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ABSTRACT

Gait speed is a useful predictor of adverse outcomes, including incident mobility disability and mortality in
older adults. While aerobic exercise training (AEX) is generally an effective therapy to improve gait speed,
individual responses are highly variable. Circulating microRNAs (miRNAs) may contribute to inter-individual
changes in gait speed with AEX. We examined whether plasma miRNAs are associated with gait speed changes
(dGaitSp) in 33 obese older adults (age: 69.3%3.6 years, BMI: 34.0+3.1 kg/m?, 85% white, 73% women) who
performed treadmill walking, 4 days/week for 5 months. Gait speed (baseline: 1.02£0.19 m/s; range of
response: -0.2 to 0.35 m/s) was assessed using a 400 meter-fast-paced walk test. Using Nanostring technology,
120 out of 800 miRNAs were found to be abundantly expressed in plasma and 4 of these were significantly
changed after AEX: miR-376a-5p increased, while miR-16-5p, miR-27a-3p, and miR-28-3p all decreased. In
addition, baseline miR-181a-5p levels (r=-0.40, p=0.02) and percent changes in miR-92a-3p (r=-0.44, p=0.009)
associated negatively with dGaitSp. Linear regression combined baseline miR-181a-5p and miR-92a-3p levels
showed even stronger associations with dGaitSp (r=-0.48, p=0.005). These results suggest that circulating miR-
181a-5p and miR-92a-3p may predict and/or regulate AEX-induced gait speed changes in obese older adults.

INTRODUCTION

Age-related declines in physical function and
subsequent disability are major contributors to
morbidity and mortality in older adults [1, 2]. Among
those physical function measurements, gait speed has
been reported to be a useful predictor of adverse
outcomes, including incident mobility disability and
mortality in older adults [3-6]. A recent study further
supports that walking at a maximum pace might be
useful for estimating subjective general health and
skeletal muscle mass [7]. Although aerobic exercise
training (AEX) is generally effective for improving
physical function in older adults, there exists inter-
individual variation in response to standardized AEX

interventions [8, 9]. We previously demonstrated an
overall benefit of AEX on improvements in fast-paced
gait speed over a distance of 400 meters [10, 11].
However, changes in fast-paced gait speed with AEX
were highly variable, ranging from a decline of 0.13 m/s
to an increase of 0.44 m/s [10]. Results from a previous
study further indicate that 0.05 m/s is a small
meaningful change in gait speed, while 0.10 m/s is a
substantial change in gait speed in older adults, and
importantly, small changes in gait speed are detectable
in research and clinical settings [12]. Thus, under-
standing what physiologic factors contribute to gait
speed changes with exercise could be important in
tailoring successful interventions to prevent disability.
Ideally, identification of novel biomarkers that predict
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gait speed responses to exercise training will be crucial
or clinicians to select intervention regimens in a
f 1 t lect int t

personalized manner.

Over the last decade, short  non-coding
microRNAs (miRNAs) have emerged as important
regulators in multiple biological processes. These
miRNAs are usually about 22 nucleotides long and
regulate protein abundance by inhibiting protein
translation or enhancing mRNA degradation [13].
miRNAs are involved in epigenetic control of muscle
function, including proliferation, differentiation,
hypertrophy, and contraction [14-19]. Although some
miRNAs are tissue-specific, many can be detected in
blood, where they are highly stable and resistant to
endogenous RNAses [20-23]. Thus, circulating
miRNAs are considered useful disease-specific diagnos-
tic biomarkers and promising therapeutic targets [24-
27].

Although recent studies demonstrate that circulating
miRNAs are associated with aerobic capacity, muscle
mass, and muscle strength [28-30], their relationship
with physical function and disability is largely
unknown. miRNA expression is altered in response to
acute, as well as chronic exercise, which may help to
elucidate molecular mechanisms that underlie
cardiovascular and muscular adaptations [31-33]. Other
studies have shown that miRNAs may function as
paracrine/endocrine mediators [34], which could be
regulated with endurance exercise, indicating a potential
role of miRNAs in regulating responses to an exercise
intervention [35-37]. However, to our knowledge, the
effects of AEX on global miRNA expression profiles in
older adults, and the relationship of individual variation
in gait speed responses to miRNAs, have not been
studied. The present study had two goals: (1) to
examine changes in miRNA expression in response to
an AEX intervention and (2) to identify circulating
miRNA biomarkers related to individual changes in gait
speed.

