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14 The prefrontal cortex (PFC) plays an important role in cognitive 
15 processes, including access to consciousness. The PFC receives signif- 
16 icant cholinergic innervation and nicotinic acetylcholine receptors 
17 (nAChRs) contribute greatly to the effects of acetylcholine signaling. 
18 Using in vivo two-photon imaging of both awake and anesthetized 
19 mice, we recorded spontaneous, ongoing neuron activity in layer II/III 
20 in the PFC of WT mice and mice deleted for different nAChR subunits. 
21 As in humans, this activity is characterized by synchronous ultraslow 

fluctuations and neuronal synchronicity is disrupted by light general 22 anesthesia. Both the α7 and β2 nAChR subunits play an important 
23 role in the generation of ultraslow fluctuations that occur to a differ- 
24 ent extent during quiet wakefulness and light general anesthesia. The 
25 β2 subunit is specifically required for synchronized activity patterns. 
26 Furthermore, chronic application of mecamylamine, an antagonist of 
27 nAChRs, disrupts the generation of ultraslow fluctuations. Our find- 
28 ings provide new insight into the ongoing spontaneous activity in the 
29 awake and anesthetized state, and the role of cholinergic neurotrans- 
30 mission in the orchestration of cognitive functions. 
31 

32 nicotinic receptor | consciousness | ultraslow fluctuations | anesthesia | 
prefrontal cortex 

33 
34 

he prefrontal cortex (PFC) plays an important role in cognitive 35 
processes such as attention (1), working memory (2), decision 36 

making (3), social behavior (4), and emotions (5). Current theories 37 
consider the PFC a key player in conscious processing (6–8). Def- 38 
icits in prefrontal function, including attention, are noted in several 39 
neuropsychiatric disorders, including schizophrenia, attention defi- 40 
cit/hyperactivity syndrome, addiction, depression, and autism (9). 41 In humans, as in rodent models, cholinergic innervation of the 42 
PFC regulates cognitive processes and neuronal activity. For ex- 43 
ample, in rodents, removing PFC cholinergic innervation reduces 44 
attention performance, whereas stimulation of cholinergic pro- 
jections causes enhancement (10). Many studies in both animal 45 
models and humans have shown that nicotinic acetylcholine re- 46 
ceptors  (nAChRs)  are  of  particular  importance  for  cognitive 47 
functions, reward, aging, and for pathologies like Alzheimer’s 48 
Disease (11). For example, deletion of the α7 and β2 nAChR 49 
subunits in mice impairs behaviors, such as exploration and at- 50 
tention (12–16). Importantly, lesions of the prelimbic cortex (PrLC) 51 
in WT mice cause deficits in social behavior, similar to those ob- 
served in β2 KO mice, whereas re-expression of the β2 subunit in 52 
the PrLC of β2 KO mice rescues their social interaction (4). Sim- 53 
ilarly, re-expression of β2 subunits in the PrLC of β2 KO mice fully 54 
restored their attentional performance in the five-choice serial re- 55 
action time task (16). 56 Ongoing spontaneous activity is known to occur in developing 57 
and adult brain and its physiological importance has been em- 58 
phasized (17). Recordings in humans indicate that ongoing activity 59 
constantly fluctuates in a tightly correlated manner across distant 
brain regions, forming reproducible patterns with rich temporal 60 
dynamics and spatial organization (18). The potential contribution 61 
of spontaneous activity to conscious processing has been suggested 62 
and simulations helped characterize two main modes of activity: 

an active mode characterized by rapid and sustained activity 
(“ignition”) (19), which contributes to the signature of “conscious 
access,” and a resting mode with spontaneous ultraslow (<0.1 Hz) 
fluctuations (USFs) of low amplitude (18). It has been suggested 
that ignition and ultraslow spontaneous fluctuations share similar 
mechanisms (18). Independently, electrophysiological recordings 
in animal models have distinguished “up” and “down” states (20), 
and the possibility is considered here that up states coincide with 
USFs in humans. Furthermore, in vivo recordings in animal models 
(21) reveal that, similar to humans, USFs persist under general 
anesthesia, yet with a lower amplitude (22, 23). Under anesthesia, 
the  dominating functional  configurations  have  low  information 
capacity and lack negative correlations (24). Conversely, in the 
awake state a dynamic exploration of a rich, flexible repertoire of 
functional configurations takes place, including ignition, in the 

course of conscious access. However, to our knowledge, the phar- 
macology and biochemistry of these processes remain unexplored. 

To address this gap in our knowledge, using in vivo Ca2+ im- 
aging we recorded and compared the spontaneous activity pat- 
terns in the PrLC of both awake mice and mice under general 
anesthesia, a condition where conscious processing is known to 
be altered (25). These recordings point to spontaneous and in- 
frequent coherent states with high firing rates, analogous to 
USFs. Our findings reveal a distinct role of nAChRs in the on- 
going synchronous neuronal activity of the PFC in awake and 
anesthetized animals, shedding light on a possible involvement of 
nAChRs in conscious processing. 
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Significance 
 

The human brain exhibits ongoing spontaneous activity charac- 
terized by very slow frequency fluctuations. These synchronously 
firing populations are considered to play a key role in conscious 
processes. We identified ultraslow fluctuations (USFs) in awake 
and anesthetized mice using two-photon imaging in the pre- 
frontal cortex, a brain region involved in higher cognitive pro- 
cesses. Using transgenic mice, we demonstrate a crucial role for 
nicotinic acetylcholine receptors (nAChRs) in the generation of 
ultraslow fluctuations and their synchronicity, processes that are 
affected by deletion of nAChR subunits and general anesthetics 
like isoflurane. This work allows further dissection of the un- 
derlying mechanisms, and predicts that in humans with nAChR 
polymorphisms or copy number variation these processes might 
be altered, resulting in neuropsychiatric disorders. 
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Results 
USFs Contribute to Mouse PFC Spontaneous Activity. The recogni- 
tion of the “default mode” network (26) started a long-lasting 
interest in the significance of the human brain’s ongoing or in- 
trinsic activity, which is characterized by synchronous USFs of 
activity, often taking seconds to develop (18). USFs have been 
recorded in the cortex of awake humans and primates, and also 
under anesthesia (27–30). The neuronal mechanisms that gen- 
erate spontaneous resting-state fluctuations, together with the 
ignition dynamics, are unknown and remain a matter of debate. 

