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ABSTRACT

Loss of cell polarity impairs organ development and function; it can also serve as one of the first triggers for
oncogenesis. In 2006-2007 two groups simultaneously reported the existence of a special pathway for
maintaining epithelial polarity in the face of environmental stressors. In this pathway, AMPK, a key sensor of
metabolic stress stabilizes tight junctions, preserves cell polarity, and thereby, maintains epithelial barrier
functions. Accumulating evidence since has shown that pharmacologic activation of AMPK by Metformin
protects the epithelial barrier against multiple environmental and pathological stressful states and suppresses
tumorigenesis. How AMPK protects the epithelium remained unknown until recently Aznar et al. identified
GIV/Girdin as a novel effector of AMPK at the cell-cell junctions; phosphorylation of GIV at a single site by
AMPK appears to be both necessary and sufficient for strengthening tight junctions and preserving cell polarity
and epithelial barrier function in the face of energetic stress. Here we review the fundamentals of this
specialized signaling pathway that buttresses cell-cell junctions against stress-induced collapse and discuss its
pathophysiologic relevance in the context of a variety of diseases, including cancers, diabetes, aging, and the
growing list of beneficial effects of the AMPK-activator, Metformin.

Epithelial cells usually display a polarized organization
such that, localization of membrane proteins and
positioning of organelles differ between the apical and
basolateral sides of the cell [1]. Cell polarity is
fundamental for both the architecture and function of
epithelial tissues; its loss triggers organ dysfunction,
neoplastic transformation and cancer progression, all
via dysregulation of cell growth and division [2].
Epithelial polarization is established and maintained by
a set of evolutionarily conserved signaling pathways,
whose integration in space and time dictates overall
epithelial morphogenesis [3]; together they collaborate
to assemble, stabilize and turnover the cell-cell
junctions, e.g. CDC42 and PAR proteins, such as the
PAR3-PAR6-aPKC complex [4], and pathways that
regulate membrane exocytosis and lipid modifications
[4, 5].

The stress-polarity pathway, a special force that
resists junctional collapse during energetic stress

Besides the pathways mentioned above, regulation of
polarity requires an additional signaling component
which is triggered exclusively under conditions of
energetic stress. Three studies [6-8] published in 2006-
07 simultaneously reported a surprising role of AMP-
activated protein kinase (AMPK) in the maintenance of
epithelial cell polarity and barrier functions (Figure 1).
Discovered in 1984 [9-12], and named subsequently in
1988 [13], AMPK is unique in that it is a metabolic
sensor protein which is activated exclusively during
energetic stress. It is because of its ability to couple
energy sensing to cell polarity, activation of AMPK was
critical for protecting cell junctions against stress-
induced collapse. Using polarized epithelial [Madin
Darby Canine Kidney (MDCK)]cells it was
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demonstrated that AMPK is activated during calcium
(Ca*")-induced tight junction (TJ) assembly [6, 7]. The
catalytic activity of AMPK is critical because either
depletion of the AMPK catalytic o-subunit or
expression of a kinase-dead mutant of AMPK inhibits
TJ assembly as indicated by a loss of transepithelial
electrical resistance (TEER); the latter is a measure of
paracellular ion flow which depends on TJ stability.
Pharmacological activation of AMPK with 5-
aminoimidizole-4-carboxamide  riboside = (AICAR)
partially protects TJs despite Ca®" depletion [6, 7].
These findings closely followed another major
revelation that the tumor suppressor LKB1 (Liver
Kinase B1; also known as Serine/Threonine Kinase 11 -
STK11) is a direct activator of AMPK [14-17], and that
defects in cell polarity precede the development of
tumors  (pancreatic ductal adenocarcinoma) in
genetically modified mice with tissue-specific deletion

of LKBI1 [18]. Together, these discoveries established
the first links between energetic stress, cell polarity and
oncogenesis. Since then, multiple studies (summarized
in Figure 1) have reported the protective role of AMPK
in maintaining cell-cell junctions across a variety of cell
types in diverse tissues [airway and lungs [19, 20], heart
[21], the blood-brain barrier [22, 23], kidney [24],
intestine [25-29], liver [30]] while mounting a
pathologic response to a variety of stressors, from
bacterial invasion [31] to ischemia [24].

