the appearance of cutaneous fibrosis by
hydrocortisone, it was concluded that such
modifications of the skin structure were caused by an
inflammatory reaction induced by UVR.

Similar results were obtained in [44], where histological
changes in the skin were investigated in the 11- and 16-
week-old female C57BL/6J mice which were
chronically (three times weekly, 2-8 weeks, 24 J/cm?2)
exposed to UVA radiation. Whereas no significant
anatomical changes were observed after 2-4 weeks of
irradiation, a substantial reduction of dWAT and
increased accumulation of collagen fibers were
observed after 8 weeks of UVR. The amount of
insoluble collagen in the dermis of these mice was
found to be approximately 37% higher than in control
mice. At the same time, the dermal thickness in 8 week-
old UVA-irradiated mice was not statistically different
from corresponding age controls which points at the
replacement of dWAT layer with cutaneous fibrosis.

These earlier results must be re-analyzed, taking into
account the recently discovered property of dermal
adipocytes to undergo transition into myofibroblast cells
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(AMT) [25]. This transformation was recognized to be
an important pathophysiological step in cutaneous
fibrosis. Later it was reported that resistin-like molecule
o (RELMo/FIZZ1) can suppress adipocyte-specific
genes, triggering a de-differentiation of these cells; at
the same time, RELMow/FIZZ1 induced «o-smooth
muscle actin and type I collagen expression which
points to phenotypic transformation of adipocytes into
the myofibroblasts [45]. AMT in [25] was induced by
subcutaneous injections of bleomycin. AMT has
universal features seen under many circumstances, and
can be induced by different physical and chemical
factors, among them also UVR. From this point of view,
the results obtained in [43, 44] can be interpreted as
AMT caused by UV exposure (Fig. 2). This effect can
be assumed not to be as pronounced as after bleomycin
injection. Furthermore, the dWAT cellularity at the time
of UVR application should be sufficiently high. This
correlates with observations that the replacement of
dWAT with cutaneous fibrosis after UVR was observed
after sufficiently long UVR exposures as the mice
reached the stage of adulthood, which associated with
an expanded dWAT depot [31].

Replacement of dWAT with fibrosis through AMT
should lead to the production of spatially heterogeneous
skin structures. Additionally, this process should prompt
the loss of effective skin volume, taking into account
the total volume of dermis and dWAT, corresponding to
the skin modifications observed in extrinsic aging.

This important suggestion can be directly proven with
the help of the recently developed “adipochaser” mouse
model [46, 47], which allows to trace the fate of
adipocytes in the tissue. If correct, this effect can, at
least in extrinsic aging, shift the point of interest from
connective tissue to dAWAT. We cannot fully exclude
that the AMT mechanism is also somehow involved in
the intrinsic aging.

Skin surface lipids and their role in skin reactions to
UVR

Skin reactions to UVR are not only dependent on the
type and the dose of irradiation, but also on the content
of the skin surface lipids (among them prominently a-
tocopherol). These lipids are commonly referred to as
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Figure 2. Possible role of adipocyte-myofibroblast transition in extrinsic aging.
Absorption of UV radiation in the skin causes acute enlargement of the dWAT layer. However,
upon chronic overexposure to UV radiation, it causes the depletion of dWAT and a concurrent
development of cutaneous fibrosis, presumably through adipocyte-myofibroblast transition
(AMT). Replacement of dWAT volume with fibrosis leads to production of mechanically
heterogeneous skin structures and to the loss of the effective skin volume.
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photo-protectants [48]. The content of these lipids in the
skin is significantly reduced after a single UVR
application. This can lead to a stronger UV absorption
in the skin during a next round of UVR and thus
accelerate skin aging. These lipids are believed to be
mainly produced and secreted by sebaceous glands
which were recognized as the major physiological
source for their delivery to the skin surface [49]. At the
same time, it was estimated that approximately 90% of
the total amount of vitamin E is stored in the lipid
droplets of adipocytes and about two-thirds of this
content exists in the form of a-tocopherol [50].
Moreover, it is known that a-tocopherol can stimulate
the expression of PPARy and along with that lipid
accumulation during adipogenic differentiation [51].
This PPARy stimulation seems to be realized indirectly
through inhibition of its antagonists [52]. Moreover, o-
tocopherol can induce the expression of adiponectin,
which is in line with its adipogenic effects [53]. These
results provide an additional link to dWAT involvement
in the skin reaction to UVR.

