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ABSTRACT

The DNA methylation age, a good reflection of human aging process, has been used to predict chronological age
of adults and newborns. However, the prediction model for children and adolescents was absent. In this study,
we aimed to generate a prediction model of chronological age for children and adolescents aged 6-17 years by
using age-specific DNA methylation patterns from 180 Chinese twin individuals. We identified 6,350 age-related
CpGs from the epigenome-wide association analysis (N=179). 116 known age-related sites in children were
confirmed. 83 novel CpGs were selected as predictors from all age-related loci by elastic net regression and
they could accurately predict the chronological age of the pediatric population, with a correlation of 0.99 and
the error of 0.23 years in the training dataset (N=90). The predictive accuracy in the testing dataset (N=89) was
high (correlation=0.93, error=0.62 years). Among the 83 predictors, 49 sites were novel probes not existing on
the lllumina 450K BeadChip. The top two predictors of age were on the PRKCB and REG4 genes, which are
associated with diabetes and cancer, respectively. Our results suggest that the chronological age can be
accurately predicted among children and adolescents aged 6-17 years by 83 newly identified CpG sites.

INTRODUCTION

Epigenetics refers to the molecular mechanisms
regulating gene expression without changing the DNA
sequence [1]. The mostly studied epigenetic marker is
DNA methylation, the presence of methyl groups at
CpG dinucleotides [2]. Previous evidence suggested
that global levels of DNA methylation increased over
the first few years of life [3] and then decreased in late
adulthood [4, 5], suggesting that epigenetic modifica-
tions might play a vital role in the human’s aging
process [6, 7].

A growing body of evidence confirmed the presence of
age-related epigenome-wide DNA methylation patterns

[8, 9]. It has been shown that the methylation levels at
specific age-related CpG sites represent stable and
reproducible biomarkers of age. Several studies have
identified age-related CpG sites in blood, but the results
are inconsistent [9-16]. The age prediction model using
a group of age-specific CpG sites has been widely used
in adults and newborns for age prediction [14, 17].
However, the age prediction model for children and
adolescents using DNA methylation biomarkers was
scarce [9].

It has been revealed that age-related DNA methylation
changed more rapidly during childhood and
adolescence. DNA methylation studies should be
matched carefully to age [3, 18]. It is unknown whether
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the accuracy and precision of age prediction model in
adults would be affected when used among children and
adolescents. The DNA methylation age (DNAm age)
has been proved to be associated with cancer and
mortality [19, 20]. The accurate age prediction among
children could potentially be applied to understand the
development mechanism of children and to predict the
risk of age-related phenotypes and diseases in
adulthood. Therefore, in the present study, we aimed to
develop an age prediction model for children and
adolescents using DNA methylation data of over 850,000
CpG sites from the Chinese National Twin Registry.

RESULTS

The basic characteristics of the participants are shown
in Table 1. In the present study, 179 samples and
817,471 CpG sites passed quality control (QC) in the
training and testing dataset (N=90 and N=89 respec-
tively). In total, the study consisted of 101 male and 78
female singletons with an age range from 6 to 17 years
(mean 10.7). The quality control results are provided in
Figure S1 and Figure S2 in supplements.

Identification of age-related DNAm sites by EWAS

To determine the age-related DNA methylation sites,
we conducted an epigenome-wide association study

(EWAS) and fitted a linear mixed-effects regression
model, adjusting for sex and surrogate variables as fixed
effects and family ID as a random effect. Overall, 6,350
sites of them (0.78%) were significantly related with
chronological age in the EWAS (FDR < 0.05, Figure 1)
and they were then selected for the subsequent
prediction modeling. 116 out of the 6,350 CpG sites
were confirmed given the public accessible dataset
"GSE27097". It can be downloaded from the PubMed
(https: //www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE27097), which have focused on the age-related
DNA methylation sites by Illumina 27K Beadchip
among children aged 3 to 17 years old. Detailed
accounts of the individual aging markers and their
genomic features are presented in the Table S1 and
Table S2.

