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INTRODUCTION 
 
Energy metabolic reprogramming has been a hallmark 
of cancer cells, which enable tumor cells to generate 
ATP for maintaining the reduction-oxidation balance 
and macromolecular biosynthesis—processes that are 
required for cell growth, proliferation and migration [1]. 
Many cancers have long been thought to limit their 

energy metabolism largely to glycolysis producing large 
amounts of lactate even in the presence of oxygen, a 
phenomenon known as the Warburg Effect [2]. In 
comparison to normal cells, tumor cells prefer to 
incomplete, non-oxidative metabolism of glucose. Until 
now, it is widely accepted that glucose is the main 
energy source of cancer cells. However, awareness that 
the metabolic phenotype of cancer cells is 
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ABSTRACT 
 
Now, numerous exciting findings have been yielded in the field of energy metabolism within glioma cells. In 
addition to aerobic glycolysis, multiple catabolic pathways are employed for energy production. However, the 
prognostic significance of energy metabolism in glioma remains obscure. Here, we explored the relationship 
between energy metabolism gene profile and outcome of diffuse glioma patients using The Cancer Genome 
Altas (TCGA) and Chinese Glioma Genome Altas (CGGA) datasets. Based on the gene expression profile, 
consensus clustering identified two robust clusters of glioma patients with distinguished prognostic and 
molecular features. With the Cox proportional hazards model with elastic net penalty, an energy metabolism-
related signature was built to evaluate patients’ prognosis. Kaplan-Meier analysis found that the acquired 
signature could differentiate the outcome of low and high-risk groups of patients in both cohorts. Moreover, 
the signature, significantly associated with the clinical and molecular features, could serve as an independent 
prognostic factor for glioma patients. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) showed 
that gene sets correlated with high-risk group were involved in immune and inflammatory response, with the 
low-risk group were mainly related to glutamate receptor signaling pathway. Our results provided new insight 
into energy metabolism role in diffuse glioma.  
 

mailto:wufan0510284@163.com


www.aging-us.com 3186 AGING 

heterogeneous is growing. Some tumor cells are 
predominantly glycolytic, whereas others with the given 
tumor have an oxidative phosphorylation (OXPHOS) 
metabolic phenotype [3, 4]. Increasing evidences show 
that there is a metabolic symbiosis between glycolytic 
and oxidative tumor cells. For example, Lactate and 
pyruvate generated by glycolysis can be transferred to 
and used as substrates for tricarboxylic acid (TCA) 
intermediates and ATP production by the neighbor 
cancer cells [5]. Similarly, malignant tumor cells also 
can take up free fatty acids and ketones released by 
adjacent catabolic cells, which will fuel the 
mitochondrial OXPHOS for energy production [6, 7]. In 
addition, it has been reported that glutamine can also be 
metabolized by TCA cycle to produce energy [8]. 

Under hypoxic condition, experiments showed that 
glutamine-driven mitochondrial OXPHOS accounts for 
most of ATP production [9]. A deeper understanding of 
Energy metabolism in tumors could offer a vital step 
forward in the development of new treatments.  
 
Glioma is the most common form of primary malignant 
brain tumor, with an incidence of 5-6 cases per 100000 
persons per year. Glioblastoma (GBM), a highly 
aggressive tumor, approximately accounts for 55% of 
glioma with a dismal median survival of 14-16 months 
[10]. In addition to the diffuse and infiltrative nature, 
GBM show strong heterogeneity between patients as 
well as within individual tumor, which leads to the 
resistance and inevitable recurrence [11, 12]. Despite 

 
 

Figure 1. Energy metabolism-related genes could distinguish diffuse glioma patients with different clinical and 
molecular features. (A) Consensus clustering CDF for k = 2 to k = 10. (B) Relative change in area under CDF curve for k = 2 to k = 10. 
(C) Consensus clustering matrix of 550 samples from TCGA dataset for k = 2. (D) Heat map of two clusters defined by the top 50 
variable expression genes. (E) survival analysis of patients in cluster 1 and cluster 2. 
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aggressive treatments, such as surgical resection 
followed by radiotherapy and chemotherapy, the 
outcomes of patients with GBM remain very poor [13]. 
There is an urgent need to find new therapies to 
improve prognosis for these patients. Accumulating 
studies have shown that multiple catabolic pathways are 
involved in energy metabolism of glioma cells [14]. Lin 
et al reported that primary glioblastoma cells were 
highly oxidative and largely unaffected by treatment 
with glycolysis inhibitors, indicating the co-existence of 
glycolysis and OXPHOS [15]. In particular, glioma 
stem cells exhibit less glycolytic phenotype compared 
with their differentiated progeny [16]. Increasingly, 
recent evidences have shown that glioma cells can also 
use fatty acids as a substrate for energy production. 
Inhibition of fatty acid beta-oxidation could reduce the 
proliferation of glioma cells [17]. However, the local 
energy metabolic status and its prognostic value in 
patients with glioma are still remaining to be further 
elucidated.  
 