Adipose tissue displays the slowest turnover for its
stored a-tocopherol with an average half-life of 184
days [54]. It is not known whether UVR can speed up
the release of a-tocopherol from adipocytes located in
dWAT. We would however predict that such an
enhanced turnover rate should indeed occur, especially
in the case of repeated UVRs that continuously deplete
the o-tocopherol pool in the skin and thus force an
additional outflow of this lipid from the adipocytes
located near the skin surface.

Hence, chronic UVR should deplete the pool of a-
tocopherol in dermal adipocytes and thus also suppress
the adipogenic differentiation potential and triglyceride
accumulation in these cells. This would provide an
explanation for the observed continuous reduction of
dWAT in the skin chronically irradiated with UV. In
contrast, a single UVR may induce a compensatory
expansion of dWAT to provide a short-term pool of
skin lipids. The reaction of dWAT to UVR should
therefore be strongly dependent on the irradiation
schedule.

Immuno-modulators influence adipogenesis and
accelerate skin aging

One of the most intriguing phenomena in skin aging is
the acceleration of this process through application of
different drugs. This effect is known, for example, for
immuno-modulators such as cyclosporine A (CsA).
Whereas chronic exposure of the Skh-1 hairless mice to
non-erythemal doses of UVB induced skin wrinkles
after 6-7 weeks of irradiation, concomitant systemic

application of CsA reduced the onset time of wrinkling
down to 4 weeks [55]. In contrast, HRS/J hairless mice
demonstrate no wrinkles after 10 weeks of the same
UVB irradiation, and display no wrinkles after 7 weeks
of combined application of UVB with CsA.

These results should be re-analyzed taking into account
that the dWAT structure and activity in murine skin is
dependent on the genetic strain and on the stage of the
HF cycle [19]. The main genetic mouse strains used in
skin aging experiments are female C57BL/6J mice as
well as female Skh-1, HRS/J and albino hairless mice.
DWAT in C57BL/6]J mice demonstrates a cyclic
evolution, which was described in detail in [19]. A
mutation of sr gene leading to skin baldness causes a
disruption of the integrity of HFs as well as the
production of utriculi (open comedones) and cysts in the
lower dermis and subcutis [56, 57]. Whereas both the
Skh-1 [58] and the HRS/J [59] hairless mice have
pronounced dWAT layers, HRS/J mice also
demonstrate accelerated thymus atrophy [60].

CsA belongs to the group of immuno-suppressors which
alter the production of cytokines and influence
adipogenesis. This drug can specifically inhibit
calcineurin, which is upstream of the nuclear factor of
activated T cells (NFAT) transcription factor [61-63]. If
NFAT takes part in premature skin aging as observed in
[55], dWAT can also be affected, since this pathway is
involved in the differentiation of preadipocytes as well
[64, 65]. Indeed, chronic application of some immuno-
suppressors can reduce both adipocyte size and number
[66] and it was proposed that CsA inhibits adipogenic
differentiation through prevention of the nuclear
localization of NFAT [64]. Hairless mice with thymus
atrophy have a marked deficiency in functional T cells,
including iNKTs which represent the resident
population in adipose tissue [67]. Whereas it is actually
not known which level of NFAT expression is typical
for dermal adipocytes in athymic nude mice, we assume
its expression is altered compared to wild-type animals.
This can lead to impaired adipogenic differentiation in
the dermis of these animals. This may be one of the
reasons for the qualitative differences in effects of CsA
on skin aging in different genetic strains observed in
[55].

Sexual dimorphism in dWAT and skin aging

Murine dWAT demonstrates pronounced sexual
dimorphism: females have dWAT layers which can be
an order of magnitude thicker than in males, whereas
the total skin thickness is higher in intact males [30].
After gonadectomy, the dWAT thickness significantly
increases both in males and females, whereas treatment
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of these animals with dihydrotestosterone, 17f3-estradiol
or dehydroepiandrosterone markedly depletes this
depot. Such effects were connected with ability of
androgens to inhibit the adipogenic differentiation of
stem cells and preadipocytes [68, 69].