To explore these issues in vivo, we used the mouse as a model 
together with two-photon imaging of spontaneous neuronal ac- 
tivity patterns recorded through a chronic cranial window in 
layer II/III of the PrLC (Fig. S1 A and B). Neurons of the PrLC 
were  transduced  with an  adeno-associated  viral  vector  (AAV) 
expressing the fluorescent calcium indicator GCaMP6f (Materials 
and Methods and SI Materials and Methods). Four weeks after 
AAV injection, the majority of layer II/III neurons exhibited green 
fluorescence (Figs. S1 C–E). We first studied the activity patterns 
of 3-mo-old awake head-fixed WT mice, where we simultaneously 

monitored the spontaneously occurring somatic GCaMP6f Ca2+ 

transients in multiple individual cells, and estimated the neural 
spiking rates through deconvolution of calcium transients (SI 
Materials and Methods). The mice were awake and reactive, as 
monitored by an infrared camera. A typical example of neural 
population activity is shown in Fig. 1A. To identify patterns of 
activity and USFs in populations of simultaneously recorded neu- 
rons, we studied the distribution of their time varying mean activity 
(see Materials and Methods and SI Materials and Methods for de- 
tails). In Fig. 1, the USFs correspond to population activities in red 
and basal activities correspond to population activities in blue 
(Figs. 1 B and C). Interestingly, awake WT mice exhibited USFs 
with a frequency similar to that observed in humans (below 0.1 Hz) 
(17, 31). These frequencies are slower than those observed in the 
cardiac (0.6–1.2 Hz) and respiratory cycles (0.1–0.5 Hz) (31). The 
activity patterns were then analyzed to detect synchronous activity 
in populations of simultaneously imaged neurons, as previously 
described (20) (Materials and Methods). The number of simulta- 
neously imaged cells ranged from 4 to 71 neurons, with a mean 
value of 36 neurons (n = 2,900 cells in 11 mice). In the awake state, 
we detected robust synchronicity in the neuronal populations (Fig. 
1 D1). Our recordings indicate that, similar to awake humans, the 
ongoing activity in a mouse brain constantly fluctuates and exhibits 
synchronously firing neuronal activity, making the mouse a reliable 
model for studying some of the elementary physiological processes 
associated with conscious processing in humans. 
 
USFs Persist Under Light General Anesthesia, but Synchronicity Is 
Disrupted. General anesthesia differentially alters states of con- 
sciousness and access to  conscious content (8). The ability of 
general anesthesia to induce safe and reversible loss of conscious- 
ness poses the most complex question of how a simple chemical can 
affect conscious experience (32). General anesthetics may directly 
or indirectly affect conscious processing by the cerebral cortex (33); 
however, the neurobiological mechanisms involved in this in- 
teraction are largely unknown. We thus performed Ca2+ imaging of 
mainly pyramidal cells in the PrLC of lightly anesthetized WT mice 
(0.8% isoflurane), and compared their activity patterns with those 
recorded in awake mice (Fig. 1 A2–D2). Interestingly, the USFs 
persist under light general anesthesia, with no significant difference 
between the  populations that  exhibit USFs  in  the awake  state 
(90.30 ± 5.03%, n = 2,900 cells in 11 mice) compared with the 
anesthetized state (88.38 ± 5.82%, n = 702 cells in 3 mice; 
ANOVA) (Fig. 1E). However, we observed a robust reduction of 
the synchronously firing populations under anesthesia (55.87 ± 
11.38%), compared with awake mice (95.35 ± 3.67, P < 0.001) (Fig. 
1F). Therefore, USFs share similar mechanisms between awake 
and anesthetized conditions but anesthesia shows strong inhibitory 
effects on the generation of neuronal synchronicity. 

 

 
 
Fig. 1. Effect of general anesthesia on USFs and synchronously firing neurons 
in WT mice. (A) Representative rasterplots for one population of simultaneously 
recorded neurons in a WT mouse in the awake (A1) and anesthetized state (A2). 
Each row corresponds to the spiking activity of one neuron. (B) Mean neural 
activity for the populations in A in the awake (B1) and anesthetized state (B2). 
Red and blue correspond to USFs and basal activity states, respectively. Dotted 
red line: computed threshold. (C) Probability density function (pdf) of the 
population activity exhibited in B in the awake (C1) and anesthetized state (C2) 
for determining the threshold (red dotted line) between USFs and basal activity. 
Black line: Gaussian smoothed pdf, red bars: USFs and blue bars: basal activity. 
(D) Histogram representing the percentage of cells active in small time bins 
(∼0.144 s), for the population activity in A in the awake (D1) and anesthetized 
state (D2). Asterisks: significant peaks of synchrony. (E) Computed percentage 
of cells exhibiting USFs. (F) Percentage of populations with synchronous activity 
in the awake and anesthetized state. (A1–D1) Awake, n = 2,900 cells in 11 mice, 
and (A2–D2) anesthetized, n = 702 cells in 3 mice. 
 