RESULTS

High-throughput screening of circulating miRNAs in
obese older adults by Nanostring nCounter analysis

Among the 800 miRNAs detected, 120 miRNAs were
abundantly expressed in plasma (Figure 1). Among
them, only 14 were found to have counts above 500,
whereas the majority was between 50 and 500. Details
of each miRNA are listed in supplementary Table S1. In
addition, circulating levels of 4 miRNAs were
significantly changed after AEX (pre vs. post): miR-
376a-5p (3.71 £ 2.92 vs. 498 £ 226, p = 0.004)
increased, while miR-16-5p (9.91 £ 0.86 vs. 9.60 +

0.82, p = 0.039), miR-27a-3p (4.06 £ 2.54 vs. 2.74 £
2.88, p = 0.022), and miR-28-3p (2.65 £ 2.79 vs. 1.63 +
2.52, p=0.043) all decreased.

404
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N
(=]

nCounter raw counts

Figure 1. Detection of miRNAs in circulation of obese
older adults. Based on Nanostring nCounter analysis raw
counts, 120 miRNAs were found to be abundantly present in
circulation of obese older adults.

Association between gait speed changes and
circulating miRNA levels

None of the 4 miRNAs that were altered with AEX
(miR-376a-5p, miR-16-5p, miR-27a-3p, and miR-28-
3p) were associated with gait speed changes in response
to AEX (data not shown); thus, we analyzed whether
other abundant circulating miRNAs were associated
with gait speed changes. We found that changes in gait
speed were negatively associated with baseline levels of
miR-181a-5p, but not with percent changes in miR-
181a-5p with AEX (Figure 2). In addition, changes in
gait speed showed a trend for a positive correlation with
baseline levels of miR-92a-3p, but negatively correlated
with percent changes in miR-92a-3p levels (Figure 3).
These associations persisted or became stronger after
adjustment for age and gender. Since gait speed changes
were not associated with changes in body mass (data
not shown), we did not include change in body mass in
the model.

Combined miR-181a-5p and miR-92a-3p baseline
levels were strongly associated with gait speed
changes with AEX

Given the detected associations or trend of associations
between gait speed changes and baseline miR-181a-5p
or miR-92a-3p, we next tested if the linear regression
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combined baseline miR-181a-5p and miR-92a-3p could
yield an even stronger association with gait speed
changes. Based on a linear combination of the baseline
levels of the 2 miRNAs weighted by their regression
coefficients as others have used [38], we used a linear
combination of miR-181a-5p and miR-92a-3p (-
0.208+0.08(miR-181a-5p)-0.057(miR-92a-3p)), and
found that the combined baseline level of these
miRNAs had an even stronger negative association with
gait speed changes than either miRNA alone (Figure 4),
even after adjustment for age and gender (p=0.004).
This finding implies that combined baseline levels of
miR-181a-5p and miR-92a-3p could be useful
biomarkers for prediction of gait speed responses to
AEX in obese older adults.
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Baseline level adjusted gait speed changes show
similar trends of association with miRNAs as those
observed between absolute gait speed changes and
miRNAs

The above determined associations were based on
absolute gait speed changes (dGaitSp (m/s)) after AEX.
Given that the initial baseline gait speed varied among
individuals (Table 1) and may affect the individual gait
speed response to AEX, we further analyzed the
association between the identified miRNAs and baseline
level-adjusted gait speed changes: dGaitSp (% chan%?
=100 x (GaitSp™*"*™ — GaitSpP™***)/ GaitSp™ "X,
As shown in Table 2, dGaitSp (% change) shows
similar trends of association with miRNAs as that of
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Figure 2. miR-181a-5p and gait speed changes. (A) Association between changes in gait speed
(dGaitSp) and baseline levels of miR-181a-5p; (B) Association between changes in gait speed (dGaitSp) and
percent changes in miR-181a-5p (dmiR-181a-5p (% change)).
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Figure 3. miR-92a-3p and gait speed changes. (A) Association between changes in gait speed (dGaitSp)
and baseline levels of miR-92a-3p; (B) Association between changes in gait speed (dGaitSp) and percent

changes in miR-92a-3p (dmiR-92a-3p (% change)).
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dGaitSp (m/s). Notably, both dGaitSp (% change) and