Although there is a wide consensus on the role of the
LKB1-AMPK axis, and in particular AMPK's role in
reinforcing TJs and preserving cell polarity during
adverse environmental changes, how this kinase
actually accomplishes this task, apparently in a Ca'-
independent manner [32], remained largely unknown
until recently. One study suggested that muscle myosin
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Figure 1. Clinical and pathologic significance of the protective role of AMPK in the epithelium during stress.
Schematic showing the time line of publications on the topic of AMPK and cell-cell junctions, as determined by a PubMed
search in 2016, and their relationship to the recently published work by Aznar et al. [34]. Top: Clinical and pathological
significance of pharmacologic activation of AMPK, either by the widely prescribed anti-diabetic drug, Metformin (green) or by
other nutritional / dietary supplements (grey) in the regulation of tight junction stability and function. Bottom: Time line of
publications unraveling the role of AMPK in the regulation of epithelial tight junctions and in the establishment of cell polarity.
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regulatory light chain (MRLC) may be the effector of
AMPK during energetic stress in the fly [8], but those
findings have since come into question [33] because the
phosphosites on MRLC do not conform to the optimal
AMPK substrate motif found in all other established in
vivo AMPK substrates. Thus, even though it had been a
decade since the first studies revealed AMPK's ability to
preserve the epithelial architecture and function in the
setting of energetic stress, effectors of AMPK that
orchestrate these functions had not been identified.

The polarity scaffold, GIV, is a novel substrate and
effector of AMPK within the stress polarity pathway

A recent study [34] demonstrated that GIV (G-alpha
interacting vesicle associated protein, a.k.a. Girdin), a
multimodular polarity scaffold protein is a novel
substrate of AMPK, and defined the molecular
mechanisms by which the AMPK-GIV signaling axis
protects the epithelium by stabilizing TJs and
preserving cell polarity when challenged with energetic
stress. GIV, a guanine nucleotide exchange factor
(GEF) for trimeric G proteins, had previously been

N —
Normal

Tight *
Junctions
" (Occludin)

Energetic ’

—>
Drugs

Cadherin/ -7 o X
(Metformin) Catenin \/’

complexes

shown to serve as a polarity scaffold protein that
regulates epithelial cell polarity and morphogenesis [35-
37]. GIV’s role at cell-cell junctions has been attributed
to its ability to assemble various functional complexes
with its C-terminus, e.g., (i) binding the Par3/Par6/
aPKC polarity complex [36, 38]; (ii) binding and
modulating the endocytic trafficking of E-cadherin [39];
(iii) linking cadherin-catenin complexes to the actin
cytoskeleton [37]; and finally, (iv) binding and
activating G protein, Goai via its GEF motif and
maintaining epithelial polarity through the Par polarity
complex [36]. Each of these functional associations of
GIV earned it the title of “polarity scaffold protein’ and
have been implicated in the generation of cell polarity.

By demonstrating that GIV is a direct target and an
effector of the energy sensing kinase AMPK, Aznar et
al., [34] defined the stress polarity pathway at a greater
resolution, nearly a decade after the discovery of the
pathway. They showed that energetic stress triggers
localized activation of AMPK at the tricellular TJs,
which mark the most vulnerable cell-cell contacts in
sheets of polarized cells. Activation of AMPK triggers
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Figure 2. Graphical abstract summarizing how AMP-activated protein kinase fortifies epithelial tight
junctions during energetic stress via its effector GIV/Girdin. Schematic showing the pertinent findings
reported in by Aznar et al. [34]. Top (from left to right): In normal physiologic states, sheets of polarized epithelial
cells maintain barrier integrity by assembling tight junctions TJs; stained here with the TJ-marker and integral
membrane protein, Occludin in green. Exposure to energetic stress triggers the activation of AMPK, a sensor of
cellular energy stores, which in turn phosphorylates GIV at Ser245. Phospho-GIV [stained red] localizes to the Tls
[marked with occluding] and serves to stabilize TJs and resist stress-induced collapse. Bottom: Schematic summarizing
how the AMPK-GIV signaling axis preserves TJ integrity via multiple interacting partners of the polarity scaffold, GIV,
and how this stress-polarity pathway enhances barrier functions and inhibits neoplastic transformation.
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phosphorylation at a single site within GIV, i.e.,
Ser(S)245. When phosphorylated by AMPK, pS245-
GIV preferentially localizes to the bicellular and
tricellular TJs. Such localization is seen exclusively
during TJ turnover, i.e., localization is seen both during
TJ assembly as cells come in contact to form a
monolayer and during TJ-disassembly as monolayers
collapse in response to energetic stress or Ca®'-
depletion. Their findings also led to the conclusion that
phosphorylation on GIV S245 is a key determinant of
normal epithelial morphogenesis-- phosphorylation
favors polarized normal cysts, whereas absence of
phosphorylation favors branching tubules and multi-
lumen structures that are associated with loss of cell
polarity. Finally, they showed that pS245-GIV, which is
generated only when the AMPK-GIV axis is intact, is
both necessary and sufficient to fortify TJs, avoid
junctional collapse and preserve cell polarity in the face
of energetic stress, all in a Ca”"-independent manner.
They further concluded that a significant part of the
junction-stabilizing effects of AMPK agonists AICAR
and Metformin during energetic stress [6, 7] are
mediated by AMPK via its downstream effector, pS245-
GIV. In demonstrating these, the authors revealed an
elusive link between the stress-sensing components and
the cell polarity pathways, and shed light onto how
epithelial monolayers are protected despite being
constantly bombarded by energetic stressors by
fortifying cell-cell junctions against stress-induced
collapse.

