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INTRODUCTION 
 
Fluorine is one of the essential trace elements for 
human health, and is widely used as a cofactor in 
medicine, e.g., anesthetics, antibiotics, anti-cancer and 
anti-inflammatory agents, and psychopharmaceuticals 
[1, 2]. However, excessive fluoride intake can cause 
tissue damage and lead to multiple organ dysfunction 

[3, 4], which depends not only on the concentration and 
exposed duration [5], but also on the absorption 
capacity, age, and nutritional status of the individual 
[6]. It has been demonstrated that fluoride can induce 
skeletal and non-skeletal fluorosis [4, 7-9]. We have 
also confirmed that sodium fluoride (NaF) inhibits cell 
proliferation and induces cell apoptosis in splenic 
lymphocytes from mice in vivo and in vitro [10-14], and 
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ABSTRACT 
 
Fluoride is known to impair organism’s development and function via adverse effects, and autophagy plays a 
regulation role in human or animal health and disease. At present, there are no reports focused on fluoride-
induced autophagy in the animal and human spleen. The objective of this study was to investigate sodium 
fluoride (NaF)-induced splenocyte autophagy and the potential mechanism via regulation of p-mTOR in growing 
mice by using the methods of transmission electron microscopy (TEM), immunohistochemistry (IHC), 
quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. A total of 240 ICR mice were 
equally allocated into four groups with intragastric administration of distilled water in the control group and 12, 
24, 48 mg/kg NaF solution in the experimental groups for 42 days. Results revealed that NaF increased 
autophagosomes or autolysosomes in spleen. Simultaneously, the autophagy marker LC3 brown punctate 
staining was increased with NaF dosage increase. On the other hand, NaF caused inhibition of mTOR activity, 
which was characterized by down-regulation of PI3K, Akt and mTOR mRNA and protein expression levels. And 
the suppression of mTOR activity in turn resulted in the significantly increased of ULK1 and Atg13 expression 
levels. Concurrently, NaF increased the levels of mRNA and protein expression of autophagy markers LC3, 
Beclin1, Atg16L1, Atg12, Atg5 and decreased the mRNA and protein expression levels of p62. The above-
mentioned findings verify that NaF induces autophagy via mTOR signaling pathway. The inhibition of mTOR 
activity and alteration of autophagy-related genes and proteins are the potential molecular mechanism of NaF-
induced splenocyte autophagy.  
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causes blood immunotoxicity from mice[15]. Other 
studies have also shown the fluoride-caused 
cytotoxicity, apoptosis and DNA damage in human and 
animals [16-19].  
 
Autophagy is a degradative process by which 
cytoplasmic constituents of cells are engulfed within a 
cytoplasmic vacuole and delivered to the lysosome for 
degradation [20]. Autophagy plays key roles in cellular 
homeostasis during embryonic development, postnatal 
cell survival, and death [21]. Moreover, autophagy can 
be induced by various stress stimuli, such as oxidative 
stress and environmental factors [22, 23]. Fluoride, as 
an environmental and dietary factor, had been reported 
to induce oxidative stress [24] and endoplasmic 
reticulum stress[14] in the spleen. Several studies have 
shown that fluoride activates autophagy via diverse 
signaling [25-27] in different cell lines [26, 28, 29], and 
fluoride exposure is associated with autophagy and 
autophagy exerts its miscellaneous function to protect 
or impair organism [30, 31]. However, the molecular 
mechanism of autophagy induced by fluoride in spleen 
is still poorly understood. Also, there are no reports 

focused on fluoride-induced autophagy in the animal 
and human spleen at present.  
 
In this study, mice were used to explore how sodium 
fluoride (NaF) induced splenic autophagy. And we 
demonstrated that NaF changed genes and proteins 
expressions of autophagy markers, including Beclin1, 
autophagy-related protein (Atg) :16-like1(Atg16L1), 12 
(Atg12), 5 (Atg5), microtubuleassociatedprotein1 light 
chain 3 (LC3) and p62 (SQSTM1) and increased 
numbers of autophagosomes or autolysosomes, and 
LC3 brown punctate staining in spleen by transmission 
electron microscopy (TEM) and by immunohisto-
chemistry (IHC), respectively. 
 
