
 
 
 
 
                                                                                                                                                                      Review 
 

www.aging-us.com 602 AGING  

  

www.aging-us.com AGING 2017, Vol. 9, No. 3   

 
INTRODUCTION 
 
Eukaryotic cells compact their large genome into highly 
ordered chromatin structures within the nucleus. The 
dynamic nature of chromatin establishes the access to 
the genetic material and, as a consequence, influences a 
large number of biological processes, such as DNA 
replication, repair and transcription [1, 2]. The 
nucleosome is the basic packaging unit of chromatin. 
Each core nucleosome comprises 147bp of DNA bound 
to two copies of histones H2A, H2B, H3 and H4. Given 
the considerable stability of the nucleosome, eukaryotic 
cells employ a staggering array of interconnected 
molecular mechanisms that locally modify the 
electrostatic interaction between the highly basic 
histones and the negatively charged DNA molecules. In 
general, these epigenetic modifications work together 
and generate a code that ultimately determines the 
biological outcome [3, 4]. Among these regulatory 
processes, core and linker histones are subjected to a 

large pattern of posttranslational modifications (PTMs) 
that influence chromatin state and DNA accessibility [4-
7]. Along with PTMs, the partial or complete 
disassembly of nucleosomes allows the exchange and 
degradation of pre-existing histone proteins, with the 
incorporation of newly synthesised histones onto 
chromatin that can eventually result in the resetting of 
previous epigenetic marks. In such a crowded molecular 
picture, recent exciting insights have uncovered the role 
of histone variants as key regulators of the chromatin 
structure. Compared to the canonical ones, histone 
variants contain limited amino acid differences or 
unique domains with distinct biochemical properties. 
Incorporation of histone variants confers variability to 
the chromatin and expands the repertoire of epigenetic 
marks in a functional alphabet that controls genome 
plasticity and dynamics [4]. Throughout evolution, 
eukaryotes adopted a network of highly conserved 
proteins that buffer the positive charges of histones, 
maintaining their solubility and, therefore, avoiding 
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aberrant interactions with other cellular components. 
These dedicated proteins are generally known as histone 
chaperones and effectively control histone supply and 
chromatin dynamics [8]. Here, we focus essentially on 
the histone variant H3.3 and the associated complexes 
that selectively regulate its homeostasis and dynamics. 
In addition, we review the importance of histone H3.3 
turnover in human health as well as its emerging role in 
disorders. 
 
The relevance of histone variant H3.3 in physiology 
and pathology  
 
The H3 family comprises seven identified human H3 
variants: the two canonical H3.1 and H3.2 proteins, the 
replication-independent H3.3, the centromere protein A 
(CENP-A), the testis-specific histone H3t and the 
primate-specific H3.X and H3.Y. As in other 
metazoans, human genes encoding canonical H3.1 and 
H3.2 are organized in multi-copy clusters with no 
introns. Apart from a few recently described exceptions 
[9], mature mRNA transcripts do not contain 
polyadenylated tails and terminate with a highly 
conserved stem-loop that enhances transcript instability 
and degradation. The expression levels of these histones 
peak during DNA replication when they are 
incorporated into chromatin in a DNA-synthesis 
coupled manner [10, 11]. This distinct expression 
pattern of intronless transcripts allows the biosynthesis 
of histone H3 in large amounts for the proper assembly 
of nucleosomes during S-phase [10, 11]. Conversely, 
the intron-containing H3F3A and H3F3B genes, which 
are transcribed into post-transcriptionally 
polyadenylated mRNAs, encode identical H3.3 proteins 
in a replication-independent fashion in embryonic as 
well as in differentiated cells [12-14]. The vast majority 
of higher eukaryotes express canonical as well as 
replication-independent histone H3 variants, whereas 
Saccharomyces cerevisiae has only one archaic H3.3-
like protein that is deposited in both manners. In 
multicellular organisms, the H3.3 protein sequence 
differs from the canonical ones in no more than five 
amino acids. Compared to H3.2, Ala31 is substituted 
with a phosphorylatable residue of Ser or Thr in H3.3, 
while the globular core of H3.3 comprises the amino 
acids Ala87, Ile89 and Gly90 that confer the unique 
biochemical affinities to the certain motif of binding 
proteins (Figure 1A). Along with other residues, Ser31 
is highly phosphorylated during mitosis, although its 
distribution pattern is observed primarily in 
chromosomal regions flanking the centrosome [15]. 
Moreover, the presence of a hydroxyl side-chain at 
position 31 seems important for signaling processes, as 
it generates repulsive electrostatic forces that interfere 
with the activity of enzymes selectively recognizing or 
modifying the important Lys27 residue at the amino-