Predicting DNA methylation age in training data

In the training dataset, elastic net regression was
performed, and it finally screened a set of 83 CpG sites
(Table S3) predictive of age from the 6,350 age-related
CpG sites. The correlation between the resulting
predictor (DNAm age) and chronological age was 0.99
(P<2.20E-16; Figure 2a). The error (median absolute
difference) of chronological age was only 0.23 years. In
the sensitive analysis, we further added sex as covariate
in elastic net regression model.
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Figure 1. Manhattan plot of epigenome-wide DNA methylation analysis and chronological age. The red horizontal line
indicating the P values reached the significant level of FDR < 0.05. The epigenome-wide analysis identified 6,350 CpG sites related with age.
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Table 1. The number, gender and zygosity distribution of subjects by age.

Age,y No. of all Boys, No. (%) MZ, No. (%)
6 3 0 (0) 3(100)
7 20 13 (65) 8 (40)
8 14 8(57) 8 (57)
9 24 12 (50) 16 (67)
10 30 16 (53) 14 (47)
11 20 16 (80) 10 (50)
12 28 14 (50) 12 (43)
13 10 4 (40) 6 (60)
14 20 14 (70) 8 (40)
15 2 1 (50) 0(0)
16 6 3(50) 4 (67)
17 2 0(0) 2 (100)

Total 179 101 (56) 91 (51)

a. Age and sex were self-reported by subjects and their parents
b. The zygosity was determined from gene detection
c. The mean £ SD of age: 10.7+2.5 years; MZ: monozygotic twin

The variable of sex was excluded from the model
automatically, and the final predictive model was stable
with 83 CpG sites above.

Among the age predictive features, 21 CpG sites were
positively correlated with age while 62 CpG sites were
negatively correlated with age (Table S3). Nearly half
markers in the model lay within or near genes with
known functions, such as diabetes, cancer, neurons
function, oxidative stress, DNA damage, and other age-
related conditions. 49 of the 83 age-predictive CpG sites

were newly identified probes not existing on the 450K
BeadChip array. The top 20 CpG sites with the largest
predicted effect values were presented in Table 2. All
the absolute coefficient values of the upper most 20
sites were over two, and all of them located on autoso-
mal chromosomes. The largest coefficient effect was
observed for ¢g00497086 (coefficient value=10.0)
located in the body of the PRKCB (protein kinase C
beta) gene on chromosome 16 and in the open sea. It
was a new probe on the 850K Beadchip and related to
familial Meniere's disease and diabetes.
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Figure 2a. Correlation between Chronological age and DNAm age. In the
training data, chronological age and DNAm age were highly correlated in the training

dataset: r =0.99, median error = 0.23 years.
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All, err= 0.62 cor=0.93, p=1.4e-39
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Figure 2b. Correlation between Chronological age and DNAm age. DNAm
age were also highly correlated with chronological age in the testing dataset:
r=0.93, median error = 0.64 years. Solid line = regression line.

Table 2. The top 20 chronological age predictive CpGs in the model.

Probename CHR Gene Name  Gene Group Relation to Coefficient Methylation f
CpG Island Values Values, means
(SD)
cg00497086 16 PRKCB Body Open Sea 10.0 0.79 (0.02)
cg01231611 1 REG4 TSS200 Open Sea -9.7 0.86 (0.02)
cg06072257 1 - Other Open Sea -8.6 0.68 (0.02)
cg21242642 1 - Other Open Sea 6.2 0.16 (0.02)
cg06711259* 22 JOSDI 1stExon N_Shore -4.0 0.80 (0.02)
cg00303541* 3 GRM2 5'UTR Island 3.9 0.26 (0.04)
cg03579624* 3 - Other N_Shore 3.6 0.28 (0.05)
cg04955914* 2 CNPPDI Body N_Shore -3.5 0.58 (0.02)
cg27406001 10 - Other Open Sea -3.5 0.57 (0.05)
cgl10816468 6 - Other Open Sea -3.1 0.64 (0.04)
cg13993467 3 CNTN4 Body Open Sea -2.9 0.64 (0.04)
cg24388008 12 - Other Open Sea -2.7 0.10 (0.02)
cg02772754 22 MEDIS5 Body Open Sea 2.6 0.51 (0.04)
cg07219494* 5 - Other S_Shelf 2.5 0.71 (0.06)
cgl3274149* 9 TOR4A4 3'UTR Island 2.4 0.35 (0.05)
cg12642568 1 CALMLG6 5'UTR N_Shelf -2.4 0.69 (0.02)
cgl3612317* 10 KIF5B TSS1500 S_Shore -2.1 0.60 (0.04)
cg07465899* 4 - Other N_Shore 2.1 0.60 (0.02)
cg02478540 4 - Other Open Sea -2.0 0.20 (0.02)
cgl6119613* 12 - Other N_Shelf -2.0 0.40 (0.03)