 
Differential Role of nAChRs in the Generation of USFs and 
Synchronicity in the Awake State. Many studies in both animal 
models and humans have identified a contribution of nAChRs to 
cognitive functions; we thus investigated the occurrence of USFs 
transitions in KO mice of α7 and β2 nAChR subunits. Typical 
examples of neuronal population activities in awake α7 and β2 
KO mice are shown in Fig. 2. We found that 90.30 ± 5.03% of 
simultaneously recorded populations exhibited USFs/basal activity 
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Fig. 2. Consequences of the α7 and β2 nAChR deletion on USFs and synchro- 
nously firing neurons in the awake state. (A) Representative rasterplots for one 
population of simultaneously recorded neurons in α7 (A1) and β2 (A2) KO awake 
mice. Each row corresponds to the spiking activity of one neuron. (B) Mean 
neural activity for the populations in A in α7 (B1) and β2 (B2) KO awake mice. 
Red and blue correspond to USFs and basal activity states, respectively. Dotted 
red line: computed threshold. (C) Probability density function (pdf) of the pop- 
ulation activity exhibited in B in α7 (C1) and β2 (C2) KO awake mice for de- 
termining the threshold (red dotted line) between USFs and basal activity. Black 
line:  Gaussian  smoothed  pdf,  red  bars:  USFs  and  blue  bars:  basal  activity. 
(D) Histogram representing the percentage of cells active in small time bins 
(∼0.144 s), for the population activity in A in α7 (D1) and β2 (D2) KO awake mice. 
Asterisks: significant peaks of synchrony. (A1–D1) α7 KO and (A2–D2) β2 KO mice. 
 
 
in WT (n = 2,900 cells in 11 mice), 82.08 ± 7.2% in α7 KO mice 
(n = 1,403 cells in 5 mice), and 65.86 ± 5.7% in β2 KO mice (n = 
3,459 cells in 11 mice) with a significant difference between WT 
and β2 KO groups (P = 0.0130, ANOVA) (Fig. S2 A1). In each 
population of simultaneously recorded neurons with USFs/basal 
activity transitions, we determined the percentage of cells that 
exhibit an activity pattern in accordance with the population ac- 
tivity. In awake WT animals, 96.6 ± 1.8% of cells fire in accor- 
dance with their population activity, in α7 KO mice (88.23 ± 
4.12%) and in β2 KO mice (84.37 ± 2.27%) (Fig. S2 B1). To 
compute the percentage of cells with USFs/basal activity for each 
mouse group, we multiplied the percentage of populations with 
USFs/basal activity with the mean percentage of cells in accor- 
dance with the population patterns of activity, for each mouse. 
Interestingly, we found that 82.41 ± 5.28% of simultaneously 
recorded cells exhibited USFs in WT, 69.31 ± 7.4% in α7 KO 
mice, and 54.85 ± 5.9% in β2 KO mice, with a significant differ- 
ence between WT and β2 KO mice (P = 0.007) (Fig. 3A). 

Next, we computed the USFs/basal activity properties in all 
populations. The basal activity duration was significantly lower 
for the β2 KO mice (7.36 ± 1.19 s), compared with α7 KO (11.69 ± 

2.43 s, P = 0.0021) and WT mice (14.43 ± 1.54 s, P < 0.001) 
(Fig. 3B), whereas the USFs duration was significantly higher for 
the β2 KO mice (5.11 ± 0.64 s), compared with α7 KO (3.89 ± 
0.65 s, P = 0.0022) and WT mice (3.03 ± 0.38 s, P < 0.001, 
Kruskal–Wallis) (Fig. 3C). Furthermore, computing the corre- 
lation between power spectra for each neuronal population for 
the different mice conditions in the awake state revealed that 
there are significantly lower correlations for β2 KO compared 
with WT mice (Fig. S3). These data indicate that the USFs of 
each cell in a population of simultaneously recorded cells are 
more homogeneous in the case of WT and α7 KO mice com- 
pared with β2 KO mice. 

We then analyzed and compared the synchronicity in the differ- 
ent animal groups. In the WT and α7 KO mice, neurons displayed 
strong synchronous activity in 95.35 ± 3.67% (40 populations) and 
88.33 ± 11.66% (38 populations) of the recorded populations, re- 
spectively, with no significant difference between groups (P = 0.70, 
ANOVA) (Fig. 3D). In the β2 KO mice, the patterns of activity 
were remarkably different from that in WT (P < 0.001) and α7 KO 
mice (P = 0.046), with synchronous activity detected in only 63.91 ± 
5.38% of the recorded populations (99 populations) (Fig. 3D). The 
number of synchrony peaks detected was similar between WT mice 
(30.59 ± 3.73 peaks per minute) and α7 KO mice (31 ± 6.77 peaks 
per minute, P = 0.99), whereas a robust decrease was observed in 
the case of β2 KO mice (4.52 ± 0.72 peaks per minute, P < 0.001, 
ANOVA) (Fig. 3E). In addition, the percentage of coactive cells in 
the peaks of synchrony was significantly higher for α7 KO (53.34 ± 
0.51%) and β2 KO mice (53.30 ± 1.05%) compared with the WT 
mice (47.71 ± 0.47%, P < 0.001) (Fig. 3F). 

Overall, USFs were still detected in mice with deleted nAChR 
subunits. However, β2 KO mice showed reductions in the per- 
centage of cells that exhibit USFs and a strong decrease in the 
percentage of synchronously firing neuronal populations. These 
data indicate a potentially major role for β2 subunits in the 
generation of physiological phenomena associated with con- 
scious processing in the awake state. 
 