terminal tail [16]. To a similar extent, the substitution of 
the three amino acids in the globular core of H3.3 
disrupts the specialized recruitment of distinct histone-
binding factors. Indeed, Gly90 determines hydrogen 
bonds and hydrophobic interactions that uniquely 
anchor H3.3 to the binding pockets of dedicated histone 
chaperones [17, 18]. Conversely, substituting any of 
these three amino acids in canonical H3 with their H3.3 
counterparts is enough to cause the protein to be loaded 
in a replication-independent manner in Drosophila 
melanogaster [19], further highlighting their importance 
in recruiting specific histone chaperones.  
 
Since S. cerevisiae has only one histone H3.3-like 
variant (Figure 1A), one plausible hypothesis is that 
metazoans evolved new H3 isoforms from duplication 
of this archaic H3.3-like gene. In budding yeast, the 
replication independent incorporation of H3 onto 
transcriptionally active genes promotes gene 
transcription. This functional association with actively 
transcribed chromatin has been maintained in 
multicellular organisms, and complete loss of H3.3 
results in phenotypes of varying severity across the 
eukaryotic kingdom. Two genes encode for H3.3 
protein in both post-mitotic and proliferating germ cells 
of Caenorhabditis elegans [20]. Overall, H3.3 deficient 
animals are viable and fertile, though they exhibit an 
increased susceptibility to stress [20, 21]. In Drosophila 
melanogaster, on the other hand, complete loss of H3.3 
results in reduced viability and complete sterility in both 
males and females, though both copies of H3.3 must be 
deleted to provoke this phenotype [22, 23]. Not 
surprisingly, a more complex array of phenotypes has 
been observed in vertebrates. In Xenopus laevis, 
knockdown of H3.3 results in late gastrulation defects 
[24], while h3f3a mutant zebrafish have an almost 
complete lack of head skeletal structures [25]. In 
rodents, a hypomorphic mutation as well as the 
knockout of H3f3a results in incomplete embryonic 
lethality, with the surviving animals exhibiting reduced 
growth rate and partial male sterility [26, 27]. The 
phenotype of H3f3b homozygous knockout mice seems 
to be even more severe. Contrary to the redundancy 
observed in invertebrates, inactivation of both H3f3b 
alleles causes foetal death before or immediately after 
delivery [27], although there are some discrepancies 
with a previously published model in which a few 
surviving H3f3b mutants could reach adulthood [28]. 
Notably, ablation of both H3f3a and H3f3b leads to 
premature oocyte death [27], further highlighting the 
importance of H3.3 in development. 
 