dGaitSp (m/s) were significantly associated with this it

linear regression combined variable using baseline . 03]

levels of miR-181a-5p and miR-92a-3p. This finding 2L o02]

confirmed that combined baseline levels of miR-181a- é 01 1

5p and miR-92a-3p are useful for prediction of gait (%

speed responses to AEX in obese older adults, which is & 0.0

independent of the baseline level gait speed, as well as O -0.1 ;

age and gender. © 0.2 1 * «
-0.3

Target genes shared between miR-181a-5p and miR-
92a-3p are closely related to biological processes
involved in the regulation of neural, skeletal muscle, miR-181a-5p, miR-92a-3p

and vascular function. To better understand the

underlying mechanisms related to miR-181a-5p and Figure 4. Combined miR-181a-5p and miR-92a-3p and gait
miR-92a-3p’s involvement in gait speed responses to speed changes. Association between changes in gait speed (dGaitSp)
AEX, we next performed analysis of their target genes. and combined baseline levels of miR-181a-5p and miR-92a-3p.
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Table 1. Participant characteristics at baseline.

Overall Range
(n=33)
Age (years) 69.3+3.6 65-179
Gender (M/F) 24/9 N/A
Race (White/Non-White) 28/5 N/A
BMI (kg/m?) 34.0+3.1 30-42
Self-reported comorbidity (yes/no)
Hypertension 19/14 N/A
Diabetes 5/28 N/A
Arthritis 25/8 N/A
Chronic back pain 10/23 N/A
Medication Use
Antihypertensive 23/10 N/A
Lipid-lowering 17/15 N/A
Glucose control 6/27 N/A
Anti-depressant 10/23 N/A
Baseline gait speed (m/s) 1.02+0.19 0.56—1.44
dGaitSp (m/s) 0.08+0.13 -0.2-0.35
dGaitSp (% change) 9.26 +12.92 -15.24 - 38.89

Table values are mean + SD or sample size (N). N/A, not applicable.
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Using the multiMiR R analysis, we detected 1,569
target genes for miR-181a-5p and 1,997 genes for miR-
92a-3p, 353 of which were common to both. Go
analyses yielded 139 BP Go terms for miR-181a-5p
target genes, 176 terms for miR-92a-3p target genes,

and 104 terms for the common genes. Using REViGO
to remove redundant GO terms revealed that a complex
set of genes involved in muscle, vascular and neural
physiology regulation could be involved in the response
to AEX among obese older adults (Figure 5).

Table 2. Pearson correlation analysis of associations between gait speed changes and plasma

miRNAs (n=33).

miR-181a-5p dmiR-181a-5p

miR-92a-3p dmiR-92a-3p miR-181a-5p and

(% change) (% change) miR-92a-3p
dGaitSp R =-0.40 R=0.15 R=0.33 R =-0.45 R=-0.48
(m/s) P=0.02 P=0.40 P =0.07 P =0.009 P =0.005
dGaitSp R=-0.34 R=0.13 R =0.31 R=-0.44 R=-0.42
(% change) P=0.05 P=0.49 P=0.08 P=0.02 P =0.01
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Figure 5. Target genes shared between miR-181a-5p and miR-92a-3p are closely related to
biological processes involved in regulation of neural, skeletal muscle, and vascular function.
Scatterplot showing semantic similarities of enriched GO terms. Bubble color indicates the GO term enrichment
p-value. Bubble size indicates the frequency of the GO term in the reference database (EBI GOA database).
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DISCUSSION

The current study provides the first evidence that miR-
181a-5p, miR-92a-3p, or their combination, may be
useful biomarkers to predict gait speed response to AEX
in older adults. Importantly, the identified associations
between these two miRNAs and gait speed changes are
independent of the baseline gait speed, indicating that
these miRNAs may be involved in the regulation of gait
speed responses to AEX through mediating their target
gene-related signaling pathways, including but not
limited to, muscle, vascular, and neural physiology
regulation.

These findings add value to the development of
‘personalized medicine’ or ‘precision care’, which is an
important concept that has been growing over the recent
decades [39]. To date, regular exercise is the most
effective therapy for reducing age-related loss of
walking speed; however, even though there is non-
uniformity of exercise-induced improvement in gait
speed among individuals [40], prescription of exercise
is often undertaken with a global approach rather than a
individualized one [41]. Identification of novel
biomarkers that predict gait speed response to therapy is
needed before a personalized approach can be used
clinically. This will help predetermine if an individual
is likely to respond favorably to a certain exercise
training mode, or whether a clinical practitioner should
prescribe a different therapy.