Role of nAChRs in Ongoing Activity Under General Anesthesia. The 
nAChRs are possible direct/indirect targets of general anes- 
thetics and  as a  consequence may  interfere with  cholinergic 
transmission. For example, the volatile anesthetic isoflurane 
shows high affinity for nAChRs (34). However, isoflurane in- 
hibition has been found to vary with nAChR subunit composition 
(35). We aimed to study in vivo the contribution of defined 
 
 

 
Fig. 3. Comparison of the properties of USFs and synchronicity in awake 
mice. (A) Percentage of cells with USFs for each animal type in the awake 
state. (B) Boxplots of basal activity durations for each animal type in the 
awake state. (C) Boxplots of USFs durations for each animal type. (D) Per- 
centage of populations exhibiting synchronous activity for each mouse type 
in the awake state. (E ) Mean number of synchrony peaks per minute for the 
different animal groups in the awake state. (F) Percentage of coactive cells 
in the peaks of synchrony for the different animal groups in the awake state. 
For all comparisons: *P < 0.05, **P < 0.01, and ***P < 0.001; ANOVA in A, D, 
E, and F; Kruskal–Wallis in B and C. 
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Fig. 4.   Effect of general anesthetic on USFs and synchronously firing neurons in 
α7 and β2 KO mice. (A) Representative rasterplots for one population of simul- 
taneously recorded neurons in α7 (A1) and β2 KO (A2) anesthetized mice. (B) Mean 
neural activity for the populations in A in α7 (B1) and β2 KO (B2) anesthetized 
mice. Red and blue correspond to USFs and basal activity states, respectively. 
Dotted red line: computed threshold. (C) Probability density function (pdf) of the 
population activity in B in α7 (C1) and β2 KO (C2) anesthetized mice. (D) Histogram 
representing the percentage of cells active in small time bins (∼0.144 s) for the 
population activity in A in α7 (D1) and β2 KO (D2) anesthetized mice. Asterisks: 
significant peaks of synchrony. (A1–D1) α7 KO and (A2–D2) β2 KO mice. 
 
 
nAChR subunits to spontaneous activity under conditions of light 
general anesthesia. Typical examples of the effect on the neuronal 
population activity in α7 and β2 KO anesthetized mice are shown 
in Fig. 4. We found that 88.4 ± 5.8% of simultaneously recorded 
populations exhibited USFs/basal activity  in WT mice, 76.6  ± 
14.5% in α7 KO mice, and 85.7 ± 4.9% in β2 KO mice, with no 
significant difference between the groups (Fig. S2 A2). Further- 
more, in WT mice 96.42 ± 4.28% of cells fire in accordance with 
their population activity, 91.66 ± 6.55% in α7 KO mice, and 83.82 ± 
2.2% in β2 KO mice (Fig. S2 B2). 

We also found that 76.68 ± 4.35% of simultaneously recorded 
cells exhibited USFs in WT mice, 65.89 ± 14.16% in α7 KO mice, 
and 68.35 ± 4.3% in β2 KO mice, with no significant difference 
(Fig. 5A). Next, we computed the USFs/basal activity properties 
in all populations. Under anesthesia, there were no significant 
changes of basal activity state duration between animal types 
(P > 0.14, Kruskal–Wallis), nor any significant changes in vari- 
ability (P > 0.49, Ansari–Bradley) (Fig. 5B). Conversely, the USF 
duration was significantly higher for the α7 KO mice (4.19 ± 2.57 s) 
and β2 KO mice (2.86 ± 0.55 s), compared with WT mice (2.11 ± 
0.40 s, P < 0.001) (Fig. 5C). In addition, there were no significant 
differences in the correlations of power spectra between the dif- 
ferent mouse types in the anesthetized state (Fig. S3). 

For anesthetized animals, the number of simultaneously imaged 
cells in the same focal plane ranged from 3 to 96 neurons, with a 

mean value of 23 neurons. Of simultaneously recorded populations, 
55.87 ± 11.38% exhibited synchronous activity in WT mice (54 
populations), 56.66 ± 23.33% in α7 KO mice (25 populations), and 
65.41 ± 18.20% in β2 KO mice (129 populations), with no signifi- 
cant differences (P > 0.9) between groups (Fig. 5D). Interestingly, 
in the anesthetized state, the number of synchrony peaks detected 
was similar between WT mice (0.79 ± 0.16 peaks per minute) and 
α7 KO mice (1.41 ± 0.52 peaks per minute), whereas a robust in- 
crease was observed in the case of β2 KO mice (4.58 ± 0.62 peaks 
per minute, P < 0.001) (Fig. 5E). Finally, the percentage of coactive 
cells in the peaks of synchrony was significantly higher for the WT 
mice (41.03 ± 1.03%) and α7 KO mice (46.30 ± 1.25%) compared 
with β2 KO mice (21.74 ± 0.19%, P < 0.001, ANOVA) (Fig. 5F). 

To summarize these results, the deletion of nAChR α7 and β2 
subunits has differential effects in awake mice on USFs duration, 
whereas in the anesthetized state, β2 deletion alone increases 
synchronicity and decreases the percentage of coactive cells in 
the peaks of synchrony, compared with WT and α7 KO mice. 
 
Chronic Exposure to Mecamylamine Mimics β2 KO Phenotype. Finally, 
we aimed to compare the neuronal activity patterns in the PFC of 
WT mice after chronic application of mecamylamine, a non- 
selective, noncompetitive antagonist of nAChRs. Osmotic mini- 
pumps for the infusion of either saline or mecamylamine (1 mg/kg 
per day for mecamylamine) were implanted subcutaneously at the 
nape of the neck of WT mice. We recorded the neuronal activity 
patterns 7 d after minipump impantation. Typical examples of 
neuronal population activities in awake mice under saline or 
mecamylamine are shown in Fig. S4. We found that 94.44 ± 5.55% 
of simultaneously recorded populations exhibited USFs/basal ac- 
tivity in WT under saline condition (n = 743 cells in 3 mice) and 
69.44 ± 2.77% in WT under mecamylamine (n = 446 cells in 3 
mice) with a significant difference between the two groups (P = 
0.015) (Fig. S5A). In awake WT animals under saline conditions, 
98.21 ± 2.4% of cells fire in accordance with their population 
activity, whereas in WT under mecamylamine 90.32 ± 2.4% of cells 
were in accordance (P = 0.041) (Fig. S5B). In addition, we found 
that 88.91 ± 3.67% of simultaneously recorded cells exhibited 
USFs in WT under saline, whereas a significant reduction was 
observed for the WT mice under mecamylamine (62.28 ± 3.18%, 
P = 0.0054) (Fig. 6 A1). The basal activity duration was significantly 
lower for the WT mice under mecamylamine (13.62 ± 3.97 s), 
 