An emerging body of literature has indicated the 
contribution of H3.3 to human diseases. New exciting 
findings have identified recurrent dominant H3.3 
mutations in childhood brain tumours (Figure 1B). Two  
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Figure 1. (A) Sequence alignment comparing the differences in the amino acids of H3.3 in five species. In red: the evolutionarily 
conserved amino acids that, along with Ala87, coordinate the binding to dedicated histone chaperones.  (B) Annotated somatic 
mutations in H3F3A and H3F3B causally linked to tumours in humans. (C) Regulation of histone H3 pool in the cell. i) Newly 
synthesised histone proteins H3 and H4 ii) associate with Hsc70 and Hsp90, which determine the stability and degradation rate of H3-
H4 dimers. In the nucleus, the binding to NASP controls the supply of soluble H3-H4 to ASF1a and ASF1b. H3-H4 dimers are then 
handed over to ASF1a/b, iii) which then transfers H3.1/2-H4 dimers to CAF-1, iv) whereas ASF1a transfers H3.3-H4 dimers to both 
HIRA/UBN1/CABN1 and ATRX/DAXX for loading onto the chromatin. v) Schematic overview of histone chaperones binding H3.1/2 and 
H3.3, from their synthesis to their deposition onto the chromatin.  
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sets of heterozygous mutations in the H3F3A gene (and 
to a lesser extent canonical H3 genes) cause N-terminal 
tail amino acid substitutions of Lys27 (K to M) and 
Gly34 (G to R or V), which have been proposed to drive 
brainstem and forebrain high-grade glioma (HGG), 
respectively [29-31]. Moreover, missense H3F3B 
mutations leading to distinct Gly34 substitutions have 
been identified in most cases of giant cell tumour of the 
bone, whilst the K36M mutation defines 
chondroblastoma [29, 30]. Although the molecular 
mechanisms underlying these aggressive tumours at a 
young age remain elusive, one possible explanation is 
the establishment of a permissive chromatin landscape. 
In this respect, both K27M and K36M mutations work 
through gain-of-function mechanisms, leading to 
inhibition of the respective methyltransferases and 
global reduction in H3K27me3 and H3K36me3 levels, 
respectively [32]. Consistent with these findings, 
expression of H3.3K27M in human ES cell-derived 
neural precursor cells (hNPCs) affects the 
transcriptional regulation of many genes and induces 
oncogenic transformation in cooperation with p53 loss 
and a constitutively active PDGFRA mutant [33]. 
However, this model is based on an in vitro 
transformation after prolonged culture of hNPCs and 
fails to induce HGG upon orthotopic transplantation 
[33]. Much less is known about Gly34 mutations, but it 
has been proposed that they may alter the methylation 
pattern at Lys36 (H3K36me3), driving the aberrant 
expression of genes that ultimately promote neoplasms 
[32, 34, 35]. Further studies are necessary to confirm 
this model. 
 
HIRA and ATRX/DAXX complexes: two specialized 
histone chaperones for H3.3 turnover  
 
Nucleosome assembly requires a sequential 
incorporation of heterodimers onto DNA strands, with 
H3-H4 dimers that promote the formation of the 
intermediate core particle [36]. The deposition of 
histone variants is a crucial aspect of chromatin 
dynamics and is dependent on an array of dedicated 
molecular machineries (Figure 1C). To prevent 
misfolding and degradation, newly synthesized 
cytosolic H3 histones associate with heat-shock 
proteins, which are then transferred to nuclear 
autoantigenic sperm protein (NASP). Homologue to the 
yeast Hif1p, NASP coordinates the assembling of stable 
H3-H4 dimers and contributes to the maintenance of a 
stable pool of chromatin components ready to be 
supplied in response to the cell’s need [37, 38]. Once 
part of the complex, H3-H4 dimers can be handed to the 
antisilencing function 1 a and b proteins (ASF1a and 
ASF1b) [8, 39-42], two evolutionarily conserved 
orthologues that coordinate H3.1/2 and H3.3 deposition 
through preferential nucleosome assembly pathways. 

Although functionally related and partially redundant 
for H3-H4 binding, ASF1a and ASF1b are found to 
associate with histone regulator A (HIRA) and 
chromatin assembly factor-1 (CAF-1) with different 
degrees of affinity [36, 43]. While CAF-1 cooperates 
with both isoforms for H3.1-H4 deposition, HIRA 
preferentially binds ASF1a and competes with CAF-1 
in a mutually exclusive fashion and using analogous 
specialized motifs [41, 43]. Since ASF1 does not 
discriminate between H3.1/2-H4 and H3.3-H4 dimers, it 
seems to function as a non-specific histone carrier that 
prevents tetramerization of H3-H4 and recycles evicted 
histones, providing dimers to CAF-1 or HIRA subunits 
that selectively determine the H3 variants according to 
their unique amino acids [18, 36, 38, 44, 45]. 
Consistently, in vivo evidence suggests that ASF1 
depends on CAF-1 and HIRA for histone deposition, 
despite its ability to transfer purified histones to naked 
DNA [46, 47]. Thus, the use of H3.3 rather than 
canonical H3 critically depends on the binding affinity 
of certain adaptor proteins. In higher organisms, two 
multisubunit histone chaperones guide H3.3 deposition 
onto chromatin: HIRA/UBN1/CABIN1 (herein as 
HIRA) and ATRX/DAXX.  
 
