AGING 2018, Vol. 10, No. 4

wWwWw.aging-us.com

Research Paper

Mining TCGA database for genes of prognostic value in glioblastoma
microenvironment

DiJia¥***”, Shenglan Li>*", Dali Li* 3, Haipeng Xue” 3, Dan Yang’, Ying Liu*?

!Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081,
China

2The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health
Science Center at Houston, Houston, TX 77030, USA

3Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine, The
University of Texas Health Science Center at Houston, Houston, TX 77030, USA

* School of Nursing, The 2nd Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin,
Heilongjiang, 150086, China

*Equal contribution

Correspondence to: Dan Yang, Ying Liu; email: danyanghmu@163.com, ying.liu@uth.tmc.edu
Keywords: TCGA, CGGA, tumor microenvironment, immune scores, overall survival
Received: January 9, 2018 Accepted: April 10,2018 Published: April 15,2018

Copyright: Jia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

ABSTRACT

Glioblastoma (GBM) is one of the most deadly brain tumors. The convenient access to The Cancer Genome
Atlas (TCGA) database allows for large-scale global gene expression profiling and database mining for potential
correlation between genes and overall survival of a variety of malignancies including GBM. Previous reports
have shown that tumor microenvironment cells and the extent of infiltrating immune and stromal cells in
tumors contribute significantly to prognosis. Immune scores and stromal scores calculated based on the
ESTIMATE algorithm could facilitate the quantification of the immune and stromal components in a tumor. To
better understand the effects of genes involved in immune and stromal cells on prognosis, we categorized GBM
cases in the TCGA database according to their immune/stromal scores into high and low score groups, and
identified differentially expressed genes whose expression was significantly associated with prognosis in GBM
patients. Functional enrichment analysis and protein-protein interaction networks further showed that these
genes mainly participated in immune response, extracellular matrix, and cell adhesion. Finally, we validated
these genes in an independent GBM cohort from the Chinese Glioma Genome Atlas (CGGA). Thus, we obtained
a list of tumor microenvironment-related genes that predict poor outcomes in GBM patients.

INTRODUCTION

Glioblastoma multiforme (GBM) is one of the most
fatal brain tumors with a mean survival rate of 35.7% at
one Year, 4.7% at five years, and median overall
survival (OS) of 14.6 months [1, 2]. To better
understand the impacts of genetic composition of tumor
on clinical prognosis, comprehensive genome-wide
gene expression collections such as The Cancer
Genome Atlas (TCGA) have been established to cate-

gorize and discover genomic abnormalities in large
cohorts across the world [3, 4]. In the TCGA database,
according to global gene expression profiles, GBM was
initially classified into four subtypes: proneural, neural,
classical, and mesenchymal [5]. Of these subtypes, the
neural subtype is no longer recognized as a major one
due to its lack of tumor-intrinsic characteristics based
on several recent reports [6-8]. In 2016, the updated
World Health Organization (WHO) classification
integrated molecular parameters with histology and
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divided GBM into three subtypes: (1) IDH-wildtype, (2)
IDH-mutant, and (3) NOS (not otherwise specified) [9].
With these progresses, gene expression profiling has
been increasingly incorporated with and accepted by
clinical diagnostic criteria.

Tumor cell intrinsic genes especially master
transcription factors dictate the initiation, progression,
and evolution of GBM [6, 10]. On the other hand, tumor
microenvironment has also been reported to critically
influence gene expression of tumor tissues, hence the
clinical outcomes [11-16]. Tumor microenvironment is
the cellular milieu where the tumor is located. It
consists of immune cells, mesenchymal cells,
endothelial cells, along with inflammatory mediators
and extracellular matrix (ECM) molecules [17, 18]. In
the tumor microenvironment, immune and stromal cells
are two major types of non-tumor components and have
been proposed to be valuable for diagnostic and
prognostic assessment of tumors. Algorithms [14, 19]
have been developed to predict tumor purity using gene
expression data from the TCGA database. For
instance, Yoshihara et al. [14] designed an algorithm
called ESTIMATE (Estimation of STromal and
Immune cells in MAlignant Tumor tissues using
Expression data). In this algorithm, the authors
calculated immune and stromal scores to predict the
infiltration of non-tumor cells, by analyzing specific
gene expression signature of immune and stromal cells.
Subsequent reports have soon applied the ESTIMATE
algorithm to prostate cancer [20], breast cancer [21],
and colon cancer [22], showing the effectiveness of
such big-data based algorithms, although utility on
immune and/or stromal scores of GBM has not been
investigated in detail.