 

 
Fig. 5. Comparison of the properties of USFs and synchronicity  in  anes- 
thetized mice. (A) Percentage of cells with USFs for each animal type in the 
anesthetized state. (B) Boxplots of basal activity durations for each animal type 
in the anesthetized state. (C) Boxplots of USFs durations for each animal type 
in the anesthetized state. (D) Percentage of populations with synchronous 
activity, for each mouse type in the anesthetized state. (E) Mean number of 
synchrony peaks per minute for the different animal group in the anesthetized 
state. (F) Percentage of coactive cells in the peaks of synchrony for each animal 
type in the anesthetized state. For all comparisons: *P < 0.05, **P < 0.01, and 
***P < 0.001; ANOVA in A, D, and E; Kurskal–Wallis in B and C. 
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compared with WT under saline (17.02 ± 4.18 s, P = 0.018) (Fig. 
S5C). Furthermore, USF duration was significantly higher for WT 
under saline (2.90 ± 0.28 s), compared with WT under mecamyl- 
amine (1.95 ± 0.45 s, P = 0.011) (Fig. S5D). 

We then analyzed and compared the synchronicity under saline 
and mecamylamine infusion. In the WT mice under saline, neurons 
displayed synchronous activity in 81.11 ± 11.60% of the recorded 
populations, whereas in WT mice under mecamylamine 88.89 ± 
11.11% of the recorded populations had synchronous activity, with 
no significant difference between groups (P = 0.65) (Fig. S5E). 
However, the number of synchrony peaks detected was strongly 
decreased in WT mice under mecamylamine (3.27 ± 1.09 peaks per 
minute) in comparison with WT mice under saline (17 ± 4.94 peaks 
per minute, P = 0.036) (Fig. 6 A, 2). In addition, the percentage of 
coactive cells in the peaks of synchrony was significantly lower for 
WT under mecamylamine (21.86 ± 0.80%) compared with the WT 
mice under saline (28.64 ± 0.8%, P < 0.001) (Fig. S5F). Thus, 
pharmacological exposure to the nicotinic antagonist mecamyl- 
amine gives a phenotype similar to that found in β2 KO mice. 

Discussion 
In humans, two distinct modes of electrical activation of the cere- 
bral cortex have been recorded: a rapid and sustained activation, 
termed “ignition,” which is viewed as a signature of conscious ac- 
cess; and synchronous USFs with low amplitude, which characterize 
the spontaneous activity mode, termed “resting state” (19). In the 
resting state, in the absence of explicit task performance or external 
stimulus perception, the cortex exhibits a highly informative mode 
of spontaneous activity. Studies in anesthetized animals (21) and in 
humans with blood-oxygen level-dependent fMRI data (27), to- 
gether with animal recordings of firing-rate modulations (23), and 
EEG (22) and ECoG in humans (23, 36), reveal ultraslow (<0.1 Hz) 
dynamic activations with low amplitude, that we termed USFs, 
which may be viewed as characterizing the resting state. Here, we 
aimed to elucidate the mechanisms engaged in these cortical ac- 
tivity dynamics at a single-cell resolution using in vivo two-photon 
imaging in the mouse. We recorded ongoing spontaneous activity in 
the PFC of WT and mice deleted for specific nAChR subunits, both 
in awake and anesthetized states. Interestingly, we recorded USFs 
in the mouse cortex and found that anesthesia shows inhibitory 
effects by disrupting the synchronous USFs’ firing of neurons. We 
further showed that, first, nAChRs have an important role in the 
generation of USFs, yet to a different extent during quiet wake- 
fulness and anesthesia, and that the β2 subunit is specifically re- 
quired for synchronized activity patterns. Our recordings indicate 
that, similar to humans, the ongoing activity in mouse brain con- 
stantly fluctuates and exhibits synchronously firing neuronal activity, 
 
 

 
Fig. 6. Chronic exposure to mecamylamine mimics β2 KO phenotype. (A1) 
Percentage of populations that exhibit USFs for awake WT mice under saline 
or mecamylamine conditions at 7 d after implantation of minipumps. (A2) 
Mean number of synchrony peaks per minute for awake WT mice under saline 
or mecamylamine infusion 7 d after implantation of minipumps. *P < 0.05, 
**P < 0.01, and ***P < 0.001; ANOVA. 

making  the  mouse  a  reliable,  although  simplified  model,  for 
studying mechanisms of conscious processing in humans. 

Current theories consider the PFC as a key player in conscious 
processing (6). According to the Global Neuronal Workspace 
(GNW) theory, a subset of cortical pyramidal cells with long- 
range excitatory axons that are particularly dense in prefrontal, 
cingulate, and parietal regions, together with the relevant tha- 
lamo-cortical loops, form a horizontal “neuronal workspace” 
interconnecting the multiple specialized, automatic, and non- 
conscious processors. A conscious content  is assumed to be 
encoded by the “all or none” sustained and synchronous ignition 
of a fraction of GNW neurons (7, 8). In these circumstances, the 
nonamplified neurons would be inhibited and the GNW sus- 
tained ignition would represent the conscious content. In the 
PFC, pyramidal neurons in layer II/III do not express nAChRs, 
only interneurons do, in contrast to layers V and VI, where 
nAChRs are also expressed by pyramidal neurons (37). In addi- 
tion, pyramidal neurons with long axons, which have been postu- 
lated to play a critical role in the GNW theory (38), are more 
abundant in these particular layers of the cerebral cortex and es- 
pecially in the PFC (39). By recording neuronal activity patterns in 
layer II/III of PFC, we found that α7 and β2 nAChRs play an 
important role in the generation of USFs that occur, yet to a 
different extent during quiet wakefulness and anesthesia. We 
showed that the balance of recurrent excitation and inhibition is 
disrupted in the case of awake β2 KO mice, and more specifically, 
the neuronal synchronicity is disrupted. It has been reported that Q:1 
the β2 subunit is involved in the dendritic morphogenesis of py- 
ramidal neurons, and in particular, in the circuits that contribute 
to the high-order functional connectivity of the cerebral cortex 
(40). These defects in the maturation of the cerebral cortex that 
have been reported in the β2 KO mice could contribute to the 
observed behavioral deficits (4, 13, 16). However, our data reveal 
that pharmacological intervention with nicotinic antagonists is 
enough for the disruption of USF mechanisms. Our findings 
suggest an important contribution of nAChRs in the processing of 
neural information during quiet wakefulness. 