The HIRA/UBN1/CABIN1 complex  
The HIRA complex comprises HIRA, the associated 
protein Ubinuclein-1 (UBN1) and calcineurin-binding 
protein 1 (CABIN1) [18, 48, 49], with ASF1a acting as 
a transient donor of H3.3-H4 dimers [36, 43]. It is an 
evolutionarily conserved assembly that regulates 
deposition and eviction of H3.3-H4 dimers in a DNA-
replication independent manner [36, 50]. The S. 
cerevisiae Hir1p and Hir2p share homologous domains 
with HIRA [51-53], while Hir3 and Hpc2 are 
orthologues of CABIN1 and UBIN1, respectively [48, 
54]. As a non-redundant component of the complex, 
UBN1 determines the specificity toward H3.3-H4 
dimers, with H3.3 Gly90 that coordinates the binding 
along with the other amino acid residues within a 
domain highly conserved from yeast to mammals 
(Figure 1A) [18]. The S. cerevisiae HIR complex 
participates in transcriptional regulation, elongation rate 
and establishment of silenced chromatin domains in a 
replication-independent manner. In Drosophila 
melanogaster, HIRA is required for the deposition of 
H3.3 in the decondensed sperm pronucleus, and flies 
lacking HIRA only possess maternal chromosomes and 
are thus embryonic lethal [55]. However, HIRA is not 
essential for the deposition of H3.3 at other stages of 
Drosophila development, indicating that it is not the 
only H3.3-specific chaperone present in flies. In 
Xenopus laevis, H3.3 incorporation during development 
is also HIRA-dependent, and knockdown of HIRA in 
embryos phenocopies the knockdown of H3.3 [24]. In 
mammals, HIRA-mediated H3.3 deposition is critical 
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for early embryonic development and cell pluripotency. 
In proliferating cells, the HIRA complex occupies 
thousands of loci across the genome and regulates the 
functional properties of actively transcribed genes [56], 
since it controls the presence of the RNA polymerase 
RNA pol II at transcription sites and regulatory 
elements [57]. According to very recent evidence, 
HIRA association to chromatin, as well as HIRA-
mediated nucleosome assembly of H3.3, is dependent 
on replication protein A (RPA), a single-stranded DNA 
binding protein previously described as a master 
regulator of DNA replication and repair [58, 59]. 
Consistent with a role in H3.3 deposition onto 
regulatory elements and promoters, downregulation of 
RPA affects the recruitment of HIRA and alters gene 
transcription. Mechanistically, these new findings 
describe RPA as a new critical factor that, in an 
evolutionarily conserved manner, regulates nucleosome 
assembly through the binding of different H3 histone 
chaperones [58, 59].    
 
In the pathological context, HIRA was initially 
associated with DiGeorge syndrome, as the HIRA gene 
lies within the q11 region of chromosome 22, which is 
deleted in these patients [52]. However, no further 
evidence supports the direct role of HIRA in this 
syndrome, since many other genes are also located 
within this deletion. To our knowledge, no distinct 
human pathologies have been specifically linked to 
annotated mutations of HIRA complex subunits. 
However, it would not be surprising if they were found 
in some tumours, given HIRA role in H3.3 deposition, 
and the association between H3.3 mutations and some 
forms of cancer. 
 