“n

means not on the known gene.
means also on the Illlumina 450K Beadchip.

uxn
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The predictive accuracy and validation of the model

The predictive accuracy of the model was tested in 89
co-twin singletons. In the testing dataset, we calculated
the DNAm age using the 83 CpGs from the discovery
stage, and found that the DNAm age was highly
consistent with chronological age, with a correlation of
0.93 and an error of 0.62 years (P< 2.20E-16; Figure 2b).

We further replicated the 110 CpG sites observed in the
shrunken age prediction model of Horvath [15, 21]. None
of them intersected with our 83 DNAm age predictors.
Besides, there were only 106 predictors still remaining on
the 850K Beadchip. It was unable to achieve similar
predictive power using those probes which had a
moderate correlation but quite high error with chrono-
logical age (correlation = 0.66, error=11.44 years,
P<2.2E-16). We did not evaluate the Hannum predictor
because some studies suggested it was less accurate than
the Horvath age predictor among children [17].

The genomic distribution of age-related CpG sites

The comparison of genomic distribution among the 83
age-predictive features, chronological age-related CpG
sites, and all the probes passed QC located on the 850K
BeadChip array was shown in Figure 3. With regard to
gene structure, we found both the 83 and the 6,350 sites
were enriched in gene body regions as all Illumina QC
probes (all over 30%), but they accounted for a smaller
proportion than all QC probes (P;=0.23, P,=0.12,
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Pearson’s Chi-squared test) (Figure 3a). In addition,
both the age-predictive CpG sites and the chronological
age-related CpG sites spread over the CpG island
shores. Although CpG islands were enriched on the
850K array (18.8% of all probes are in CpG islands);
only 9.2% of our 6,350 age-related CpGs and 8.4% of
the 83 DNAm age predictors were located in CpG
islands (both with P <0.05 in Pearson’s Chi-squared
test) (Figure 3b). The enrichment GO terms were shown
in Table S4. The biological progress included axon
guidance, neuron projection guidance and neuron cell-
cell adhesion (FDR>0.05).

DISCUSSION

In this study, we identified 6,350 age-related CpG sites
from the EWAS among 817,471 QC probes in 179
children (aged 6 to 17 years). In the training dataset, we
finally selected 83 novel CpG sites predictive of age
from all those age-related CpG sites by elastic net
regression. Chronological age of the pediatric popula-
tion could be accurately predicted by the DNA methy-
lation values of the 83 CpG sites, which provided an
accurate prediction of age with a correlation of 0.99 and
an error of 0.23 years for the training dataset, with a
robust correlation of 0.93 and an error of 0.62 years in
the testing dataset.

We retrieved little literature describing the age-related
DNA methylation CpG sites in children, and a proper
model for pediatric age prediction was lacked [9].
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Figure 3. The genomic distribution of age-associated sites compared with all 850K probes passed QC. (a)The gene region
distribution: frequency of age-related CpG sites according to the gene location; (b) The CpG islands distribution: frequency of age-related
CpG sites according to the proximity to a CpG island. The ordinate represents the % CpG sites. The genomic distributions among the 83
age predictive sites, 6,350 chronological age-related CpG sites, and all the probes passed QC located on the 850 K BeadChip array were
different. The annotation to be inside a CpG island was significantly over-represented on the 850k array (18.8%) compared to the 6,350
age-related CpGs and the 83 DNAm age predictors (9.2%, 8.4%), both with P <0.05. There was no difference in the distribution of the
CpG sites with regard to other types of genomic distribution. The blue bar represents the all the probes passed QC located on the 850 K
BeadChip array; the orange bar represents the 6,350 age-related CpGs; and the grey bar represents the 83 DNAm age predictors.