Mechanistically, they showed that pS245-GIV localizes
to the TJ-associated microtubule tracks; 3D recons-
truction of deconvolved confocal images revealed that
pS245-GIV colocalized with and followed the bundles
of polymerized microtubule tracks at the cell-cell
borders, raising the possibility that the phosphoevent
may impact GIV's ability to bind o- and/or B-tubulin
heterodimers. Such localization appears to be facilitated
by a direct interaction between the N-terminus of GIV
[exclusively when phosphorylated at S245] and the
short (~100 aa) C-terminus of o-tubulin; the latter is
known to project as helices from polymerized MT
tracks [40, 41]. Once localized to the TJs, GIV may
subsequently impact cell polarity and junctional
integrity by assembling various aforementioned
functional complexes with its C-terminus. Because
AMPK regulates acetylation of the C-terminus of a-
Tubulin during energetic stress [42] and because it is
capable of stimulating microtubule polymerization at
the cell periphery via phosphorylation of the
microtubule plus-end protein, CLIP-170 [43], it is
possible that either or both of these phenomena
contribute to restricting the distribution of pS245-GIV
exclusively at or near the junction-associated micro-
tubule tracks.

It is also noteworthy that GIV’s C-terminus (which
binds Par complexes, G protein, and cadherin-catenin
complexes), its N-terminally located AMPK substrate
site, and a-tubulin-binding domain are highly conserved
across all mammals and in birds; however, GIV lacks a
consensus AMPK site in drosophila, and its C-terminus
is poorly conserved in fish. These observations are
consistent with others’ observation that the
LKB1/AMPK stress polarity pathway is not evolu-
tionarily conserved; it is not required for the
maintenance of polarity during energetic stress in either
flies [44, 45] or fish [46, 47] [no evidence exists in
amphibians, reptiles, or birds], instead, the pathway is
evolutionarily young, raising the possibility that it may
have co-evolved with GIV to meet the metabolic
demands of endotherms (birds and mammals).

Pathophysiologic implications of the AMPK-GIV
stress signaling pathway

Barrier (dys)function: Although the stress polarity
pathway was originally demonstrated in polarized
epithelial cells, studies using the AMPK activator,
Metformin have demonstrated that AMPK fortifies cell-
cell junctions in both epithelial [19, 24, 25, 31] and in
endothelial cells such as those lining the lung alveoli
[48], blood vessels [21] and the blood-brain barrier [22,
23, 49, 50] in the setting of stressors such as ischemia or
sepsis (see Figure 1). Because GIV is ubiquitously
expressed junctional scaffold, in both epithelial [36] and
endothelial cells [39], it is possible that the stress-
triggered mechanisms outlined by Aznar et al., [34]
enable the barrier-protective role of AMPK at TJs
observed in a diverse organs and tissues, both epithelial
and endothelial linings, when challenged with chemical,
bacterial and metabolic stressors (Figure 1).

Among the different body cavity linings (barriers), the
mucosal barrier where the stress polarity pathway may
be of greatest relevance is the intestinal mucosa. This
barrier represents a huge mucosal surface, which
separates billions of bacteria from the largest immune
system of the body. On the one hand, the TJs of an
intact intestinal barrier protect us against potential
barrier disruptors, e.g., hypoperfusion of the gut,
microorganisms and toxins, over-dosed nutrients [high
fat], drugs, and other elements of lifestyle. On the other
hand, this barrier must be open to absorb essential fluids
and nutrients. Over the years, the beneficial [protective]
effect of multiple nutritional components, dietary
supplements, and pharmacologic agents, including the
widely-prescribed AMPK-activator, Metformin on
intestinal permeability in health and disease has been
investigated; all studies converge on AMPK activation
as a common pre-requisite for rendering such protection
(see Figure 1). These studies raise the possibility that
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the AMPK-GIV stress polarity pathway defined by
Aznar et al., may affect a variety of diseases that are
associated with increased intestinal permeability
(reviewed in [51]) such as critical illness, inflammatory
bowel diseases [52, 53], celiac disease, food allergy,
irritable bowel syndrome [54, 55], Alzheimer’s [56],
Parkinson’s [57], multiple sclerosis [58-60], autism [61,
62], chronic heart failure [63-65], aging (expanded
below) and obesity and metabolic diseases (expanded
below). All these diseases are characterized by systemic
inflammation due to chronic endotoxemia that might be
triggered by the translocation of endotoxins from the
gut lumen into the host circulation.