ATRX/DAXX complex 
The α-thalassemia/mental retardation syndrome X-
linked protein (ATRX) is an ATP-dependent chromatin 
remodelling factor and belongs to the family of SNF2-
related ATPases [60]. Like other helicase subunits of 
eukaryotic SWI/SNF multiprotein complexes, ATRX 
modifies nucleosome composition upon recruitment to 
distinct targeted sites. Its localization at telomeres and 
pericentric heterochromatin initially suggested a 
potential role in the maintenance of silent chromatin 
[61-63]. Along with ATRX, the death-domain 
associated protein DAXX takes part in H3.3 deposition 
onto chromatin [44, 64, 65]. Similar to the HIRA 
complex, DAXX anchors H3.3 using a solvent-filled 
pocket that coordinates the AAIG motif, with an affinity 
for H3.3-H4 dimers that allows ASF1 displacement 
[17]. The association of DAXX with ATRX results in 
the ATP-dependent remodelling of chromatin and H3.3 
deposition at defined genomic regions in a replication-
independent fashion [44, 66, 67]. Recent evidence 
indicates that ATRX recognizes H3K9me3 and 

unmodified H3K4 via its chromodomains and binding 
to the heterochromatin protein HP1 [68]. This promotes 
the eviction of the histone variant macroH2A1 at genes 
and intergenes, as demonstrated in human-derived cells 
in which ATRX deficiency causes an accumulation of 
macroH2A1 at subtelomeric regions [69]. In association 
with DAXX, ATRX controls the deposition of histone 
variant H3.3 at pericentric heterochromatin, telomeres 
and transcriptional start sites in both dividing and 
differentiated cells [44, 64, 70-72]. Although H3.3 has 
usually been associated with active promoters and 
regulatory regions of expressed genes [73-76], it seems 
that ATRX/DAXX critically controls H3.3 deposition 
on silenced methylated alleles, maintaining epigenetic 
modifications such as H3K9me3 [72]. This effect may 
prevent the loss of epigenetic memory during 
transcription and inducing aberrant gene expression of 
heterochromatin loci. Similarly, ATRX/DAXX is 
critical for the deposition of H3.3 onto endogenous 
transposable elements, such as endogenous retroviral 
elements (ERVs) in mouse embryonic stem cells [77]. 
In this case, H3.3-dependent nucleosome turnover 
sustains H3K9me3 and maintains silenced ERVs 
through the recruitment of the co-repressor KRAB-
associated protein-1 (KAP1). Conversely, CAF-1-
mediated replacement of H3.3 with canonical H3.1 and 
H3.2 keeps retrotransposons in a silenced state during 
preimplantation of mouse embryos [78]. Since 
transposable element activity alters the expression of a 
large number of genes and may have contributed to the 
evolution of primates, these findings support the role of 
H3.3 turnover in the maintenance of genomic stability 
and somatic mosaicism within tissues. In the context of 
differentiated neurons, while the HIRA complex 
primarily mediates the activity-dependent deposition of 
H3.3 onto chromatin [74, 79], ATRX/DAXX may 
contribute to a smaller set of genes in the nervous 
system. At least in primary dissociated cortical neurons, 
ATRX/DAXX promotes the incorporation of H3.3 at 
promoters and enhancers of immediate early genes upon 
membrane depolarization [70].  
 
From the clinical standpoint, ATRX was originally 
identified as the gene responsible for α-thalassemia X-
linked mental retardation syndrome, a rare and inherited 
intellectual disability which is also characterized by 
developmental delays, distinctive craniofacial features 
and skeletal abnormalities, genital abnormalities and 
anaemia [67, 80, 81]. Various different mutations in the 
ATRX gene have been recently linked to this syndrome 
[81]. However, considering the crucial role of 
chromatin dynamics in cell proliferation and 
differentiation, it is not surprising that ATRX and 
DAXX have also been unequivocally associated with 
certain human tumours. In this respect, inactivating 
mutations in either of the two encoding genes are 
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frequently observed in neuroendocrine tumours of the 
pancreas [82-84]. Moreover, ATRX is mutated in 
astrocytic tumours [85], HGG and in neuroblastoma, 
whilst DAXX deficiency has been linked to a few cases 
of paediatric HGG, with a mutually exclusive pattern to 
ATRX mutations [30, 65, 86]. Notably, ATRX and 
DAXX mutations are almost exclusively associated 
with H3.3 mutations in paediatric HGG, and ATRX is 
also mutated in wild type H3.3 adult astrocytoma [30]. 
Together, these studies underscore the importance of 
ATRX/DAXX in chromatin remodelling and in the 
pathogenesis of clinically relevant human diseases. 
 