Further, the critical molecular regulator genes, including 
phosphorylations of mammalian targets of rapamycin 
(p-mTOR), phosphorylations of unc-51 like kinase 1(p-
ULK1), Atg13, phosphatidylinositol 3-kinase (PI3K) 
and protein kinase B, PKB (Akt) in spleen were 
investigated to elucidate the association between 
fluoride-induced autophagy and the regulation of 
mTOR phosphorylation. The results may provide new 

 
 

Figure 1. The ultrastructure of spleen tissue by transmission electron microscopy (TEM) at 42 days of the experiment.  
The yellow arrows represent autophagosome or autolysosome. (A) Control group; (B) 12 mg/kg group; (C) 24 mg/kg group; (D) 48 
mg/kg group. 
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insights for further understanding the role of autophagy 
in fluoride-induced splenic damage and toxicity.  
 
RESULTS 
 
Effects of NaF on morphological changes in mice 
spleen  
 
Detection of autophagosomes and autolysosome in 
spleen 
 
The splenic ultrastructure determined by TEM (Figure1) 
demonstrated that numbers of autophagosomes or 
autolysosomes were distinctly increased in NaF-treated 
groups when compared to the control group at 42 days 
of the experiment (Figure 1B-1D).  
 
Detection of autophagy marker LC3 in spleen  
 
Immunohistochemistry for LC3 was showed in Figures 
2 and 3. In control groups, there was no punctate 
staining (Figures 2A and 3A). In NaF-treatment groups, 
the numbers of brown punctate staining were obviously 
increased, especially at 42 days of the experiment 
(Figures 2B-2D and 3B-3D).  
 
Effects of NaF on autophagy markers mRNA and 
protein expression in spleen 
 
Changes of mRNA and protein expression levels of 
LC3, p62 and Beclin1 in spleen 
 
The mRNA and protein levels of autophagy markers, 
e.g LC3, Beclin1, and p62 were examined by qRT-PCR 
and WB (Figures 4-6).  
 
A significantly increase in the LC3 mRNA expression 
levels were noted in splenocytes of the 24 and 48 mg/kg 
groups (P<0.05 or p<0.01) at 21 and 42 days of the 
experiment (Figure 4A). The ratio of LC3II/LC3I 
protein expression (Figure 4B-4D) was increased 
significantly in 24 and 48 mg/kg groups (P<0.05) at 21 
days of age, and in the three NaF-treated groups 
(P<0.01) at 42 days of the experiment when compared 
to control group.  
 
The p62 mRNA expression levels were significantly 
declined (P<0.05 or P<0.01) in the 12, 24 and 48 mg/kg 
groups (Figure 5A), and its protein expression levels 
were significantly decreased (P<0.05 or P<0.01) in 24 
and 48 mg/kg groups (Figure 5B-5D) at 21 days and 42 
days of the experiment when compared to the control 
group. 
 
Figure 6A-6D showed the mRNA and protein 
expression levels of Beclin1. From Figure 6A, the 

Beclin1 mRNA expression levels were higher (P<0.05 
or P<0.01) in the 12, 24 and 48 mg/kg groups than those 
in the control group from 21 to 42 days of the 
experiment. Similarly, Beclin1 protein expression levels 
were markedly increased (P<0.05 or P<0.01) in the 12, 
24 and 48 mg/kg groups (Figure 6B-6D). 
 
Changes of mRNA and protein expression levels of 
Atg12, Atg5 and Atg16L1 in spleen 
 
Next, we analyzed other autophagy markers including 
Atg12, Atg5 and Atg16L1, which also serve as a critical 
node in the autophagy signaling pathway (Figures 7-9).  
 
We observed higher mRNA expression levels of Atg12 
and Atg5 in the 12, 24 and 48 mg/kg groups at We 
observed higher mRNA expression levels of Atg12 and 
Atg5 in 21 and 42 days of the experiment than those in 
the control group (P<0.01 or P<0.05; Figures 7A and 
8A). Additionally, Atg12-Atg5 complex protein 
expression levels in the three NaF-treated groups were 
significantly increased (P<0.01) at both 21 and 42 days 
of age in comparison to the control group (Figure 7B-
7D). Similarly, NaF treatment markedly increased 
(P<0.01) the Atg5 protein expression levels in the 24 
and 48 mg/kg at 21 days of the experiment, and in the 
12, 24 and 48 mg/kg groups at 42 days of the 
experiment when compared to the control group (Figure 
8B-8D).  
 