Cancers: Previous work has shown that polarity defects
precede the onset of tumorigenesis when the LKBI-
AMPK pathway is inhibited (demonstrated in mice
lacking the tumor suppressor and AMPK activating
kinase, LKBI1; [18]). These findings had fueled
speculation that polarity defects may be one of the
major mechanisms for tumor initiation when the energy
sensing pathway is dysregulated [66]. Aznar et al., [34]
showed that the AMPK-GIV stress-polarity pathway
inhibits oncogenic transformation and growth, and that
disruption of this pathway (accomplished via mutations
identified during genomic sequencing of colorectal
cancers) helps tumor cells escape such inhibition and
gain proliferative advantage during 3D growth (Figure
2). Because LKB1 is a master kinase that can activate
all 13 members of the AMPK kinase family [67], and
given the overlapping substrate specificity of AMPK
and its related kinases (reviewed in [33]), it seems likely
that AMPK-related family members, such as
MARK/Parl, may phosphorylate S245 on GIV under
specific conditions and in certain cancers. For example,
in the case of gastric cancers, where elevated GIV
expression carries poor prognosis [68], junctional/
polarity defects are often observed. In this cancer, the
carcinopathogen H. pylori drives cell transformation by
delivering its virulence factor CagA (cytotoxin-
associated gene A) into gastric epithelial cells through a
bacterial type IV secretion system [69]. Upon entering
the epithelial cells, CagA specifically binds and inhibits
MARK/Parl polarity kinase, triggering junctional and
polarity defects [70]. It is tempting to speculate that
MARK/Parl may phosphorylate GIV at S245, and that
inhibition of MARK/Parl by CagA could deregulate the
MARK-GIV signaling axis, thereby heralding neo-
plastic transformation. Future studies are planned to
investigate if such is the case.

Obesity, metabolic syndrome and type II diabetes:
Accumulating evidence shows that gut barrier
dysfunction can influence whole-body metabolism [71,
72] by affecting the energy balance [71], gut
permeability [73, 74], metabolic endotoxemia [75] and

inflammation [72, 73, 75, 76] that are associated with
obesity and the spectrum of disorders associated with
metabolic syndrome [25, 77, 78]. Numerous studies
using the AMPK-activator, Metformin, squarely
implicate the AMPK-dependent stress polarity pathway
as a major therapeutic target in these metabolic
disorders [79-81]. Metformin administration enhances
gut Dbarrier integrity, attenuates endotoxemia and
enhances insulin signaling in high-fat fed mice, which
accounts for the beneficial effects of metformin on
glucose metabolism, enhanced metabolic insulin
response, and reduced oxidative stress in liver and
muscle of the mice [79]. Clinical trials using a delayed
release formulation of Metformin (Metformin DR,
which is designed to target the lower bowel and limit
absorption into the blood) have shown that metformin
works largely in the colon; despite the reduced levels of
absorption of Metformin DR, this formulation was
effective in lowering blood glucose [81]. Metformin
treatment directly impacts the colonic mucosa and the
gut microbiome [26]; the number of goblet cells and
mucin production increases, senescence is reduced, and
Akkermansia muciniphila, which is a mucin-degrading
bacterium that resides in the mucus layer becomes
abundant. Others have demonstrated that the presence
of this bacterium directly correlates with gut barrier
integrity [80, 82] and inversely correlates with body
weight and visceral adiposity in rodents and humans
[80]. These studies have challenged the conventional
thinking and the importance of the gut barrier as the
primary defect in metabolic diseases has gained traction
[83-85]. These studies also highlight the effectiveness
of activation of AMPK as a therapeutic strategy to
reinforce the gut barrier and correct metabolic
disorders.