A sexually dimorphic response is also known for the
response of mice to UVR: males demonstrate a reduced
responsiveness to UVA radiation compared to females
[70]. Such a response correlates with the lower
thickness of dWAT in non-irradiated males and with the
ability of UVA to reach the panniculus carnosus to
affect dermal adipocytes. This again points to the
involvement of dermal adipocytes minimally in the
context of extrinsic skin aging. Whereas the sexual
dimorphism of dWAT in humans was not clearly
demonstrated, its gender difference is likely to be
present in humans as well. This effect can at least partly
explain the difference in the skin aging processes in
male and female subjects [71] and will need further
intensive investigation.

Histological evidence for the reaction of dWAT to
light irradiation in murine skin

Production of reactive oxygen species (ROS) is one of
the primary responses in the skin reaction to UVR [72,
73]. Despite the fact that ROS are often considered to
be generally harmful, they in fact able both to stimulate
and to suppress the cellular processes, such as the
proliferation and differentiation of adipose tissue-
derived stem cells (ADSCs) [74]. For example, whereas
a high-dose UVB is able to suppress the proliferation of
ADSCs, low-dose UVB can increase survival of these
cells and up-regulate the expression of different growth
factors [75]. Consequently, dAWAT and sWAT should
react to UVR in a dose-dependent and bi-phasic
manner.

The dWAT depot in rodents can demonstrate a quick
and significant modulation of its thickness in response
to application of different physical factors [27]. In [44],
dWAT in C57BL/6J mice was shown to be significantly
reduced after UVA irradiation (three times weekly, 8
weeks, 24 Jem® per session). Similar results were
obtained in [76] where the 6-week-old CS57BL/6J
female mice were exposed to a low-dose UVB radiation
(four times weekly, 30 weeks, gradually increasing
doses). Histological pictures of the skin in these mice
demonstrated a significant reduction of dWAT
thickness with a corresponding thickening of dWAT-
free dermis layer. Similarly, in [77], dWAT in Skh-1
hairless mice was reduced after UVB irradiation (10
weeks, 3 times weekly, gradually increasing doses from
20 mJ/cm” up to 180 mJ/cm?).

At the same time, in [78], the 6-week-old albino hairless
mice received a single low-dose UVR (275-380 nm,
200 mJ/cm?), which was equal to the minimal erythemal
dose for these animals. 72 h after irradiation, skin
biopsies clearly demonstrated thickening of the dermis,
which was mainly connected with expansion of the
dWAT layer. Similarly, UVR (6 weeks, 3 times weekly,
minimal erythemal dose) of the 8-week-old HR-1
hairless mice with the wavelengths of 274-380 nm
provided significant increase in the thickness and
cellularity of dWAT [79]. These results demonstrate a
qualitative difference in modification of dWAT
structure in C57BL/6J and different models of hairless
mice, but they will need to be re-approved taking into
account the spatial heterogeneity of dWAT described in
[32].

Infrared (IR) radiation with wavelengths up to 1 mm is
also able to induce extrinsic skin aging [80, 81]. These
light waves have much higher penetration depths than
UVR and can thus reach the superficial area of sSWAT.
From this point of view, it would be interesting to
compare the modification of dWAT in IR- and UV-
irradiated murine skin. In [82], male Wistar rats were
irradiated with IR (1.100-1.800 nm) of 40 J/em®. Skin
histology demonstrated abrupt appearance of dermal
adipocytes on day 7 after irradiation, with subsequent
gradual decrease of their number up to day 180. During
the whole observation period, the number of dermal
adipocytes was significantly higher in irradiated than in
controls. Whereas the action mechanisms of IR and
UVR on the skin should to be very different, both types
of light seem to have the ability to modify dWAT.