Given their stability in circulation and the easy
application in the clinical practice, circulating miRNAs
have been widely studied and used as useful biomarkers
for disease prediction, diagnosis, prognosis, and staging
[42, 43]. Yet, very few studies have investigated the
impact of exercise training interventions on miRNA
expression, either in tissue or in the circulation. In
addition, research into the role of miRNAs in exercise-
induced adaptations has predominantly focused on
selected miRNA species with limited numbers based on
their reported functions, for instance, inflammation,
angiogenesis, hypoxia/ischemia  adaptation  and
metabolism [44-48]. These studies indicate that
circulating miRNAs could be affected by different
exercise modalities, and thus could be potential useful
biomarkers or mediators of exercise mode-specific
training adaptations [49, 50]. We simultaneously
characterized 800 circulating miRNAs in a sample of
obese older adults and our findings provide novel
evidence for the potential use of circulating miRNAs for
defining gait speed adaptations to AEX in these indi-
viduals.

An important difference between this work and
previous studies is our use of the Nanostring nCounter

analysis platform to measure miRNAs. The FDA-
approved Nanostring nCounter analysis platform has
been widely used for plasma and body fluid miRNA
profiling, which has shown value as a diagnostic marker
for various diseases [51-54]. The direct quantitation of
miRNAs without any amplification with the Nanostring
nCounter platform, and the normalization of the mean
abundance of the top 100 expressed plasma miRNAs,
make our data more reliable and easier to repeat on a
larger scale. Although RT-qPCR based methods are
widely used, it is yet unresolved how the data should be
normalized [55].  Different studies use different
normalization strategies to report miRNA expression
levels; consequently, there is no consensus on the
optimal approach [56]. However, there is some
evidence that the combination of several internal
reference  miRNA normalizers might be more
appropriate than a single universal normalize [57]. We
did not perform RT-qPCR for our validation because of
the concern that RT-qPCR usually uses an individual
miRNA as internal control, and the effects of exercise
on this selected internal control is unknown.

Using the Nanostring platform, we identified 120
abundant circulating miRNAs in the plasma. This
number is comparable to the number of circulating
miRNAs detected from other groups in healthy subjects
using different quantitation platforms, including Solexa
sequencing, Sanger sequencing, Agilent microarrays
and Tagman qPCR array as was reviewed recently [58].
Compared to the reported top 20 plasma miRNAs from
7 healthy individuals measured with Agilent
microarrays [58], 9 of our 120 miRNAs overlapped:
miR-451a, miR-16-5p, miR-223-3p, miR-4454, miR-
21-5p, miR-23a-3p, let-7a-5p, let-7b-5p, and let-7f-5p.
This supports the notion that the Nanostring platform
used in our study is as efficient as the other miRNA
analysis platforms.

We compared our findings with a recent study
examining the miRNA plasma signature in response to
acute and prolonged AEX training in young individuals
[59]. It appears that young and old individuals may use
different circulating miRNAs in mediating responses to
exercise. For instance, levels of miR-92a were down-
regulated after 12 weeks of AEX in the young
individuals [59], while we saw no apparent effect of 5
months of AEX on plasma levels of miR-92a in our
older subjects. We further compared our findings with
another study by Barr et al. [60, 61] that analyzed
circulating miRNA responses to a 16-week combined
intervention including an energy restriction diet (250
kcal/d) and mixed resistance/aerobic exercise (walking
and swimming) (250 kcal/d), focused specifically on 13
preselected plasma miRNAs from middle-aged (35-59
years) individuals. Ten out of the 13 miRNAs they
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focused on (miR-126-3p, miR-142-3p, miR-223-3p,
miR-148b-3p, miR-199a-3p-199b-3p, miR-21-5p, miR-
221-3p, miR-423-5p, miR-148a-3p, and miR-140-5p)
were also detected by our Nanostring platform analyses
in older adults. However, in their study, miR-140-5p,
miR-223-3p, and miR-221-3p were modulated by the
combined diet and exercise training, whereas we found
that miR-376a-3p, miR-16-5p, miR-27a-3p and miR-
28-3p were altered by AEX. These differences suggest
that individual miRNAs may respond differently based
on an individual’s age and the type of intervention.