For the first time in this current work, by taking
advantage of both TCGA database of GBM cohorts and
ESTIMATE algorithm-derived immune scores [14], we
extracted a list of microenvironment associated genes
that predict poor outcomes in GBM patients.
Importantly, we have validated such correlation in a
different GBM cohort available from the Chinese
Glioma Genome Atlas (CGGA) database.

RESULTS

Immune scores and stromal scores are significantly
associated with GBM subtypes

We downloaded gene expression profiles and clinical
information of all 417 GBM patients with initial
pathologic diagnosis made between 1989 and 2011
from the TCGA database. Among them, 165 (39.6%)
patients were female, 248 (59.5%) cases were male, 4
(0.96%) patients were of unknown gender. Pathological

diagnosis included 128 (30.7%) cases of classical
subtype, 122 (29.3%) mesenchymal subtype, 64
(15.3%) neural subtype, and 103 (24.7%) cases of pro-
neural subtype. Although the neural subtype was later
recommended not to be listed as a major subtype [6-8],
all GBM cases with complete gene expression data and
clinical information in the TCGA were included in our
analysis. Based on ESTIMATE algorithm, stromal
scores ranged from -3,055.72 to 2,016.62, and immune
scores were distributed between -1,448 to 3,210.47,
respectively (Figure 1A, B).The average immune scores
of mesenchymal subtype cases ranked the highest of all
4 subtypes, followed by that of neural subtype, and
classical subtype. The proneural subtype cases had the
lowest immune scores (Figure 1A, p < 0.0001).
Similarly, the rank order of stromal scores across GBM
subtypes from highest to lowest is mesenchymal > neural
> classical > proneural (Figure 1B, p < 0.0001),
indicating that both immune scores and stromal scores
are meaningful in the correlation of subtype
classification.

Based on the 2016 WHO classification, mutation of
IDHI1 predicts a better prognosis in GBM. We plotted
the distribution of immune scores and stromal scores
based on the status of IDH1 mutation in GBM cases.
IDH1 mutant cases have lower immune scores and
stromal scores, although statistically not significant.
(Figure 1C, D).

To find out the potential correlation of overall survival
with immune scores and/or stromal scores, we divided
the 417 GBM cases into top and bottom halves (high vs.
low score groups) based on their scores. Kaplan-Meier
survival curves (Figure 1E) showed that median overall
survival of cases with the low score group of immune
scores is longer than the cases in the high score group
(442 d vs. 394 d, p = 0.0537 in log-rank test).
Consistently, cases with lower stromal scores also
showed longer median overall survival compared to
patients with higher stromal scores (Figure 1F, 442 d vs.
422 d, p= 0.1262 in log-rank test), although it was not
statistically significant.