H3.3 in senescence and aging  
 
Cellular senescence is the irreversible arrest of 
eukaryotic cell proliferation and the development of an 
altered senescence-associated secretory phenotype, 
occurring both in vitro and in vivo [87]. From an 
evolutionary viewpoint, senescence limits the 
proliferative capacity of cells and therefore acts as a 
tumour suppressor. It is an energetically demanding 
process, since senescent cells have a significant 
metabolic shift toward “aerobic glycolysis” and reduced 
mitochondrial oxidative phosphorylation [88]. More 
importantly, the survival of senescent cells can be 
deleterious for normal tissue homeostasis, since non-
proliferating cells limit the regenerative capacity of the 
body and affect the function of neighbouring cells 
through their secreted proinflammatory factors. Such a 
causal role in the loss of organismal fitness has been 
recently demonstrated in mice. Indeed, genetic 
manipulation that reduces the number of senescent-
positive cells delays many age-related phenotypes and 
has a positive effect on mouse survival [89]. This and 
other evidence supports the idea that senescence 
contributes to several aspects of aging and age-related 
disorders.  
 
Mechanistically, senescence is driven by a complex 
cellular response. In cultured cells as well as in aged 
tissue, morphological alterations include the formation 
of large domains of compacted chromatin generally 
known as senescence-associated heterochromatin foci 
(SAHF) [90, 91]. These chromatin modifications are 
associated with widespread changes in gene expression 
that seem to contribute to cell cycle arrest and the 
consequent senescence program [91]. Despite the 
presence of repressive marks, such as the transcription-
silencing histone variant macroH2A, and the 
HIRA/ASF1-dependent formation of SAHF [90], 
senescent cells appear to maintain a very dynamic 
chromatin landscape in which deposition of newly 
synthesized histones occurs constantly. When compared 
to proliferating cells, senescent cells express a subset of 
replication-dependent histones that are necessary for 

physiological nucleosome turnover. The incorporation 
of these canonical histones is coupled to HIRA-
dependent deposition of the histone variant H3.3 [92]. 
In models of oncogene-induced and replicative 
senescence models, it seems that deposited H3.3 can be 
cleaved at the N-terminal in the nucleus by the 
lysosomal protease Cathepsin L1 [93]. The proteolytic 
processing of H3.3 removes the histone 
posttranslational modifications (PTMs) that critically 
control the expression of cell cycle regulators. Ectopic 
expression and HIRA-mediated loading of cleaved H3.3 
is sufficient to promote cellular senescence. Notably, 
senescent cells lacking HIRA exhibit a marked 
decreased of H4K16ac at many promoters of 
transcribed genes across the genome, further confirming 
the prominent role of HIRA in regulating highly 
compacted, transcriptionally silenced chromatin [92]. 
The maintenance of H4K16ac in senescent cells 
prevents promoter silencing and functions as a tumour 
suppressor. Consistently, HIRA deficiency profoundly 
affects chromatin structure and sensitizes senescent 
cells to oncogene-induced neoplasia in vivo [92]. 
Overall, the contribution of histones and histone 
chaperones to cellular senescence remains an exciting 
area of on-going research. In dividing cells, it is known 
that senescence programs and aging are associated with 
decreased biosynthesis of histones and global changes 
in chromatin structure. Consistent with the role of 
chromatin maintenance in age-related pathways, 
diminished histone supply induces replicative 
senescence in human fibroblasts and reduces replicative 
life span in yeast [94, 95]. Conversely, overexpression 
of histone H3-H4 sustains a dynamic nucleosome 
turnover that prevents aberrant transcription and 
genomic instability, delaying age-related processes in 
dividing cells. Based on these findings, it would be very 
much of interest to define which chromatin structures 
are causally linked to aging in multicellular organisms. 
In the long run, the characterization of the underlying 
molecular mechanisms might provide valuable 
therapeutic targets in age-related human disease.  
 