Our study is also the first to associate plasma miRNAs
and gait speed changes in response to sustained AEX.
Previous studies indicate that miR-181a-5p or its targets
(ROPNIL and SLC37A3) are involved in processes
highly relevant to exercise response, including immune
function, apoptosis, membrane traffic of proteins and
transcription regulation [62, 63]. In addition, circulating
miR-181a-5p decreases with aging and correlates
closely with vascular inflammation and immunity [64,
65]. Similarly, miR-92a-3p plays a key role in
regulation of vascular growth [66] and its serum levels
increase with aging [67]. Given our limited sample size
and the relatively narrow age range of our participants,
we did not detect an age-related difference in miR-
181a-5p or miR-92a-3p (data not shown). However, our
study shows for the first time that signatures of
combined baseline levels of miR-181a-5p or miR-92a-
3p could be useful noninvasive biomarkers to predict
gait speed responses to AEX in obese older adults. It is
worth noting that gait speed changes were not
associated with any of the four miRNAs that we found
to be changed with AEX (miR-376a-3p, miR-27a-3p,
miR-16-5p, and miR-28-3p). In fact, plasma miRNAs
associated with changes in gait speed do not appear to
be affected by AEX, which is consistent with a recent
finding that blood-born miRNA patterns that are useful
as biomarkers are not necessarily altered by overall
fitness and exercise [68]. Therefore, we propose that the
miRNA target genes and consequently their related
signaling pathways might be regulated differentially,
and may subsequently lead to inter-individual variation
in reponses to AEX. Further mechanistic studies on
changes in miRNA-regulated target gene networks in
muscle and other tissues/systems could help detect
novel targets as potential useful tools to adjust
physiologic adaptations to AEX in older adults.

Limitations and future directions

Our study has some limitations. Although most of the
skeletal muscle-enriched myomiRs [69] (e.g. miR-1,
miR-133a, miR-133b, miR-206, and miR-499) were
detected by real-time PCR analysis in circulation after
various exercise interventions [48, 49, 70-72], none of

them were detected in plasma in our assay. This could
have been limited by the sensitivity of Nanostring
technology, the relatively lower amount of myomiRs
released into circulation, or their higher uptake into
recipient cells in other tissues. Without skeletal muscle
and other tissues collected in parallel with the plasma in
our study, we cannot fully interpret regulation of those
specific myomiRs. Similarly, the source and target
recipient cells of circulating miR-181a-5p and miR-92a-
3p could not be further analyzed and verified. Our target
gene prediction and interaction analyses indicated that
the predicted miR-181a-5p, miR-92a-3p target genes
are closely related to regulation of muscle, vascular and
neural physiology, and other important pathways
relevant tothe physiological response to exercise,
including but not limited to apoptosis, transcription
regulation, and response to oxygen levels [62]. Yet,
without examining skeletal muscle samples, we could
not determine the direct or indirect physiological effects
of those circulating miRNAs on the skeletal muscle
systems. Thus, the current experimental design and data
do not provide definitive evidence that miR-181 and
miR-92a regulate AEX-induced gait speed changes in
obese older adults. It also does not provide a thorough
understanding of the molecular pathways that are
possibly involved in this gait speed response, which will
be the direction of our future mechanistic study.

Notably, we observed no significant associations
between several other measured variables (chair rise
time, short physical performance battery, blood lipid
levels, VO2max, glucose levels, or body composition)
and gait speed changes. This indicates that although
these metabolic and physiological changes are
important responses to aerobic training, they are not
necessarily closely related with gait speed changes in
obese older adults. The identified miRNAs thus are
likely involved in other signaling pathways that regulate
gait speed response to AEX in obese older adults, such
as cytokine/inflammatory responses. Since we did not
measure the levels of cytokines and other inflammation
markers, we cannot rule out those possible mechanisms
at this time. In addition, all participants in this study
completed the intervention with high compliance (>80%
attendance). Thus, it is unlikely that differences in the
dose of training contributed to variation in gait speed
and miRNA responses to AEX. Although 4 miRNAs
were found to change with AEX, none of them were
found to be associated with gait speed changes. This
could have been limited by the relatively small sample
size in this study. Given that the 4 AEX changed
miRNAs have been previously reported to be regulated
by exercise at the tissue level (i.e., skeletal and cardiac
muscle) [62, 73-78], it is worth doing further analysis in
future studies to explore their related molecular
mechanisms.
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Given the relatively few participants in this study, we
cannot rule out the possibility that some of the observed
differences and associations were statistically
significant simply due to chance. A future larger and
more definitive study with a non-exercise control group
is necessary to validate miRNA expression changes
with aerobic exercise and determine their role in
predicting inter-individual variation in gait speed.