Moreover, an important role of the cholinergic innervation of 
the cerebral cortex was postulated (41) to be the mediation of 
arousal state. This hypothesis was based on the initial observa- 
tion that the cholinergic inputs are diffusely distributed in the 
cerebral cortex and, most interestingly for us, exhibits a slow 
release of ACh on the same time scale as the USFs. Several 
studies have further shown that cholinergic projections to the 
cortex are involved in sustained attention and cue detection, with 
the level of ACh efflux in the PFC correlating with the demand 
upon attention during attentional tasks (42). The slow fluctua- 
tions in ACh levels correlate with a shift in behavior, indicating 
that these fluctuations could correlate with decision-making (42, 
43). Indeed, experimental evidence from both rodents and hu- 
mans revealed that ACh release contributes to mechanisms that 
mediate the integration of external cues with internal represen- 
tations to initiate and guide behavior (44). At the scale of sec- 
onds, ACh undergoes phasic release, which may exert a top- 
down control over defined cognitive operations; muscarinic ACh 
receptors also play an important role in attentional behavior and 
cue detection (45). Recently, it has been shown in vitro that 
endogenously released ACh can modulate up and down states 
through the activation of nAChRs (46). The alterations of neu- 
ronal activity patterns that our results revealed in the nAChR 
KO mice could further our understanding of the cholinergic 
system in higher brain functions and, when disrupted, the con- 
tribution of nAChRs to cognitive disorders. 

The focus of the present study was to elucidate the role of 
nAChRs in PFC activity patterns when comparing resting-state 
dynamics in awake and anesthetized animals. Because ongoing 
spontaneous activity has been postulated to have a significant 
functional role in cortical functions (47), we focused on how it 
differs between awake and anesthetized states. The production 
of USFs was identified and compared among the different con- 
ditions investigated. Our work demonstrates, in vivo, that nAChRs 
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play a crucial role in the modulation of PFC synchronous spon- 
taneous neuronal activity. Furthermore, with recent studies 
probing the mechanisms of general anesthesia as causing loss of 
consciousness, our work exploring the effects of anesthesia on 
nAChRs in the PFC network in vivo, at a cellular resolution, re- 
veals an elaborate mechanism for modulating cortical activity. Our 
results provide a starting point for understanding the relationship 
between nAChRs and loss of consciousness under light anesthesia 
in mice that might potentially be a reliable—although highly 
simplified—model for studying mechanisms of conscious pro- 
cessing in humans. As a future goal, it is important to consider 
additional studies to evaluate the presence of USFs during be- 
havioral assays. Because several studies have shown that deletion 
in mice of the α7 and β2 subunits impairs behaviors, such as ex- 
ploratory behavior and attention, it will be important to investigate 
the behavioral deficits in parallel with neuronal recordings to es- 
tablish a causal relationship. 

Materials and Methods 
Male α7 KO, β2 KO, and WT (C57BL/6J) mice used in this study were main- 
tained at Charles River Laboratories (L’Arbresle, France). The experiments 
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SI Materials and Methods 
Mice. All experiments were performed on male mice at 3 mo of age. 
Male α7 KO, β2 KO, and WT (C57BL/6J) mice used in this study 
were maintained at Charles River Laboratories (L’Arbresle, 
France). The experiments described in this study were conducted 
in accordance with the guidelines on the ethical use of animals 
from the European Community Council Directive of November 
24, 1986 (86/609/EEC) and in accordance with institutional animal 
welfare guidelines and were approved by Animalerie Centrale and 
Médecine du Travail, Institut Pasteur. 
 
Chronic Cranial Windows and Stereotaxic Injections. Anesthesia was 
induced with ketamine (Imalgen 1000; Rhone Mérieux) and xyla- 
zine (Rompun; Bayer AG), 10 mL/kg, intraperitoneally, and the 
mouse was secured in a stereotaxic frame. The eyes were protected 
with artificial tear ointment and body temperature was maintained 
with a feedback-heating pad. The scalp was washed thoroughly with 
betadine and 70% ethanol and all surgical tools were sterilized. 
Xylocaine (1%) was used for local anesthesia and the skull was 
exposed. As previously described (48), a chronic cranial window 
was prepared and 200 nL of [serotype 1 (rep/cap: 2/1)] AAV virus 
(AAV.syn.GCaMP6f.WPRE.SV40, 2.2e13 GC/mL; University of 
Pennsylvania Vector Core) was injected bilaterally at the following 
coordinates PrLC: AP, +2.8 mm  from  bregma;  L,  ±0.5  mm; 
and DV, −0.5 to −0.1 mm from the skull using a Nanoject II 
(Drummond Scientific) at the slow infusion setting. The glass pi- 
pette was left for 5 min in the brain before slowly being removed. 
A 5-mm-diameter circular coverglass was placed on the brain 
surface and the edge was sealed to the skull with dental cement 
(Coffret SUPERBOND complete, Phymep). A sterile small 
stainless steel head bar with a screw hole was glued to the skull and 
the surrounding exposed skull was covered with dental cement. 
 