Additional correlations between UVR and dWAT

Possible role of vitamin D modulation in dWAT
caused by UVR

Vitamin D can be strongly induced in the skin by UVB
radiation [83]. On the other hand, vitamin D is involved
in skin aging, since skin aging demonstrates a U-shaped
dependence on vitamin D content [84]. It was also
shown that vitamin D receptor knockout mice (VDR™)
show a number of signs of premature aging, among
them wrinkling skin and a significantly thinner dWAT
layer relative to wild type mice [85]. Interestingly,
VDR mice demonstrate highly increased expression of
the uncoupling protein 1 (UCP1) in sWAT, leading to
“beige” fat [86, 87], which correlates with a local loss
of sSWAT volume. Even more intriguingly, it was shown
that these adipocytes-express the vitamin D receptor and
autonomously generate 1,25-dihydroxyvitamin D; [88],
suggesting that adipocytes participate in vitamin D
production after UVR.
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The dermal adipose layer in murine skin can be
depleted by application of 1,25-dihydroxyvitamin D; in
high doses; at the same time, this fat depot significantly
expands in the absence of vitamin D [89]. This effect
can be connected with the ability of 1,25-
dihydroxyvitamin D; to inhibit the differentiation of
murine preadipocytes through suppression of PPARy
[90]. This reflects the well-known fact that VDR and
PPAR signaling pathways are interconnected [91, 92].
Contrarily, both 25-hydroxyvitamin D; and 1,25-
dihydroxyvitamin D3 can promote differentiation of
human preadipocytes [93] and mesenchymal cells [94].
This apparently contradictive influence of vitamin D on
the differentiation of murine and human adipocytes still
needs to be explained.

Whereas it is actually not known whether dermal
adipocytes can produce vitamin D, especially after
UVR, it is likely that these cells may indeed do so. In
this case, UVB would modulate the dWAT structure
also indirectly through induction of vitamin D
production in the skin.

Possible role of hyaluronan in dAWAT modulation

DWAT can be also modulated indirectly through
modification of hyaluronan (HA) content in the skin.
HA is expressed during adipocyte differentiation; the
depletion of HA content was shown to reduce the
adipogenic differentiation of preadipocytes in vitro as
well as the abdominal fat accumulation in C57BL/6J
mice [95]. Multiple applications of a hyaluronidase
result in significant (up to 35%) reduction of fat mass in
the same mouse strain with a simultaneous reduction of
the adipocyte size [96]. Not only high-molecular
hyaluronan, but also its enzymatically fragmented
degradation products inhibit adipocyte differentiation
[97]. Many of these findings have been summarized in
[98].

UVR can significantly modulate the HA content in
different compartments of the skin [99]. Low dose UVB
can increase the epidermal synthesis of HA [100],
whereas chronic UVB exposure causes loss of HA from
the dermis, which is primarily connected with a down-
regulation of hyaluronan synthase [101]. Such behavior
of HA in the skin correlates with observed expansion of
dWAT after low doses of single UVR exposure and
depletion of this depot after chronic exposure of the
skin to UVR described above.

Ethnic differences in skin aging — is dWAT involved?

Whereas the intrinsic aging is believed to occur
similarly in different ethnic groups [2], there are well-

known ethnic differences in extrinsic skin aging [102-
104]. They show higher rates of these processes in
Caucasians than in Asians [103, 105], which was
generally connected with different melanin content and
composition in these ethnic groups [2]. For example,
middle-aged Caucasian women demonstrate a much
higher appearance of wrinkles than age-matched Asian
women [103]. Severe wrinkles on the upper lip were
found in 38% and 10% of French and Japanese women
aged between 50 and 64 years, respectively. Some types
of wrinkles were shown to appear approximately 15
years earlier in French than in Japanese women [103].
Similar differences were observed between German and
Japanese women [106]. If dermal adipocytes are
involved in the skin aging processes, these differences
should be at least partly connected with ethnic
variations in dWAT content.

Whereas differences in the skin structure between
ethnic groups are well-known [107], direct information
about the content of dermal adipocytes in these groups
is currently absent. Some further analysis can be done
according to the ethnic prevalence of hypertrophic
scarring, which correlates with the number of “dermal
cone” structures in the skin [16]. Recently, it was shown
that the appearance of severe hypertrophic scars indeed
significantly varies with race [108], demonstrating 45%
higher prevalence among Asians and 78% higher
prevalence among African Americans compared with
Caucasians. On the other hand, African Americans have
bigger sebaceous glands and produce much more lipids
than Asians, followed by Caucasians [107]. This
correlates with the appearance of hypertrophic scars in
these ethnic groups and can at least partly be connected
with their dWAT structures.