Aging: Aging is characterized by the functional decline
of individual organ systems of an organism, and
progressively increases the probability of death. Among
the various organ systems that decline during aging,
dysfunction of the intestinal barrier has been correlated
with increasing age in a variety of species. For example,
dysfunction of the intestinal barrier predicts impending
death in individual flies regardless of the chronological
age [86]. Much like humans, these flies show an age-
related increase in immunity-related gene expression
(e.g., IL6) accompanies such dysregulation of
barrier [86]. Evidence also shows that intestinal barrier
dysfunction during aging is conserved in worms (C.
elegans) and fish (D. rerio) [87, 88], and in mammals
(rats [89] and baboons; [90]), thus raising the possibility
that it may also be the case in humans. However, studies
in humans have shown that intestinal permeability is not
increased simply due to aging, but increases in the
setting of coexisting stressors such as low-grade
inflammation and/or type Il diabetes [91].
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As for the mechanism of increased permeability,
colonic biopsies from aging baboons showed that
increased permeability is associated with age-associated
remodeling of epithelial TJs (decreased zonula
occluden-1, occludin, and junctional adhesion
molecule-A tight junction protein expression and
increased claudin-2 expression; the latter promotes the
formation of pores that allow the paracellular movement
of cations and small molecules and increases
permeability) [90]. In fact, several important physio-
logical processes that are dependent on TJ integrity and
cell polarity are altered during aging, involving both
epithelial and endothelial cells (reviewed in [92]). It is
possible that the observed anti-ageing properties of
Metformin (via multiple widely pleiotropic effects
reviewed in [93]), as in the case of obesity and diabetes,
may begin by preserving the gut barrier function,
thereby reducing age-related inflammation and
metabolic derangements. If so, Metformin is expected
to act via the AMPK-GIV stress polarity pathway to
resist aging related increase in gut permeability.
Ongoing clinical trials approved by the FDA (such as
Targeting Ageing with Metformin; TAME) are likely to
provide the best opportunity to investigate these
possibilities.

Mechanism of action of the wonder drug,
metformin: For almost a century, ever since the
biosynthesis of the xenobiotic metformin by Emil
Werner and James Bell in 1922, scientists have been
revisiting the mechanism of action of this first-line
treatment for type II diabetes. Metformin (Glucophage)
is now the most widely prescribed type II diabetes drug
in the world; it reduces blood glucose by activating the
LKBI1-AMPK pathway [94] and inhibiting hepatic
gluconeogenesis (reviewed in [33]). Besides its ability
to lower blood glucose, Metformin also exerts two other
effects in an AMPK-dependent manner: (i) it stabilizes
cell-cell junctions and protects barrier functions of both
epithelial and endothelial monolayers in the setting of a
variety of pathologic stressors; and (ii) it suppresses the
growth of a variety of tumor cells and embryonic stem
cells in culture and tumor xenografts in mice [reviewed
in [33]]. By demonstrating that phosphorylation of GIV
by AMPK is required for Metformin to exert both these
effects efficiently, Aznar et al., [34] implicated the
AMPK-GIV signaling axis as an important mechanism
of action of Metformin. It is noteworthy that although
multiple retrospective clinical trials have generally
concluded that prolonged use of Metformin reduces the
incidence of cancer, others have reported conflicting
results, and several prospective clinical trials are
underway to identify which target populations may
specifically benefit from this drug (reviewed in [95,
96]). Given the widespread long-term use of metformin
as a prescription drug and its potential utility both in

chemoprevention as well as chemotherapy, further
studies are warranted to investigate if the GIV-
expression status in tumors (e.g., its expression as a
spliced isoform lacking the C-terminus [97] or mutants
that prevent phosphorylation by AMPK [34], or its
overexpression as full length [98]) may help identify
which patients may benefit from the tumor suppressive
actions of the Metformin.

In conclusion, just when investigations on the
phenomenon of stress polarity pathway had hit a cold
trail, findings reported by Aznar et al. have reopened
the topic by netting a strong set of clues (GIV) and have
raised many more important questions. Also remains
unknown how the interplay between the newly
discovered AMPK—GIV signaling axis with multiple
other inputs and outputs within the AMPK energy-
sensing pathway (reviewed in [99, 100]), with the
plethora of interactions within the expanding AMPK
interactome [101], with newly emerging substrates
within new pathways, e.g., neucleosome modeling
[102], the glycolytic pathway [103], mitochondrial
dynamics [104], junctional scaffolds, like cingulin
[105], regulators of microtubule dynamics, like CLIP
170 [43]. Future studies are warranted to seek answers
to these questions so that the pathophysiologic
implications of this pathway and its potential as
therapeutic target in a plethora of chronic diseases can
be fully realized.
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