Mouse Handling for Awake Imaging. For 3–5 d mice were habitu- 
ated to the imaging environment by handling and training, as 
previously described (49). 
 
Immunofluorescence. Immunofluorescence was performed to 
identify the area of injection at the end of the two-photon imaging 
experiments. Mice were transcardiac-perfused with 4% PFA, the 
brains were removed and postfixed with immersion in PFA for 2 d 
at 4 °C, followed by immersion in 30% sucrose in PBS overnight 
for cryoprotection. Using a sliding microtome (Leica Micro- 
systems), serial 40-μm coronal sections were cut, mounted on 
slides, and cover-slipped with ProLong Gold antifade reagent 
containing DAPI (Invitrogen). Microscopy was carried out using 
a Zeiss fluorescence microscope. 
 
In Vivo Two-Photon Imaging. In vivo imaging was performed with an 
Ultima IV two-photon laser-scanning microscope system (Bruker), 
using a 16× 0.8 NA water immersion objective (Nikon) with a 
femtosecond laser (MaiTai DeepSee, Spectra Physics) tuned to 
950 nm for imaging of GCaMP6f-expressing cells. Time-series movies 
of neuronal populations expressing GCaMP6f were acquired at 7 Hz 
(182 × 182 μm field of view; 0.71 μm per pixel). Each focal plane 
movie duration was 3.6 min (1,500 frames) to track the spontaneous 
neuronal activity. For anesthetized mice, recordings were conducted 
under light isoflurane anesthesia (0.8% isoflurane in O2). 

Recordings in Anesthetized Mice. The mouse was placed into a 
transparent induction chamber (Harvard Apparatus) and anes- 
thesia was induced at a concentration of 5% vaporized iso- 

 
 
 
 
 

flurane/O2 (Forene, Abbott France; vaporizer, Harvard 
Apparatus) leading to a rapid induction of anesthesia within 30 s, 
as tested by loss of righting reflex and pain with a tail pinch. The 
mouse was then removed from the induction chamber and im- 
mediately secured to the mouse frame on the two-photon mi- 
croscope stage. The mice were continuously supplied with 0.8% 
isoflurane/O2 through a facemask. Body temperature was main- 
tained at 37 °C using a thermometer feedback thermal blanket. 
Artificial tear ointment was also applied to the eyes to prevent 
dryness. The recordings started ∼15 to 20 min after placing the 
animal on the stage and anesthesia was maintained constant until 
the end of the experiments, as previously described (33). Under 
these conditions the mice were completely immobile, had no re- 
action to tail pinch, and eyelid reflex was absent. 
 
Data Analysis. Image analysis was performed off-line with ImageJ 
software. The time series were corrected using the FIJI plugin 
“Image Stabilizer” (K. Li, “The image stabilizer plugin for ImageJ,” Q:2 

www.cs.cmu.edu/∼kangli/code/Image_Stabilizer.html). Regions of 
interest  were  manually  selected  in  FIJI  and  detection  of  Ca2+

 
transients of individual neurons was performed automatically using 
a custom-written toolbox in MATLAB. A baseline correction al- 
gorithm was used to remove the slow time scale (<0.05 Hz) changes 
in the fluorescence, as described previously (50). We assumed the 
smallest and fasted Ca2+ transients were a result of a single action 
potential. The mean shape and amplitude of this unitary event was 
used as a kernel for deconvolution to best estimate action potential 
or spike frequency. The custom-written toolbox in MATLAB 
(Mathworks, 2014b) is available upon request. 

For the analysis of USFs, the time-varying population activity 
was computed as the mean activity across neurons for each time 
bin, and was smoothed through Gaussian filtering. The distri- 
bution (pdf estimate) of the activity values was plotted at each 
time point that exhibits multimodality or unimodality. To identify 
the type of modality of the distribution, we used Gaussian filtering 
(black lines in Fig. 1C). The number of peaks determined the 
types of activity: multiple peaks are the signatures for USFs vs. 
basal activity states. The threshold between USFs vs. basal ac- 
tivity states was computed by taking the minimum of the multi- 
modal distributions between the highest amplitude peak and its 
neighboring peak (red dotted lines in Fig. 1C). In some cases, 
where one of the activity states was very short (in the case of 
WT), a Gaussian or logistic function could be fitted around the 
highest amplitude peak (according to the root mean-square error 
output), and the activity state with low durations could be 
identified by taking values >99% or <1% of the cumulative 
sums. The USFs correspond to population activities in red, and 
basal activities correspond to population activities in blue 
(Fig. 3C). Our analysis method is based on a previously described 
technique (51). 

We identified synchronously firing neurons based on a method 
that was previously described (20). For each population, small 
time bins (∼0.144 s) were used to sum the spiking activity of all 
of the cells. To identify peaks of synchronous activity that 
included more cells than expected by chance, interval 
reshuffling (ran- domly reordering of intervals between events 
for each cell) was used to create sets of event sequences. 
Reshuffling was carried out 1,000 times for each population 
and a histogram was con- structed for each reshuffling. The 
threshold corresponding to a significant level of P < 0.05 (green 
dotted line) was estimated as the number of coactive cells 
exceeded in a time bin in only 1% of these histograms. 
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Statistical Analysis. Kruskal–Wallis one-way ANOVA combined 
with multiple-comparison testing was applied to the activities 
(spikes per minute) of the neurons in all mouse groups to study 
the statistical similarities. For each mouse category, we used 
interpolation to account for the different number of neurons 
recorded in the different animals. Levene’s test was used to 