All this can be an indication for increased content of
dWAT in the form of “dermal cones” in the skin of
Asians comparing to the same age group of Caucasians,
which can, on the other side, be reflected in slower
processes of skin aging in the Asian skin.

Local interaction between fibroblasts and adipocytes

Modification of dWAT caused by extrinsic or intrinsic
aging can influence the function of fibroblasts and thus
induce the changes in the dermis structure. Enlarged
adipocytes significantly suppress the synthetic activity
of fibroblasts, whereas small adipocytes do not
demonstrate such effects [109]. Very recently, it was
also shown that the expansion of sWAT correlates with
a decrease of elastic fiber content in the dermis [110].
Consequently, not only chronological or photo-induced
aging, but also the local expansion of the adjacent
adipose tissue can induce a relatively quick degradation
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of the elastic fibers in the dermis, which under normal
conditions can persist there for many decades [111-113].

DISCUSSION

During the last few years, it was convincingly
demonstrated that dWAT is involved in different
physiological and pathological processes in the skin.
Remarkably, all observed reactions were connected
with significant modulation of the dWAT structure and
function. Whereas physiological skin reactions (e.g.,
immune reaction to pathogens, thermoregulation, etc.)
normally cause an expansion of this specialized adipose
layer, realized both through hypertrophy and
hyperplasia of dermal adipocytes, pathological
processes (such as cutaneous fibrosis) were found to
correlate with significant IWAT involution.

A number of groups have demonstrated that adipocytes
from various superficial and deep fat depots can react to
UVR. This interaction can be of direct or indirect nature
(e.g., through activation of paracrine signaling or the
VDR pathway), depending on the depth of the location of
the adipocytes in relation to the penetration depth of
UVR. Reduction of triglycerides in sWAT of sun
exposed skin and a decrease of adiponectin levels in
remote adipose tissue support the indirect mechanism,
whereas pronounced histological changes in dWAT after
UVR encourage a direct effect of UVR on the adipocytes.

The sexual dimorphism of dWAT and ethnic
differences in skin aging provide additional arguments
for the involvement of dWAT in the skin aging
processes. Female mice have a thicker dWAT layer and
demonstrate much higher responsiveness to UVR than
males from the same genetic background. On the other
hand, ethnic differences in skin aging correlate with the
appearance of hypertrophic scars. Taking into account
the known spatial correlation between hypertrophic
scars and local content of dermal adipocytes, we assume
that dAWAT should vary in different ethnic backgrounds.
This variation may be one of the reasons for the
different rates of skin aging in these groups.
Verification of this relationship will require a
comparison of “dermal cone” structures in populations
of different ethnic origin.

Since UVR was shown to cause a depletion of dWAT
and the concurrent appearance of dermal fibrosis, one
can invoke the recently discovered mechanism of
adipocyte-to-myofibroblast transition in the skin
reaction to UVR. Whereas this transition in
experimental models was mainly induced by sub-
cutaneous bleomycin injections, such effects may also
be possible as a result of UVR. In this case, dermal

adipocytes contribute at least to the extrinsic skin aging
processes. This important assumption will need further
experimental verification.

The recently proposed involvement of adipogenesis in
the long-term effects of the soft-tissue fillers [26]
indirectly assumes that the pre-stimulation of such
structures can improve the treatment results. In light of
all these observations, dermal adipocytes may be an
effective target in stand-alone and combinational skin
anti-aging therapies.

Conclusion

There are strong indications that the transition of
adipocytes to mesenchymal cells substantially
contributes to the development of cutaneous fibrosis. It
may be an important part of extrinsic skin aging,
whereby both the reduction of dWAT and substitution
of dWAT volume with fibrotic structures contribute.
Since intrinsic (chronological) skin aging is also
connected with a progressive reduction of the dWAT
layer, it cannot be excluded that an adipocyte-myofibro-
blast transition is also involved in this type of skin
aging. In the future, this may make dermal adipocytes
new interesting targets in anti-aging strategies.
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