In Figure 9A, the Atg16L1mRNA expression levels 
were significantly increased (P<0.05 or P<0.01) in the 
12, 24 and 48 mg/kg groups from 21 to 42 days of the 
experiment when compared to the control group. 
Moreover, Atg16L1 protein expression levels were 
higher (P<0.01) in the 24 and 48 mg/kg groups at 21 
days of the experiment, and in the 12, 24 and 48 mg/kg 
groups at 42 day of the experiment than those in the 
control group (Figure 9B-9D).  
 
Effects of NaF on autophagy pathway regulators 
mRNA and protein expression in spleen 
 
Changes of mRNA and protein expression levels of 
phosphorylated mTOR in spleen  
 
Since the mTOR plays a key role in driving autophagy, 
we determined the expression of phosphorylated mTOR 
(Ser2448) and total mTOR in the spleen. When 
compared to the control group, the mRNA expression 
levels of mTOR were markedly decreased (P<0.05 or 
P<0.01) in the 24 and 48 mg/kg groups (Figure 10A). 
Furthermore, the protein expression levels of Ser2448 
p-mTOR and total mTOR were significantly reduced 
(P<0.05 or P<0.01) in the 24 and 48 mg/kg groups 
(Figure 10B-10D). 
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Figure 2. The autophagy marker LC3 detection by immunohistochemistry (IHC) at 21 days of the experiment (100X). The 
brown punctate staining represents LC3 expression. (A) Control group; (B) 12 mg/kg group; (C) 24 mg/kg group; (D) 48 mg/kg group. 
 

 
 

Figure 3. The autophagy marker LC3 detection by immunohistochemistry (IHC) at 42 days of the experiment (100X). The 
brown punctate staining represents LC3 expression. (A) Control group; (B) 12 mg/kg group; (C) 24 mg/kg group; (D) 48 mg/kg group. 
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Figure 4. Changes of mRNA and protein expression levels of LC3 in the spleen at 21 and 42 days of the experiment. (A) 
The relative mRNA expression levels. (B) The ratio of LC3II/LC3I protein expression. (C, D) The western blot assay. Data are presented 
with the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 

 
Figure 5. Changes of mRNA and protein expression levels of p62 in the spleen at 21 and 42 days of the experiment. (A) 
The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented with 
the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
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Figure 6. Changes of mRNA and protein expression levels of Beclin-1 in the spleen at 21 and 42 days of the experiment. 
(A) The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented 
with the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
 

 
Figure 7. Changes of mRNA and protein expression levels of Atg12 in the spleen at 21 and 42 days of the experiment. 
(A) The relative mRNA expression levels. (B) The relative protein expression levels of Atg12-Atg5. (C, D) The western blot assay of 
Atg12-Atg5. Data are presented with the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, 
compared with the control group. 
 



www.aging-us.com 1655 AGING 

Changes of mRNA and protein expression levels of 
mTOR regulation-related genes in spleen  
 
We then investigated the mTOR regulation-associated 
genes, including ULK1, PI3K, Akt and Atg13. The 
findings showed that ULK1 and Atg13 mRNA 
expression levels were significantly increased (P<0.01 
or P<0.05) in the 12, 24 and 48 mg/kg groups at 21 and 
42 days of the experiment (Figure 11A, 11D). 
 
The p-ULK1 protein expression levels were 
significantly increased (P<0.05 or P<0.01) in the 24 and 
48 mg/kg groups at 21 and 42 days of the experiment 
(Figure 11B-11C). At the same time, the PI3K mRNA 
and protein expression levels were significantly 
decreased (P<0.01) in the 24 and 48 mg/kg groups at 21 
and 42 days of the experiment when compared to the 
control group (Figure 12). In addition, the Akt mRNA 
expression levels were significantly decreased (P<0.01 
or P<0.05) in NaF-treated groups at 21 and 42 days of 
the experiment. Akt protein expression levels were 
significantly reduced (P<0.01or P<0.05) in 24 and 48 
mg/kg groups at 21 days of the experiment and in 12, 24 
and 48 mg/kg groups at 42 days of the experiment 
(Figure 13).  