Aging is a multifactorial process that progressively 
affects the physiological integrity of various tissues and 
ultimately leads to the fitness loss of an organism [96]. 
Although an inevitable part of life, some age-related 
traits can, at least in principle, be delayed, as 
demonstrated in various model organisms. Many 
pharmacological and genetic interventions increase 
healthy longevity in an evolutionarily conserved manner 
across a wide range of species [97-99]. Based on our 
current understanding, most of the pro-survival 
signaling pathways converge on a common signature 
that includes a general metabolic rewiring and a 
prominent transcriptional regulation of stress-response 
genes. In this regard, one of the first described and 
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perhaps the most prominent example is the lifespan-
extending effect of the insulin/IGF-1 signaling pathway 
[100]. Diminished activity of the insulin/IGF-1/DAF-2 
receptor as well as the downstream target 
phosphatidylinositol 3-kinase PI3K/AGE-1 extends the 
lifespan of the nematode Caenorhabditis elegans [101, 
102]. The subsequent nuclear translocation of 
FOXO/DAF-16 induces the recruitment of the ATP-
dependent chromatin remodelling SWI/SNF complex 
onto a large number of promoters, thus maintaining a 
permissive chromatin landscape that supports a broad 
transcriptional response [103, 104]. Consistent with 
these findings, we have recently demonstrated that H3.3 
loss-of-function significantly compromises the DAF-16-
mediated lifespan-extending programs [21]. In daf-2 
mutant nematodes, lack of H3.3 perturbs the expression 
of a large number of genes, resulting in a much shorter 
lifespan. Notably, the lifespan reduction is not limited to 
insulin/IGF-1/DAF-2 mutant animals, since we have 
showed that H3.3 deficiency alters the longevity of 
germline-deficient as well as mitochondrial mutant 
animals. Consistent with the evidence in a daf-2 mutant 
background, H3.3 loss-of-function compromises the 
expression of those genes that critically support stress 
resistance and metabolic rewiring induced by mild 
mitochondrial impairment. Thus, since H3.3 dictates the 
survival rate of other long-lived mutants, we propose 
H3.3 homeostasis as a common key regulator of a 
permissive chromatin landscape that enables the proper 
engagement of transcriptional programs that ultimately 
promotes longevity. Moreover, as H3.3 is the critical 
H3 variant in postmitotic cells [21, 74], it is plausible 
that canonical histones cannot compensate for the lack 
of this unique protein, with a negative functional impact 
on genomic stability. As a consequence, it is likely that 
the molecular machinery regulating H3.3 turnover and 
dynamics may be critical epigenetic mediators that 
control the chromatin state underlying age-related 
processes in metazoans.   
 
H3.3 and its contribution to neuronal function  
 
The central nervous system of a multicellular organism 
is able to store long-lasting memories that can influence 
sophisticated behaviours critical for animal survival. 
Moreover, it orchestrates decision-making and 
adaptation responses to a wide range of environmental 
stimuli. This plasticity depends on signaling cascades 
that control neuronal structures at the morphological 
and functional level [105]. Ample evidence indicates 
that activity-dependent changes in gene expression 
underlie neuronal plasticity [106]. In this complicated 
scenario, epigenetic modifications of the chromatin 
state establish transcriptional profiles in a cell-type 
specific manner. Arrays of nucleosome-modifying 
complexes as well as synergistic PTMs of histones and 