Comparison of gene expression profile with immune
scores and stromal scores in GBM

To reveal the correlation of global gene expression
profiles with immune scores and/or stromal scores, we
compared Affymetrix microarray data of all 417 GBM
cases obtained in TCGA database. Heatmaps in Figure
2 showed distinct gene expression profiles of cases
belong to high vs. low immune scores/stromal scores
groups. For comparison based on immune scores, 480
genes were upregulated and 127 genes downregulated
in the high score than the low score group (fold change
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>1.5, p < 0.05). Similarly, for the high and low groups mentioning  that the  differentially  expressed

based on stromal scores, 380 genes were upregulated genes(DEGs) extracted from the comparison of high vs.
and 25 genes were downregulated in the high score low immune scores groups covered the majority of
group (fold change >1.5, p < 0.05). Moreover, Venn genes extracted from the comparison based on stromal
diagrams (Figure 2C, D) showed that 374 genes were scores. Thus, we decided to focus on these DEGs for all
commonly upregulated in the high scores groups, and subsequent analysis in this manuscript (Figure 2,
25 genes were commonly downregulated. It is worth Supplementary Figure S1).
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Figure 1. Immune scores and stromal scores are associated with GBM subtypes and their overall survival. (A) Distribution of
immune scores of GBM subtypes. Box-plot shows that there is significant association between GBM subtypes and the level of immune
scores (n=417, p<0.001). (B) Distribution of stromal scores of GBM subtypes. Box-plot shows that there is significant association between
GBM subtypes and the level of stromal scores (n=417, p<0.001). (C) Distribution of immune scores for IDH1 mutant and IDH1 wildtype
GBM cases. Box-plot shows that there is no significant association between IDH1 mutation status and immune scores (n=417, p=0.2758).
(D) Distribution of stromal scores for IDH1 mutant and IDH1 wildtype GBM cases. Box-plot shows that there is no significant association
between GBM subtypes and the level of stromal scores (n=417, p=0.3077). (E) GBM cases were divided into two groups based on their
immune scores: the top half of 209 cases with higher immune scores and the bottom half of 208 cases with lower immune scores. As
shown in the Kaplan-Meier survival curve, median survival of the low score group is longer than high score group (442 days vs. 394 days),
as indicated by the log-rank test, p value is 0.0537. (F) Similarly, GBM cases were divided into two groups based on their stromal scores:
the top half of 209 cases and the bottom half of 208 cases. The median survival of the low score group is longer than the high score group
(442 days vs. 422 days), however, it is not statistically different as indicated by the log-rank test p= 0.1262.

WWwWw.aging-us.com 594 AGING



To outline the potential function of the DEGs, we
performed functional enrichment analysis of the 480

Immune scores

Supplementary Table S1) upregulated in high-immune
scores group. Top gene ontology (GO) terms identified
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Figure 2. Comparison of gene expression profile with immune scores and stromal scores in GBM. Heatmaps were
drawn based on the average linkage method and Pearson distance measurement method. Genes with higher expression are
shown in red, lower expression are shown in green, genes with same expression level are in black. (A) Heatmap of the DEGs of
immune scores of top half (high score) vs. bottom half (low score). p<0.05, fold change >1.5). (B) Heatmap of the DEGs of
stromal scores of top half (high score) vs. bottom half (low score). p<0.05, fold change >1.5). (C, D) Venn diagrams showing the
number of commonly upregulated (C) or downregulated (D) DEGs in stromal and immune score groups. (E, F, G) Top 10 GO
terms. False discovery rate (FDR) of GO analysis was acquired from DAVID functional annotation tool. p <0.05.
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included extracellular matrices, 1immune and
inflammatory response, and chemokine activities and
integrin binding (Figure 2E-G).

Correlation of expression of individual DEGs in
overall survival

To explore the potential roles of individual DEGs in
overall survival, we generated Kaplan-Meier survival
curves from TCGA database. Among the 480 DEGs
upregulated in the high-immune scores group, a total of
258 DEGs (Supplementary Table S2) were shown to
significantly predict poor overall survival in log-rank
test (p<0.05, selected genes are shown in Figure 3).

of

Protein-protein interactions

prognostic value

among genes

To better understand the interplay among the identified
DEGs, we obtained protein-protein interaction (PPI)
networks using the STRING tool. The network was
made up of 8 modules, which included 224 nodes and
1,282 edges. We selected the top three significant
modules for further analysis (Figure 4). For the
convenience of description, we named these modules
IL6, TIMP1, and TLR2 modules, respectively. In the
IL6 module (Figure 4A), 83 edges involving 26 nodes