DISCUSSION 
 
Proteins are degraded via two main pathways in 
eukaryotic cells. Short-lived proteins are degraded by 
the proteasome, whereas long-lived proteins are 
degraded by autophagy [32]. In autophagy, cytoplasmic 
components are engulfed within a cytoplasmic vacuole 
by double-membrane-bound structures (autophago-
somes) and delivered to lysosomes for degradation [33]. 
Thus, autophagy plays key roles in maintaining 
intracellular homeostasis by degrading and recycling 
damaged organelles and macromolecules [28]. It is 
presently unclear whether fluoride causes murine 
splenocyte autophagy, and the roles of autophagy in the 
splenic damage by fluoride treatment, which could 
contribute to elucidate the mechanism of fluoride-
induced splenic toxicity in mice. 
 
The appearance of autophagic vacuoles can be 
confirmed the occurrence of autophagy [20]. Once the 
autophagosome is formed, it must deliver its cargo to 
the lysosome in mammals or the functionally related 
vacuole in yeast and plants [34]. Then the outer 
membrane of autophagosome will fuse with 
lysosomal/vacuolar membrane to form the autolyso-

 
Figure 8. Changes of mRNA and protein expression levels of Atg5 in the spleen at 21 and 42 days of the experiment. (A) 
The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented with 
the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
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some [35]. Subsequently, the autophagic cargo are 
degraded and the component parts are exported back 
into the cytoplasm through lysosomal permeases for use 
by the cell in biosynthetic process or to generate 
energy[36]. We have observed that NaF caused an 
increase in the number of autophagosomes and 
autolysosomes in the mouse spleen (Figure1), which 
indicated that NaF induced autophagy in the spleen.  
 
The LC3 serves as a autophagosomal marker protein in 
mammals. After being synthesized, LC3 is cleaved to 
produce the cytosolic LC3I (18 kDa) form. LC3I is 
converted to LC3II (16 kDa), which is tightly associated 
with the autophagosomal membrane via conjugation to 
phosphatidylethanolamine (PE)[37]. LC3II promotes 
autophagosome formation by facilitating membrane 
elongation [38]. It has been reported that alteration of 
LC3 expressions is involved in the fluoride-induced 
autophagy in mice leydig cells [28] or through ROS-
mediated JNK signaling [39]. In addition, The punctate 
pattern of LC3 staining reflects the association of LC3-
II with the membranes of early autophagosomes [40]. In 
the present study, the autophagy marker LC3 punctate 
staining was increased with NaF dosage increased 
(Figures 2-3), which showed that the increased punctate 

staining was corresponds to autophagosome buildup. 
Simultaneously, we noted that NaF significantly 
increased the LC3 mRNA and protein expression levels, 
and the ratio of LC3II/LC3I (Figure 4), which suggested 
that NaF likely caused a higher autophagic activity, and 
increased the formation of mature autophagosomes in 
the spleen. Additionally, LC3II expression levels were 
distinctly higher at 42 days of the experiment than 21 
days of the experiment, which indicated that autophagy 
regulation was a dynamic process with time dependent 
pattern. 
 
The p62 protein, also known as sequestosome-1 
(SQSTM1) binding autophagy regulator Atg8/LC3 
through a region termed the LC3-interacting region 
(LIR), suggests a link between autophagy and p62, 
whose levels can be regulated by autophagy [41]. When 
autophagy is inhibited, p62 accumulates, and when 
autophagy is induced, p62 is decreased [42]. Mathew et 
al. has verified that defective autophagy is a mechanism 
for p62 up-regulation commonly observed in human 
tumors, and contributes directly to tumorigenesis [43]. 
Similarly, Jaakkola et al. has reported that p62 down-
regulated by hypoxia-activated autophagy in carcinoma 
cells [44]. Beclin1, as a protein involved in the initiation 

 
Figure 9. Changes of mRNA and protein expression levels of Atg16L1 in the spleen at 21 and 42 days of the experiment. 
(A) The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented 
with the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
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and execution of autophagy, regulates the 
autophagosome-lysosome fusion by interacting with 
Atg12-Atg5 and LC3-PE complexes [45]. Lei et al. has 
also demonstrated that high fluoride cause autophagy of 
HAT-7 cells by observing the expression of Beclin1 and 
mTOR to elucidate the mechanism of dental fluorosis 
[46]. Our study showed that the mRNA and protein 
expression levels of p62 were significantly decreased, 
while the Beclin1 levels were significantly enhanced in 
NaF-treated groups (Figures 5-6), which were 
consistent with the results of M Komatsu et al. [47] and 
Pattingre et al. [48] that p62 was regulated in 
controlling intracellular inclusion body formation by 
autophagy, and Beclin1 was involved in the initial step 
of autophagosome formation.  
 