WwWw.aging-us.com 1019

AGING



Alisch et al. [18] found significant age-associated
changes in DNAm at 2078 loci from 398 boys, aged 3-
17 years in peripheral blood DNA, accounting for only
1/3 of our findings. 116 CpG sites were confirmed, and
83 DNAm age predictors were newly identified in the
present study. However, our study did not confirm the
110 CpG sites observed in the shrunken prediction
model of Horvath [15, 21], suggesting that the CpG
sites predictive of age in children are different from
those age predictors aimed at adults since their
correlations are particular to the unique developmental
changes of childhood and adolescence [9].

The results represented the highest-resolution collection
of DNA methylation data produced for the study of
aging in children and adolescents, providing an
unprecedented chance to understand the role of DNA
methylation in the aging process. The accuracy of this
model was similar to a study about the epigenetic clock
of gesta-tional age, in which correlations of 0.99 for the
training dataset (error=0.35 weeks) and 0.91 for the
testing dataset (error=1.24 weeks) were reported for 148
CpG predictors. Moreover, it seemed that the predictive
power of DNA methylation was larger at younger ages.
Since the prediction errors were less than three years
among Horvath's subjects aged from 0 to 100 years and
even much larger (error=3.88 years) among Hannum’s
study participants aged from 19 to 101 years[14, 15].

The age-predicted CpG sites located in genes were
related to biological adhesion and cellular progress
according to the gene ontology enrichment analysis, but
none of them reached the significant level. The top two
predictors of age (cg00497086 and cg01231611)
belonged to PRKCB and REG4 genes. These two genes
are associated with diabetes and cancer, respectively. In
fact, many studies have confirmed the -correlation
between DNA methylation and cancer or chronic
diseases, and some of the disease-related methylation
sites were associated with age [22-25]. It suggested that
the DNA methylation level of critical sites might be a
potential mechanism for aging and disease. However,
the mechanism of association between age and methyl-
tion needs further investigations.

The mechanisms that drive DNA methylation to change
with age are not well understood. Previous evidence
suggests that both environmental and stochastic factors
are associated with aging methylome. It is possible that
environmental factors may activate cellular programs
associated with changes in the epigenome over time,
which at least are partly heritable through cell divisions
[26, 27]. The accumulation of these external exposures
may contribute to DNAm change with age. It is worth
noting that spontaneous changes may occur ascribe to
disruption of DNA methyl groups or errors during DNA

replication, leading to fundamentally unpredictable
differences in the methylome [28]. These mechanisms
suggests that quantitative measurements of DNAm may
identify factors involved in changed rates of aging.

Several strengths of the present study merit
consideration. Firstly, the identified age predictive CpG
sites were specially performed from pediatric popu-
lations aged from 6 to 17 years old. Children and
adolescents suffer from less confounding factors in the
aspect of medication or smoking, which are more
common for adults. To date, the age prediction model
for children was sparse [9], and it was inappropriate to
directly use the adult DNAm age predictors in child-
hood. To the best of our knowledge, this was the first
study that uncovered new specific age-related DNA
methylation sites for age prediction. Our findings
improved the accuracy of the model among children
whose age-related DNA methylation in blood changed
more rapidly. Secondly, the present study used the
[llumina 850K Beadchip which covers more DNA
metylation sites than the Illumina 27K or 450K
Beadchip used in previous studies. With the advance of
microarray and next-generation sequencing technolo-
gies, the 850K Beadchip has the entire benefits of its
predecessor (450K Beadchip) and double the amount of
probes [29, 30]. Thus, it provides us a more useful
method to discover novel age-related DNA methylation
patterns. In this study, apart from 2,686 age-related
CpG sites that existed on 450K Beadchip, we newly
identified over 3,000 novel loci using the 850K
Beadchip. Finally yet importantly, we did this research
using our first-hand data in Chinese children, instead of
datasets on the open database. It was convenient for us
to carry out stringent quality control for both samples
and probes. Moreover, it added our information and
achievement to the global DNA methylation studies and
age prediction exploration.