>
w

were formed in the network, IL6, IL8, ITGB2, ICAMI,
CSFI1R, IL1B, and CD163 were the remarkable nodes,
as they had the most connections with other members of
the module. In the TIMP1 module (Figure 4B), TIMP1,
CCR5, CXCL12, SERPINE1, SERPINGI, C3ARI,
SRGN, and SERPINA3 had higher degree values. For
the TLR2 module (Figure 4C), several immune response
critical genes occupied the center of the module including
TLR2, CCL2, CCLS5, IGSF6, and CD14.

Functional enrichment analysis of genes of
prognostic value
Consistent with PPI network analysis, functional

enrichment clustering of these genes showed strong
association with immune response as well. A total of 30
GO terms of biological process, 12 GO terms of cellular
component, and 5 GO terms of molecular function were
identified to be significant (false discovery rate, or
FDR<0.05, -log FDR> 1.301). Top GO terms included
extracellular exosome and ECM (Figure 5A), immune/
inflammatory response, and chemotaxis (Figure 5B),
and integrin and proteoglycan binding (Figure 5C). In
addition, all the pathways that were yielded from the
Kyoto Encyclopedia of Genes and Genomes (KEGQG)
analysis (Figure 5D) were associated with immune
response.
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Figure 3. Correlation of expression of individual DEGs in overall survival in TCGA. Kaplan-Meier survival curves were
generated for selected DEGs extracted from the comparison of groups of high (red line) and low (blue line) gene expression.
p<0.05 in Log-rank test. OS, overall survival in days.
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Validation in the CGGA database

To find out whether the genes identified from the
TCGA database also are of prognostic significance in
additional GBM cases, we downloaded and analyzed
gene expression data of a cohort of 114 GBM cases
from CGGA, an independent glioma database. A total
of 44 genes were validated (Figure 6) to be significantly
linked to poor prognosis (Table 1), of which 21 genes
were of particular interest as they have not been
previously associated with poor outcomes in GBM
patients.

DISCUSSION

In the current work, we attempted to identify tumor
microenvironment related genes that contribute to GBM
overall survival in the TCGA database. In particular, by
comparing global gene expression in a large number of
cases with high vs. low immune scores, we extracted
258 genes involved in extracellular matrix and immune
response. Importantly, we were able to validate 44
genes in GBM patients from CGGA, a separate GBM
database (Figure 7).

First, we analyzed 480 differentially expressed genes
yielded from comparison of high vs. low immune scores
(or stromal scores) groups, and found that many of them
were involved in tumor microenvironment, as shown by
GO term analysis (Figure 2). This is consistent with
previous reports that the functions of immune cells and
ECM molecules are interrelated in building tumor
microenvironment in GBM [23-27].

Next, we performed overall survival analysis of these
480 genes and identified that 258 were associated with
poor outcomes in GBM patients. Moreover, we were
able to construct 8 protein-protein interaction modules
(Figure 4), all of which were related to immune/inflam-

mation response. Highly interrelated nodes in the
modules, including IL6, TIMP1, and TLR2, have been
reported to promote proliferation, angiogenesis,
migration, and invasiveness in GBM cell lines or patient
samples [28-34], indicating poor prognosis.

Finally, by cross validation with CGGA (Figure 6), an
independent cohort of 114 GBM patients, we identified
44 tumor microenvironment related genes that showed
significant correlation between gene expression and
prognosis (Table 1). Of the 44 genes identified, 23
genes (e.g., IL6, IL8, TIMP1, CCRS5, SREPINEI1, and
SREPINGT1) have been reported to be involved in GBM
pathogenesis or significant in predicting overall
survival, indicating that our big data-based analysis
using TCGA and CGGA cohorts has prognostic values.
The remaining 21 genes have not previously been
linked with GBM prognosis, and could serve as
potential biomarkers for GBM. These include
complement encoding genes C3AR1 and C5AR1, TNF
superfamily members TNFAIP2 and TNFAIP6,
interleukins IL1R2 and IL7R, ECM components
COL6A2 and PCOLCE, and cell adhesion molecules
ICAMI and ITGB2.