DNA determine chromatin compaction and the 
switching between silent and transcriptionally active 
chromatin [75, 106]. While histone PTMs have been a 
matter of considerable interest for decades [5, 6, 106], 
only recent studies have emphasized the mechanistic 
importance of histone variants and nucleosome turnover 
in the context of neuronal plasticity, behaviour, 
cognition and memory consolidation [107]. Starting 
from an accepted view of nucleosome cores being 
relatively stable in differentiated neurons, a series of 
remarkable experiments demonstrate the essential role 
of H3.3 in the brain of adult animals [74]. Unlike in 
embryonic cells, H3.3 starts to accumulate after birth in 
the chromatin of glia and post-replicative neurons, 
reaching saturation levels within a relatively short 
period of time. In adulthood, H3.3 replaces almost the 
entire pool of canonical H3.1 and H3.2 in the neuronal 
genome. Strikingly, there is a dynamic turnover of 
H3.3-containing nucleosomes throughout the lifetime of 
mice as well as humans, suggesting a rate of histone 
exchange previously underestimated in the central 
nervous system. This constant activity-induced 
remodelling occurs in a proteasome-dependent manner 
and seems to be dissociated from posttranslational 
modifications that actively mark transcribed chromatin 
domains. At the cellular level, the reduction of 
functional excitatory and inhibitory synapses due to 
H3.3 downregulation correlates with aberrant plasticity-
associated gene expression profiles [74]. Consistent 
with these findings, animals with decreased expression 
of H3.3 in the hippocampus exhibit impaired long-term 
memory, underlying the importance of H3.3 turnover in 
cognitive functions [74]. Despite the limited current 
knowledge, recent studies have suggested an 
involvement of H3.3 in psychiatric disorders. One 
prominent example is found in individuals with major 
depressive disorders (MDD), who show increased H3.3 
expression in the nucleus accumbes (NAc), one of the 
key components of the reward system [108]. Consistent 
with an implication in MDD, depression-related 
upregulation of H3.3 is modulated in patients following 
antidepressant treatment [79]. The mechanistic link 
between H3.3 dynamics and psychiatric disease is also 
demonstrated in mouse models of chronic social stress, 
since specific H3.3 knockdown in the NAc of stressed 
mice is sufficient to inhibit depressive-like behaviours 
and the associated transcriptional patterns [79]. 
Together, this evidence opens new attractive venues of 
research in the field of psychiatric illness. 
 
PERSPECTIVES AND CONCLUSIONS 
 
Following the advent of whole exome sequencing 
methods, many disease-causing mutations affecting 
chromatin dynamics have been linked to neurological 
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syndromes characterized by intellectual disability. For 
example, de-novo dominant mutations of the ATP-
dependent chromatin remodelling SWI/SNF complex 
have been found in various forms of developmental 
disorders, including autism [109]. It thus follows to ask, 
does H3.3 also play a role in neurological disorders? 
Since ATRX is disrupted in X-linked alpha-thalassemia 
mental retardation syndrome, we can infer that H3.3 is 
likely crucial for the establishment of an appropriate 
chromatin landscape that allows brain plasticity. 
However, since H3.3 chaperones could also have H3.3-
independent functions, it is fundamental to determine 
whether H3.3 itself plays any role in age-related brain 
disorders. In this respect, it is currently unknown 
whether H3.3 biology is altered in common 
neurodegenerative disorders, including certain forms of 
dementia. It is tempting to speculate that the global 
dysregulation of neuronal activity and proteostasis 
during aging may impair H3.3 biology in the central 
nervous system. In turn, this would have a significant 
impact on gene expression programs, with 
consequences in the cognitive capacity of an individual. 
To further elucidate H3.3’s specific involvement in 
neurological disorders, animal models need to be 
generated which circumvent H3.3’s crucial role in 
development. The current body of knowledge available 
also begs the question: is H3.3 the only histone variant 
important in neuronal function and neurodegeneration? 
As H3.3 is not the only replication-independent histone 
variant, it stands to reason that other histone variants 
with similar properties might play a parallel and/or an 
equally important role. Prior findings have indicated 
that other histone variants are particularly important for 
proper neuronal function. In this regard, dynamic 
regulation of H2A.Z exchange is associated with 
activity-induced gene expression in established 
experimental paradigms of memory consolidation [110]. 
Based on this evidence, it seems that various histone 
variants, their deposition and the consequent 
nucleosome turnover represent an additional layer of 
complexity in the epigenetic regulation of specific 
patterns of genes that ultimately establish neuronal 
function and brain plasticity. 
 
In conclusion, given the contribution of H3.3 to age-
related signaling processes [21], we expect that future 
studies will elucidate whether and how H3.3 turnover, 
along with other histone variants, contribute to the onset 
of sporadic forms of brain pathologies, including 
Alzheimer’s and Parkinson’s disease. Undoubtedly, this 
new frontier of epigenetics will likely clarify the role of 
histone variants in the aging process and associated 
diseases, thus providing new insights into the 
pathogenesis of many debilitating human disorders. 
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