However, there were still some limitations. Firstly, we
derived DNA from blood tissues. Even though DNA
methylation was known to be tissue and cell specific, it
has been revealed that aging was associated with similar
methylation pattern across multiple human tissues since
aging was a general process affecting all cells [15].
Blood would be a more available tissue in large epide-
miological researches. Several studies showed that
DNA methylation measured in whole blood could be a
marker for less accessible tissues that were directly
involved in disease [31-33]. The second limitation was
that external replication was unable to perform.
Although methylation studies have increased gradually
with many open data on GEO database, methylation
data in children remain relatively scarce. What’s more,
the data available currently was mainly based on the
27K or 450K Beadchip. Most of our identified probes
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via 850K Beadchip did not exist on those arrays.
However, we randomly selected one singleton of a twin
pair for training model and his co-twin for validation.
As twins share 50%-100% of the genetic background,
they can be considered replicates of similar develop-
mental and aging trial [10]. Nevertheless, the genera-
lizability of the results still need to be validated in more
study populations with different characteristics.

In summary, our results suggest that the chronological
age can be accurately predicted between 6 and 17 years
old using the 83 CpG sites. As a biomarker, DNA
methylation age has potential applications in research
studies of development mechanism, clinical estimation,
disease prediction and medicolegal expertise among
pediatric population. Further studies with the 850K
methylation array are required to test the generalization
of this model and help deeply understand the mecha-
nisms of human aging.

METHODS
Study participants and design

The data in this study were derived from the Chinese
National Twin Registry (CNTR) [34]. We used whole
blood samples to assess for epigenome-wide
methylation from 180 school age twin individuals (44
monozygotic and 46 dizygotic twin pairs) aged from 6
to 17 years. They were recruited from Beijing, China in
2016, based on the Primary and Secondary School
Health Care Center and Disease Control and Prevention
Center. The chronological age was measured using the
date of birth provided by the parents. In total, 179 of
180 blood samples passed the quality control and
retained for the following model training and testing.
Written informed consent has been obtained from all
participants. The study has been conducted according to
principles expressed in the Declaration of Helsinki.
Biomedical Ethics Committee at Peking University,
Beijing, China approved the study protocol
(IRB00001052-15029).

The data were divided into two sets: one of the twins
were randomly selected to the discovery group for
model training, and the other one of the twins were used
for replication. It could help to grasp the characteristics
of the model with independent samples and to minimize
the effects of data discrepancies by ensuring the
similarity between the training and the testing datasets.

Infinium MethylationEPIC BeadChip data
The DNA was extracted from fasting venous blood

samples drawn by nurses in the morning (8:00 to 10:30
am). In both the discovery and replication groups,

genomic DNA from whole blood was bisulfite treated
using the ZYMO EZ DNA Methylation-Gold kit
(ZYMO Research Corp, Irvine, CA, USA). Then DNA
methylation fraction values were measured with the
[llumina  Infinium  MethylationEPIC ~ BeadChip
(Illumina, San Diego, USA) at the EMTD Institute of
Biotechnology. This procedure used bisulfate-treated
DNA and two site-specific probes for each marker,
which bound to the associated methylated and
unmethylated sequences.

DNA methylation quality control and processing

The raw intensity files (idat) were imported into the R
software and were transformed into [ values (range
from 0 to 1) using R package minfi [35]. The B values
were calculated from the intensity ratio of the
methylated signals over the total (methylated and
unmethylated) signals for each site, representing the
percentage of methylation at a given cytosine for an
individual across his blood cells.

Then we performed sample-level and probe-level
quality control for filtering as follows. All samples
passed the Illumina quality control (Figure S1 QC plot
in supplements), and one sample was deleted according
to the Multiple Dimension Scale (Figure S2 MDS plot
in supplements). Then samples having 1% of sites with
a detection p-value greater than 0.01 were removed
(zero sample). Sites having 1% of samples with a
detection p-value greater than 0.01 (4019 sites) or sites
with beadcounts < 3 in 5% of samples (1499 sites) were
removed. Additionally, since probe binding might be
affected by SNPs in the binding area, sites containing
SNPs or with a minor allele frequency (MAF) of at least
5% were also excluded from the data set [36]. At last,
817,471 probes passing quality control in all datasets
were included.