We are particularly interested in ITGB2 and ICAMI.
From the protein-protein interaction network, ITGB2

Figure 4. Top 3 PPI networks of IL6, TIMP1, and TLR2 modules. The color of a node in the PPI network reflects the log (FC) value of
the Z score of gene expression, and the size of node indicates the number of interacting proteins with the designated protein.
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and ICAMI1 are highly interconnected nodes (Figure 4).
ITGB2 encodes integrin subunit 2, which acts as a
cell’s mechanical anchor to the ECM. Interestingly,
single nucleotide polymorphisms of ITGB2 have been
shown to be associated with risk of glioma [35]. As an
immunoglobulin supergene family member, ICAMI is
shown to be critically involved in adhesion of cancer
cells to ECM [36], in particular, overexpression of
ICAMI correlates with increased tumor malignancy and
poor outcome in lung cancer [37], clear cell renal cell
carcinoma [38], and mouse GBM model [39].
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Significant progress has been made on the correlation of
overall survival with gene expression in GBMs. Many
of these experiments were done in animal tumor
models, in vitro tumor cell lines, or small cohorts of
patients’ tumor samples. However, the complexity of
GBM and GBM microenvironment demands more
comprehensive analysis consisting of larger cohorts.
Fortunately, the rapid development of whole-genome
sequencing has allowed high-throughput tumor
databases, including TCGA and CGGA (Chinese
Glioma Genome Atlas), to be developed and freely
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Figure 5. GO term and KEGG pathway analysis for DEGs significantly associated with overall survival. Top pathways with
FDR < 0.05, -log FDR >1.301 are shown: (A) biological process, (B) cellular component, (C) molecular function, and (D) KEGG pathway.

Table 1. Genes significant in GBM overall survival identified in both TCGA and CGGA.

Categories Gene symbols

Cell surface CD163, CD33, TREM1, THBD

Chemokines CCL2, CCL5,CCL18, CCL20, CCR5, CXCR4
Complements C1QA, C1QB, CFH, C3ARI1, C5AR1, VSIG4
Tumor necrosis factors TNFAIP2, TNFAIP6, TNFRSF1B
Interleukins IL1B, IL6, IL8, IL1R2, IL7R, IL13RA2
Toll-like receptors TLRI1, TLR2

Serpins SERPING1, SERPINE1

Extracellular matrices COL1A2, COL5A1, COL6A2,COL6A3, LAMBI, FNDC3B, SRGN
ECM enzymes TIMP1, CTSS, ADAMTS1, PCOLCE

Cell adhesion molecules CD44,1CAM1, ITGB2, THBS1

*Genes in bold have not been previously reported for their prognostic value in GBM patients.
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available to the research community. These resources
have provided a solid foundation for big data analysis of
large GBM cohorts [6-8, 40, 41].

The interplay of GBM and its tumor microenvironment
critically affects tumor evolution, which subsequently
impacts subtype classification, recurrence, drug
resistance, and the overall prognosis of patients.

Previous reports have provided elegant analysis on how
the activation of tumor-intrinsic genes shapes tumor
microenvironment [6]. In the current work, we focused
on genes characteristic of microenvironment, which in
turn affect the development of GBM and hence
contribute to patients’ overall survival. Our results may
provide additional data in decoding the complex
interaction of tumor and tumor environment in GBM.
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Figure 6. Validation of correlation of DEGs extracted from TCGA database with overall survival in CGGA cohort. Kaplan-
Meier survival curves were generated for selected DEGs extracted from the comparison of groups of high (red line) and low (blue line)