Atg5 was originally characterized as a binding partner 
with Atg12 in yeast, forming a complex that regulates 
the processing of LC3 and autophagosome formation 
[20]. Two ubiquitin-like (Atg12 and Atg8/LC3) 
conjugation systems in the downstream of Beclin-1- 
phosphatidylinoside 3- kinase are important for the 
induction of autophagy. The terminal product of one of 
two pathways is Atg5-Atg12 covalent complex, which 
is required for the elongation of the isolation membrane 

[49]. Atg16L1 forms an essential autophagy complex 
with Atg5 and Atg12 that facilitates elongation of the 
initial isolation membrane that results in engulfment of 
the cargo and formation of the autophagosome. 
Subsequent fusion with the lysosome facilitates 
degradation and allows nutrient recycling [50]. From 
this study, we found that the mRNA and protein 
expression levels of Atg12, Atg5 and Atg16L1 were 
markedly up-regulation (Figures 7-9), which indicated 
that splenocytes were sensitive to autophagy. Also, 
alteration of the above-mentioned LC3, p62, Beclin1, 
Atg12, Atg5 and Atg16L1 showed NaF-induced 
autophagy in this study.  
 
The regulatory role of the mTOR signaling pathway in 
autophagy was first demonstrated in yeast [51], and 
later in Drosophila [52]. As a central checkpoint that 
negatively regulates autophagy, the inhibition of mTOR 
activity initiates autophagy, and leads to 
dephosphorylation of ULK1 and Atg13 which relieved 
the inhibition of autophagy [53, 54]. In this study, 
mTOR signaling pathway was suppressed (Figure 10), 
and the expressions of ULK1 and Atg13 were up-
regulated (Figure 11) by NaF treatment. Autophagy is a 
cellular stress response that is activated through a 

 
Figure 10. Changes of mRNA and protein expression levels of p-mTOR in the spleen at 21 and 42 days of the 
experiment. (A) The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data 
are presented with the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the 
control group. 
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number of pathways, mTOR integrates signals that 
either inhibit autophagy via the PI3K/Akt pathway [55] 
or trigger autophagy via activation of AMPK 
(Adenosine 5‘-monophosphate (AMP)-activated protein 
kinase) [56], and the activation of Akt (protein kinase 
B, PKB) can be regulated by PI3K [57]. Our study 
showed that PI3K and Akt expression levels were 
significantly declined (Figures 12-13) in NaF-treated 
groups, which indicated that NaF led to the suppression 
of mTOR signaling and promoted autophagy. The 
relationship between autophagy and mTOR regulation-
related genes is shown in Figure 14.  
 
Numerous autophagy-related genes and proteins 
participate in the initiation and formation of 
autophagosomes and in cargo recognition [45]. The 
complete autophagosome is then transported to fuse 
with lysosomes, and degradation of the content releases 
valuable anabolic compounds. The present study finds 
that NaF in excess of 12 mg/kg can induce the 
splenocyte autophagy via inhibition of mTOR activity, 
which is characterized by down-regulation of PI3K/Akt 
expression and p-mTOR expression. And the 

suppression of mTOR activity in turn initiates 
autophagy by up-regulating ULK1 and Atg13 
expression. Increased or decreased expression levels of 
the LC3II, p62, Beclin1, Atg16L1, Atg12 and Atg5 
promote the initiation and formation of autophagosome. 
The inhibition of mTOR activity and alteration of 
autophagy-related genes and proteins are the potential 
molecular mechanism of NaF-induced splenocyte 
autophagy. The above-mentioned results may provide 
new insights for further understanding the role of 
autophagy in fluoride-induced splenic damage and 
toxicity.  
 
MATERIALS AND METHODS 
 
Animals and treatment 
 
240 healthy ICR mice (Experimental Animal 
Corporation of DOSSY at Chengdu, China) were used 
in this study to estimate NaF-induced autophagy in the 
spleen. Food and water was provided ad libitum. Mice 
were randomly divided into 4 groups (N = 60). The 
control group was given an intragastric administration  

 
Figure 11. Changes of ULK1 mRNA and protein expression levels and Atg13 mRNA levels in the spleen at 21 and 42 days 
of the experiment. (A) The relative mRNA expression levels of ULK1. (B) The relative protein expression levels of ULK1. (C) The 
western blot assay of ULK1. (D) The relative mRNA expression levels of Atg13. Data are presented with the mean + standard deviation 
(n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
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Figure 12. Changes of mRNA and protein expression levels of PI3K in the spleen at 21 and 42 days of the experiment. (A) 
The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented with 
the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
 