compare the variation within each data group. The variance was 
similar between the groups that were statistically compared. A 
one-way ANOVA test was used to compare the populations with 
USFs, the cells that exhibit USFs, the mean synchronously firing 
populations, the mean coactive cells in synchrony peaks, and the 
number of synchrony peaks. 
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Fig. S1. Two-photon imaging technique and labeling of PFC neurons with GCaMP6f. (A) Photograph of chronic cranial window (5-mm diameter). (B) Co- 
ordinates used for the injection of the GCaMP6f: AP, + 2.8 mm from bregma; L, ± 0.5 mm; and DV, −0.5 to –0.1 mm from the skull surface. The arrows indicate 
the injection in the PrLC. The scheme was adapted by “The Mouse Brain” from G. Paxinos and K. B. J. Franklin (7). (C) In vivo two-photon image of GCaMP6 
labeled neurons in layer II/III of PFC. (Scale bar, 50 μm.) (D) Mosaic of a 40-μm coronal section from a WT mouse with GCaMP6f expression (green) and DAPI 
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Fig. S2. Properties of USFs transitions in awake and anesthetized mice. (A) Computed percentage of populations that exhibit USFs for each animal type in the 
awake (A1) and anesthetized state (A2). β2 KO mice have a significantly lower proportion of populations that exhibit USFs compared with WT animals. 
(B) Percentage of cells consistent with populations that exhibit USFs for each animal type in the awake (B1) and anesthetized states (B2). In β2 and α7 KO animals, 
less cells are consistent with populations that exhibit USFs compared with WT mice in the awake state, whereas in the anesthetized state only β2 KO are 
significantly different from WT mice (P = 0.005). (C) Boxplots of basal activity states for each mouse type (spikes per minute) in the awake (C1) and anesthetized 
states (C2). β2 and α7 KO animals exhibit significantly higher basal activity compared with WT mice for both the awake and anesthetized state. (D) Boxplots of 
USFs for each mouse type (spikes per minute) in the awake (D1) and anesthetized states (D2). β2 and α7 KO animals exhibit significantly higher USFs compared 
with WT mice for both awake and anesthetized state. (A1–D1) Awake and (A2–D2) anesthetized mice. *P < 0.05, **P < 0.01, and ***P < 0.001; ANOVA in A; 
Kruskal–Wallis in B–D. 
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Fig. S3. Power spectrum analysis for the different mouse types in awake and anesthetized state. (A) Comparison of the mean power spectrum of the si- 
multaneously recorded cell activity for WT, α7 KO, and β2 KO mice. The power spectrum analysis corresponds to the representative examples described in the 
main manuscript. (B) Comparison of the power spectrum of the population’s activity (mean spiking activity between simultaneously recorded cells). (C) Mean 
correlation between the mean power spectrum between simultaneously recorded cell activity and the power spectra of the population’s activity for the 
different mouse types. Awake: WT; 0.85 ± 0.014, α7 KO; 0.82 ± 0.015, β2 KO; 0.78 ± 0.01. Anesthetized: WT; 0.85 ± 0.021, α7 KO; 0.79 ± 0.02, β2 KO; 0.80 ± 
0.016. (A1 and B1) Awake and (A2 and B2) anesthetized mice. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Fig. S4. Chronic exposure to mecamylamine resembles β2 KO phenotype. (A) Representative rasterplots for one population of simultaneously recorded 
neurons in awake WT mice under saline (A1) or mecamylamine (A2) infusion at 7 d after implantation of minipumps. (B) Mean neural activity for the pop- 
ulations in A in WT awake mice under saline (B1) or mecamylamine (B2). Red and blue correspond to USFs and basal activity states, respectively. Dotted red line: 
computed threshold. (C) Probability density function (pdf) of the population activity exhibited in B in WT awake mice under saline (C1) or mecamylamine (C2). 
(D) Histogram representing the percentage of cells active in small time bins (∼0.144 s) for the population activity in A in WT awake mice under saline (D1) or 
mecamylamine (D2). Asterisks: significant peaks of synchrony. 
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Fig. S5. Properties of USFs transitions in awake WT mice under saline or mecamylamine infusion for 7 d. (A) Computed percentage of populations that exhibit 
USFs for awake WT mice under saline or mecamylamine infusion at 7 d post implantation of minipump. WT mice under mecamylamine have a significantly 
lower proportion of populations that exhibit USFs compared with WT mice under saline. (B) Percentage of cells consistent with populations that exhibit USFs 
for awake WT mice under saline or mecamylamine infusion. In WT animals under mecamylamine less cells are consistent with populations that exhibit USFs 
compared with WT mice under saline (P = 0.005). (C) Boxplots of basal activity durations for each condition in the awake state. WT mice under mecamylamine 
have a significantly lower basal activity state duration compared with WT under saline. (D) Boxplots of USFs durations for each condition in the awake state. 
WT mice under mecamylamine have significantly lower USFs duration compared with WT under saline. (E ) Boxplots of basal activity states for each condition 
(spikes/min) in the awake state. WT mice under mecamylamine exhibit significantly higher basal activity compared with WT mice under saline. (F) Boxplots of 
USFs for each condition (spikes per minute) in the awake state. WT mice under mecamylamine exhibit significantly lower USFs activity compared with WT mice 
under saline. (G) Percentage of populations (simultaneously imaged neurons) exhibiting  synchronous activity, for each condition in the awake state. No 
significant difference between WT mice under saline of mecamylamine infusion. (H) Percentage of coactive cells in the peaks of synchrony for the two 
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Q: 1_Throughout, for concentrations >1%, please state basis (eg, vol/vol, wt/vol, etc). 

Q: 2_Please provide a reference for “Image Stabilizer (K. Li).” 

Q: 3_Please verify that ref. 7 is the intended reference for the Mouse Brain described in Fig. S1. Ref. 7 is 
Koch et al, 2016. If this is in error, please add it as new ref. 52, providing all bibliographic 
information in the reference list. 

Q: 4_Please check the locants in Fig. S4 as amended. Locants “B-E” have been changed to “A-D,” 
respectively. 
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