MATERIALS AND METHODS
Study design and participants

This study included 33 older adults who completed a 5-
month AEX intervention with high compliance (>80%
attendance) [10]. Participants were recruited to be 65-79
years of age, obese (BMI = 30-37 kg/m®) with a
sedentary lifestyle for the past 6 months, not dependent
on a cane or walker, not part of another research study,
non-smokers, and free of osteoporosis, abnormal kidney
function, insulin-dependent or uncontrolled diabetes, or
uncontrolled high blood pressure. Body composition,
lower extremity function, and fasting lipid and glucose
levels were measured as previously described [10, 79].
Prevalent comorbidities were assessed by self-report
and medication use. Clinical characteristics of the study
participants are shown in Table 1. The study was
approved by the Wake Forest School of Medicine
Institutional Review Board and all participants provided
written informed consent.

Exercise intervention

Participants performed supervised treadmill walking 4
days per week for 5 months. Exercise sessions
progressed from 15-20 minutes at 50% heart rate
reserve (HRR, assessed during a graded exercise
treadmill test) during the 1% week to 30 minutes at 65—
70% HRR by the end of the 6" week and included a 5-
minute warm-up, S-minute cool-down, and light
stretching. Heart rate, treadmill grade/speed, exercise
duration, and the amount of energy expended were
recorded each session to monitor compliance to the
exercise prescription.

Gait speed

Gait speed was assessed with a fast-paced 400-meter
walk test [80]. The test-retest reliability and validity of
the 400-meter walk test in middle-aged and older adults
have been reported previously [81, 82]. Participants
were instructed to walk the 400-meter distance (10 laps
on a flat indoor surface 20 m in length) as quickly as
possible. Time to complete the walk was recorded in
seconds. Standardized encouragement was given every
lap.

RNA extraction from plasma samples

Blood samples were collected into EDTA-treated tubes
in the morning after an overnight fast before and 36-48
hours after the last intervention bout of AEX. Plasma
was isolated by spinning blood at 2,000 x g for 20 min
at 4 °C and stored at —80°C for later analysis. After
thawing, the plasma was centrifuged at 2,000 x g for 10
min at 4 °C to remove debris and deplete platelets, and
500 pl supernatant was used for total RNA extraction
using kit #5100 (Norgen Biotek, Thorold, Ontario,
Canada) according to the manufacturer’s protocol.
Eluted total RNA (200 pl) was precipitated overnight
with sodium acetate/ethanol with a linear acrylamide
carrier (Ambion, Austin, TX, USA) for maximum
nucleic acid recovery. RNA pellets were concentrated in
15 ul ddH,0; 3 ul samples were submitted for profiling
on the multiplexed nCounter platform (Nanostring
Technologies, Seattle, WA, USA).

MiRNA expression profiling with Nanostring
nCounter analysis

RNA samples were prepared by ligating a specific DNA
tag (miR-tag) onto the 3’ end of each mature miRNA,
according to the manufacturer’s instructions. Assay Kit
NS _H MIR V2.1 (Nanostring Technologies) was used
to anneal miRNAs to target specific barcode probes. No
amplification was required. Excess tags were removed
by restrict digestion at 37 °C. Hybridizations were
carried out by combining 5 pl of each miRNA-miR-Tag
sample with 20 pl of nCounter Reporter probes in
hybridization buffer and 5 pl of nCounter Capture
probes (for a total reaction volume of 30 pl) at 65°C for
16-20 hours. Excess probes were removed using a two-
step magnetic bead-based purification on the nCounter
Prep Station. Abundance of specific target molecules
was quantified by imaging the immobilized fluorescent
reporters in the sample cartridge with a CCD camera
and counting the individual fluorescent barcode probes
for each miRNA target (800 human miRNAs) using the
nCounter Digital Analyzer. Data were normalized to the
top 100 expressed miRNAs [83]. The background was
corrected using the nSolver software package. A 30.21
count threshold was set using negative controls based
upon the equation: mean + 3x SD. MiRNAs with more
than 70% counts below this threshold were excluded.