In a further step, DASEN was applied to normalize the
distribution of Infll and InfIl probes together, using R
package wateRmelon [37].

Statistical analyses

Deriving age-related DNAm sites in epigenome-wide
analysis

For the first step of modeling, we conducted
epigenome-wide association scans (EWAS) to select
age-related CpG sites across the EPIC (850K) array. we
fitted a linear mixed-effects model [38] in R packages
nlme, regressing methylation levels on the chrono-
logical age at each CpG sites of the individuals. The
model adjusted for sex and surrogate variables [39] as
fixed effects and family ID as a random effect to make
sure the independent of twin individuals. The surrogate
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variable analysis (SVA) has been recommend as a
stable way to correct for whole blood cellular
heterogeneity in genome-wide epigenetic studies [40,
41]. Tt can also adjust other potential confounding
factors (genetic, environmental or technical) to get
accurate results and can increase the study
reproducibility [42].

Elastic net regression and data training

Then the chosen sites were kept as features for the
subsequent model training of age prediction, based on
the elastic net algorithm implemented in the glmnet
package in R [43, 44] in the training dataset (N=90).
The elastic net regression is a penalized regression
model that could explore a large number of CpG sites to
keep the best variable set in predicting of age. In
epigenetic applications, there are a lot of correlations
among the CpG sites. The ridge regression can limit the
coefficient size, but it usually encourages coefficients of
highly correlated variables to be averaged. The lasso
can make the model more interpretable but it is usually
indifferent to the choice among the correlated variable
sets. The elastic net regression is a combination of
traditional lasso and ridge regression methods that could
avoid too complex models and thus prevent over-fitting.
It is ideal for building this model under conditions
where the number of features greatly outweighs the
number of samples, particularly for genetic data. The
coefficients are also as interpretable as those in the
general linear regression model [45].

In this study, the elastic net mixing parameter alpha was
set to 0.5 allowing for the equal contribution of the
lasso and ridge methods. The parameter lambda was
chosen by a 10-fold cross-validation.We did not include
extra covariates other than the methylation of age-
related CpG sites in the analysis, consistent with the
development of the DNAm age predictor by Horvath
and Hannum [14, 15].

Age prediction and validation

The CpG sites selected from the regression and their
training coefficient values were used to fit a linear
model to calculate predicted values of age, marked as
DNAm age. The prediction accuracy of this model was
assessed by the correlation coefficients of linear
association between DNAm age and chronological age.
This prediction model was subsequently validated in the
test dataset of 89 samples.

Genomic distribution and functional classification of
probes related to aging

To annotate the location of the selected DNAm age
predictors or age related CpG sites, and to compare their
distribution with those probes on the 850K Beadchip
which passed the QC, we used the manufacturer

supplied annotation data MethylationEPIC v-1-0 B2.
We also used the online software Gorilla (http://cbl-
gorilla.cs.technion.ac.il/) to conduct the gene ontology
enrichment analysis.

Sensitive analysis

As epigenetic aging rates have been suggested to be
associated with sex [46], we conducted sensitive analysis
by adding gender to the elastic net regression model.

To correct for multiple comparisons, a epigenome-wide
significance level of the false discovery rate (FDR) <
0.05 was used and determined according to the
Benjamini & Hochberg method [47].
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Please browse the Full Text version to see the data of
Supplementary Tables related to this manuscript.
Table S1. 6,350 age-related CpGsites with annotation

Table S2. 116 overlapped age predictive CpG sites
between GSE27097 data and this study in children and
adolescents

Table S3. 83 predictive sites with annotation

Table S4. The gene ontology enrichment analysis
results of 83 age predicted CpG sites (P<107)
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Figure S1. DNA methylation detection quality control
report plot in 180 subjects.

Figure S2. Multiple Dimension Scale (MDS) in 180 subjects.
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