gene expression. p<0.05 in Log-rank test. OS, overall survival in days.
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In summary, from functional enrichment analysis of
TCGA database applied by ESTIMATE algorithm-
based immune scores, we extracted a list of tumor
microenvironment related genes. These genes were
validated in an independent GBM cohort and that could
be useful for outlining the prognosis of GBM patients.
Some of the previously ignored genes have the potential
to become additional biomarkers for GBM. In addition,
it would be extremely interesting to test if this new set
of genes, when combined, provide a strong predictor of
survival than individual genes. Finally, further
investigation of these genes could lead to novel insights
into the potential association of tumor microenvironment
with GBM prognosis in a comprehensive manner.
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MATERIALS AND METHODS
Database

Level 3 gene expression profile (level 3 data) for GBM
patients was obtained from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/), RNA expression
for Glioblastoma Multiforme using Affymetrix HT-HG-
UI133A (May 14, 2015). Clinical data such as gender,
age, histological type, survival and outcome were also
downloaded from TCGA data portal. Immune scores
and stromal scores were calculated by applying the
ESTIMATE algorithm to the downloaded database [14].
For validation, Level 3 gene expression profiles for
GBM patients were obtained from the Chinese Glioma
Genome Atlas (CGGA) data portal
(http://www.cgga.org.cn/), and the RNA sequencing of
Diffuse Gliomas using Illumina Hiseq 2000 (Jan 1,2013
and Oct 14 2016). Clinical data of survival and outcome
were also downloaded from the CGGA data portal.

Identification of differentially expressed genes
(DEGsS)

Data analysis was performed using package limma [42].
Fold change > 1.5 and adj. p < 0.05 were set as the cut-
offs to screen for differentially expressed genes (DEGs).

Heatmaps and clustering analysis

Heatmaps and clustering were generated using an open
source web tool ClustVis [43].

Construction of PPI network

The protein-protein interaction (PPI) network was
retrieved from STRING database [44] and reconstructed
via Cytoscape software [45]. Only individual networks
with 10 or more nodes were included for further
analysis. Networks with fewer than 10 nodes were
excluded. The connectivity degree of each node of the
network was calculated. Molecular COmplex DEtection
(MCODE) was then used to find clusters based on
topology to locate densely connected regions.

Overall survival curve

Kaplan-Meier plots were generated to illustrate the
relationship between patients’ overall survival and gene
expression levels of DEGs. The relationship was tested
by log-rank test.

Enrichment analysis of DEGs

Functional enrichment analysis of DEGs was performed
by DAVID (The Database for Annotation, Visualization

and Integrated Discovery) [46] to identify GO
categories by their biological processes (BP), molecular
functions (MF), or cellular components (CC). The
DAVID database was also used to perform pathway
enrichment analysis with reference from KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways. False
discovery rate (FDR) < 0.05 was used as the cut-off.
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SUPPLEMENTARY MATERIAL

Please browse the Full Text version to see:

Supplementary Table 1. Upregulated DEGs extracted
from comparison of high vs. low immune score groups.
Supplementary Table 2. DEGs whose expression is
significant in overall survival of GBM.

A Immune signature genes Immune scores upregulated genes

B Stromal signature genes Stromal scores upregulated genes

Supplementary Figure 1. Venn diagram of signature genes in ESTIMATE algorithm and the
upregulated DEGs in immune scores group. (A) Venn diagram of signature genes and upregulated
DEGs in the high vs. low immune scores group. (B) Venn diagram of stromal scores signature genes in
ESTIMATE algorithm and the upregulated DEGs in the high vs. low stromal scores group. Purple: immune
scores signature genes; yellow: upregulated DEGs in the high vs. low immune scores group.
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Supplementary Figure 2. Correlation of expression of individual DEGs in overall survival in TCGA. Kaplan-Meier survival
curves were generated for selected DEGs extracted from the comparison of groups of high (red line) and low (blue line) gene expression.
p<0.05 in Log-rank test. OS, overall survival in days.
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