MiRNA target gene prediction and interaction analysis
The multiMiR R package with retrieval of miRNA-
target interactions from 14 external databases was used
to predict target genes. Furthermore, we performed
enrichment analysis for gene ontology using the TopGo
package. For miRNA targeted gene sets, Fisher’s exact
test was implemented, and the enriched Biological
Process (BP) Go terms were selected based on a p-value
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<0.01. The GO list was further summarized using
REViGO, which removed redundant GO terms. Data
were visualized in  semantic  similarity-based
scatterplots.

Data analysis

MiRNA data were analyzed using the nSolver software
(Nanostring Technologies) and SPSS software from
IBM (Armonk, NY, USA). MiRNA raw counts were
log2 transformed and all data were expressed as mean
+ standard deviation (SD). The Student’s t test was
used to compare continuous variables. Categorical data
were compared using the Chi-square test. Pearson
product-moment correlation was used to measure the
strength of the association between pairs of variables. A
linear combination of identified miRNAs was also
calculated to further assess associations with gait speed.
Analysis of covariance was used to determine if
associations between gait speed and miRNAs were
independent of age and gender. A p-value <0.05 was
considered statistically significant.
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SUPPLEMENTARY MATERIAL

Table S1. List of 120 abundant miRNAs in plasma at baseline from 33 older adults.

miRNA raw
counts

Numbers

in group

miRNAs

> 10000

1

miR-451a

1000-10000

let-7g-5p, miR-126-3p, miR-142-3p, miR-16-5p, miR-191-5p,
miR-223-3p, miR-4454

500-1000

let-7a-5p, miR-106a-5p-17-5p, miR-15a-5p, miR-22-3p, miR-
520f, miR-720

100-500

38

let-7b-5p, let-7f-5p, let-7i-5p, miR-106b-5p, miR-130a-3p,
miR-146a-5p, miR-148b-3p, miR-150-5p, miR-15b-5p, miR-
181a-5p, miR-185-5p, miR-197-3p, miR-1976, miR-199a-3p-
199b-3p, miR-199a-5p, miR-19b-3p, miR-20a-5p-20b-5p,
miR-21-5p, miR-221-3p, miR-23a-3p, miR-25-3p, miR-26a-
5p, miR-26b-5p, miR-27b-3p, miR-29b-3p, miR-302d-3p,
miR-320e, miR-324-5p, miR-338-3p, miR-342-3p, miR-374a-
5p, miR-378e, miR-423-5p, miR-548aa, miR-570-3p, miR-
92a-3p, miR-93-5p, miR-548ai

50-100

30

let-7d-5p, miR-107, miR-122-5p, miR-125a-5p, miR-144-3p,
miR-145-5p, miR-148a-3p, miR-149-5p, miR151-a-3p, miR-
222-3p, miR-24-3p, miR-2682-5p, miR-302b-3p, miR-30a-
5p, miR-30b-5p, miR-30d-5p, miR-30e-5p, miR-337-5p,
miR-361-5p, miR-376a-3p, miR-382-5p, miR-409-3p, miR-
425-5p, miR-4286, miR-494, miR-514b-5p, miR-544a, miR-
574-5p, miR-579, miR-612

<50

38

let-7e-5p, miR-10a-5p, miR-1224-5p, miR-1225-5p, miR-
1257, miR-125a-3p, miR-132-3p, miR-140-5p, miR-186-5p,
miR-18a-5p, miR-2116-5p, miR-23b-3p, miR-27a-3p, miR-
28-3p, miR-29¢-3p, miR-301a-3p, miR-32-5p, miR-323a-3p,
miR-337-3p, miR-340-5p, miR-367-3p, miR-374b-5p, miR-
376¢c, miR-432-5p, miR-450a_5p, miR-484, miR-485-3p,
miR-487b, miR-489, miR-503, miR-518b, miR-520d-5p-
518a-5p-527, miR-520h, miR-532-5p, miR-548a-5p, miR-
548d-3p, miR-590-5p, miR-98
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