 
Figure 13. Changes of mRNA and protein expression levels of Akt in the spleen at 21 and 42 days of the experiment. (A) 
The relative mRNA expression levels. (B) The relative protein expression levels. (C, D) The western blot assay. Data are presented with 
the mean + standard deviation (n=8), *p < 0.05, compared with the control group; **p < 0.01, compared with the control group. 
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of distilled water at the same time as other groups. The 
experimental groups were given an intragastric 
administration of 12, 24, and 48 mg/kg NaF (Chengdu 
Kelong Chemical Co., Ltd., Chengdu, China), 
respectively. The gavage doses of four groups were 1 
mL/100 g body weight once daily for the last 42 days.  
Our experiments involving the use of mice and all 
experimental procedures were approved by the Animal 
Care and Use Committee, Sichuan Agricultural 
University.  
 
Determination of autophagosomes and autolysosome 
in the spleen by transmission electron microscopy 
(TEM) 
 
The spleen were rapidly cut into ∼1 mm × ∼1 mm × ∼1 
mm pieces, fixed in 2.5% glutaraldehyde at room 
temperature. After fixation, a 0.2M phosphate buffer 
(pH 7.2) was used to rinse the tissue twice for 15 
minutes. Next 1 % buffered osmium tetroxide was used 
to post-fix the samples for 1 h, dehydrated in a graded 
series of ethyl alcohol, and embedded in epoxy resins. 
The ultrathin sections were prepared, mounted on 
copper grids, and stained with uranyl acetate and lead 
acetate. Then, the images were examined and 
photographed using transmission electron microscope.   

Determination of autophagy marker in the spleen by 
immunohistochemistry (IHC) 
 
Spleen was fixed in 4% paraformaldehyde overnight 
followed by dehydration in ethanol, embedded in 
paraffin wax. 
 
The spleen paraffin sections were dewaxed in xylene, 
rehydrated through a graded series of ethanol solutions, 
washed in distilled water and PBS and endogenous 
peroxidase activity was blocked by incubation with 3% 
H2O2 in methanol for 15 min. The slices were subjected 
to antigen retrieval procedure by microwaving in 0.01 
M sodium citrate buffer pH 6.0. Additional washing in 
PBS was performed before 30 min of incubation at 37° 
C in 10% normal goat serum (Boster, Wuhang, China). 
Then incubated overnight at 4 °C with the primary 
antibodies (1:100). After washing in PBS, the slices 
were exposed to 1% biotinylated goat anti-rabbit IgG 
secondary antibody (Boster, Wuhang, China) for 1 h at 
37°C , and then incubated with strept avidinbiotin 
complex (SABC; Boster, Wuhang, China) for 30 min at 
37°C. To visualize the immunoreaction, slices were 
immersed in diaminobenzidine hydrochloride (DAB; 
Boster, Wuhang, China). The slices were monitored 
microscopically and stopped by immersion in distilled 

 
 

Figure 14. Sodium fluoride induces autophagy in mammalian mice spleen. NaF can induce the splenocyte autophagy by 
inhibiting the PI3K and mTOR activity, which in turn enhanced ULK1 and Atg13 expression levels, and then increased LC3, Beclin1, 
Atg16L1, Atg12, Atg5 expression levels, and reduced p62 expression level.  
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water, as soon as brown staining was visible. Slices 
were lightly counterstained with hematoxylin, 
dehydrated in ethanol, cleared in xylene and mounted. 
For negative control purposes, representative sections 
were processed in the same way by replacing primary 
antibodies by PBS. 
 
Determination of mTOR signaling pathway 
parameters’ mRNA expression levels in the spleen 
by qRT-PCR  
 
At 21 and 42 days of the experiment, spleens of eight 
mice in each group were removed and stored in liquid 
nitrogen, and then homogenized with liquid nitrogen by 
a mortar and pestle, and Total RNA was extracted with 
the RNAiso Plus (9108/9109, Takara, Japan) according 

to manufacturer’s instructions. Then, cDNA was 
synthesized with the Prim-Script™ RT reagent Kit 
(RR047A, Takara, Japan) according to the 
manufacturer’s instructions and used as a template for 
qRT-PCR. Specific primers for the genes were designed 
with the Primer 5 software and synthesized by Sangon 
(Shanghai, China) (Table 1).  
 
qRT-PCR was carried out in a LightCycler 96 (Roche, 
Germany) using SYBR® Premix Ex TaqTM II 
(DRR820A, Takara, Japan) according to the standard 
protocols. The melting curve analysis was performed to 
ensure a single peak for each PCR product. Further, 
purity of specific PCR products was verified by agarose 
gel electrophoresis. Mouse β-actin was used as an 
internal reference. Gene expression at days 21 and 42 

Table 1. Sequence of primers used in qRT-PCR. 

Gene symbol Accession number Primer Primer sequence(5'-3') Product size Tm(°C) 

mTOR NM-020009.2 
Forward CAGACTGGCTCTTGCTCATAA 

155 bp 57 Reverse GCTGGAAGGCGTCAATC 

ULK1 NM-009469.3 
Forward ACACACCTTCTCCCCAAGTG 

198 bp 60 Reverse GACGCACAACATGGAAGTCG 

Beclin1 NM-019584.3 
Forward TGCAGGTGAGCTTCGTGTG 

124 bp 60 Reverse GCTCCTCTCCTGAGTTAGCCT 

Atg16L1 NM-001205392.1 
Forward CTGAGAAGGCCCAAGAAGCC 

221 bp 60 Reverse GACAGAGCGTCTCGTAGCTG 

Atg12 NM-026217.3 
Forward TAAACTGGTGGCCTCGGAAC 

146 bp 60 Reverse ATCCCCATGCCTGGGATTTG 

Atg5 NM-053069.6 
Forward CAAGGATGCGGTTGAGGC 

167 bp 58 Reverse TGAGTTTCCGGTTGATGG 

LC3 NM-025735.3 
Forward CTTCGCCGACCGCTGTAA 

170 bp 60 Reverse GCCGGATGATCTTGACCAACT 

Atg13 NM-145528.3 
Forward ACTGGTGATGCACATGCCTT 

149 bp 50 Reverse ATGCTCCCACTTTTCGGACA 

p62 NM-011018.3 
Forward GCACAGGCACAGAAGACAAG 

134 bp 59 Reverse CACCGACTCCAAGGCTATCT 

PI3K NM-001077495.2 
Forward CTGGGGGACATACTGACTGT 

140 bp 60 
Reverse GTTCCTGGAAAGTCTCCCCTC 

Akt NM-009652.3 
Forward TCCTCAAGAACGATGGCACC 

203 bp 60 
Reverse CTCCTCAGGCGTTTCCACAT 

β-actin NM-007393 
Forward GCTGTGCTATGTTGCTCTAG 

117 bp 60 Reverse CGCTCGTTGCCAATAGTG 
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were calibrated against the corresponding controls. 
Relative expression was analyzed by the 2-ΔΔCT method 
[58]. 
 
Determination of mTOR signaling pathway 
parameters’ protein expression levels in the spleen 
by Western blot  
 
At 21 and 42 days of experiment, splenic samples of 
eight mice in each group were taken to determine the 
autophagy protein expression levels by western blot. 
 
The proteins were extracted from frozen spleen samples 
with RIPA lysis buffer (P0013C; Beyotime, China) and 
quantified by the BCA Protein Assay Kit (P0012; 
Beyotime, China). Equal amounts of protein samples 
were resolved on SDS-PAGE (10%–15% gels) and 
transferred to nitrocellulose filter membranes. 
Membranes were blocked with 5% fat-free milk for 1h 
and incubated with primary antibodies overnight at 4°C. 
The primary antibodies were mTOR, p62, PI3K, Akt 
(Abcam, UK), ULK1, Beclin-1, Atg16L1, Atg12, Atg5, 
LC3 (CST, USA). The membranes were then washed 
with PBS-tween and incubated with biotin-conjugated 
secondary antibodies (CST, USA) for 1h, and washed 
again with PBS-tween. Blots were visualized by ECLTM 
(Bio-Rad, Hercules, CA, USA) and X-ray film. The 
protein bands were quantified with the Image J 
software. 
 
Statistical analysis  
 
The experimental data are expressed as the mean ± 
standard deviation. One-way analysis of variance 
(ANOVA) procedure in SPSS 19.0 software was used 
to assess statistical significances between F-treated 
group and control group. A value of P < 0.05 or P < 
0.01 was accepted as significant differences. 
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