In this study, we inquired the energy metabolic profile 
and its clinical value in patients with diffuse glioma 
using the TCGA and CGGA RNA sequencing data. 
Based on the gene expression profile, patients could be 
classified into two robust groups with significant 
difference in prognosis and molecular features. Then, 
we developed an energy metabolism-related signature 
for assessing the prognosis of glioma patients with 
TCGA dataset, which was further validated in CGGA 
dataset. This signature was closely associated with 
patients’ outcome and could serve as an independent 
pathological factor. To summarize, our results 
uncovered a strong association between energy 
metabolism status and clinical prognosis in diffuse 
glioma.  
 
RESULTS 
 
IDH-wt and IDH-mut LGG show distinct expression 
profile of energy metabolism genes 
 
To profile the energy metabolism status of glioma, a 
cohort of 550 patients with RNA sequencing data and 
clinical information was obtained from the TCGA 
database. Two energy metabolism-related gene sets 
were downloaded and integrated into one gene set 
which contained 587 genes. Within this obtained gene 
set, 41 genes were involved in carbohydrate 
metabolism, 73 genes in lipid metabolism and 144 
genes in protein metabolism (Supplementary Figure 1A-
C). SAM and GO analyses found 25 carbohydrate 
metabolism genes were differentially expressed 
between IDH-wt and IDH-mut LGG (Supplementary 
Figure 1D). Most of the increased genes in IDH-mut 
LGG were involved in chondroitin sulfate biosynthetic 

process, while IDH-wt LGG exhibited an enrichment of 
glycosaminoglycan biosynthetic process (Supplemen-
tary Figure 1E). For lipid metabolism, 16 upregulated 
genes in IDH-mut LGG were mainly involved in fatty 
acid biosynthetic, while 23 increased genes in IDH-wt 
LGG were related to bile acid biosynthetic and 
oxidation-reduction process (Supplementary Figure 1F 
and G). For protein metabolism, IDH-mut LGG 
displayed enrichment of translational initiation, whereas 
IDH-wt LGG exhibited enrichment of protein N-linked 
glycosylation (Supplementary Figure 1H and I). These 
results suggested a significant difference of energy 
metabolism status between IDH-wt and IDH-mut LGG. 

Table 1. Characteristics of patients in class 1 and 
class 2 in TCGA cohort. 

Characteristics n Class 1 Class 2 P-value 
Total Cases 550 333 217  

Age     

≤48 287 240 47 <0.001 

>48 263 93 170  

Gender     

Male 319 185 134 0.321 

Female 231 148 83  

Subtype     

Classical 141 6 135 <0.001 

Mesenchymal 31 1 30  

Proneural 345 299 46  

Neural 33 27 6  

Grade     

   II 191 181 10 <0.001 

   III 211 151 60  

   IV 148 1 147  

IDH     

Mut 338 319 19 <0.001 

WT 212 14 198  

MGMT promoter     

Methylated 383 302 81 <0.001 

Unmethylated 135 31 104  

NA 32 0 32  

IDH = isocitrate dehydrogenase; MGMT = methylguanine 
methyltransferase. 
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Identification of an energy metabolism-related 
prognostic signature in diffuse glioma 
 
We further explored the association between energy 
metabolism status and outcome of diffuse glioma 
patients. Consensus clustering found that patients could 
be classified into two robust groups (Figure 1A-C). 
Figure 1D showed the heat map of these two clusters 
defined by the top 50 variable expression genes. 
Kaplan-Meier analysis revealed that patients in cluster 1 
had a significantly longer OS than those in cluster 2 
(Figure 1E, P<0.001). To further detect the difference 
between these two clusters of patients, Chi-square test 
was performed. Patients in cluster 1 were mainly 
younger, lower grade, proneural or neural subtype, IDH 
mutational and MGMT promoter methylated (P<0.001), 
while cluster 2 represented older, high grade, classical 
or mesenchymal subtype, IDH wild type, and MGMT 
promoter unmethylated (P<0.001) (Table 1). Similarly, 
the CGGA cohort of 309 patients with RNA sequencing 

data and clinical information was also downloaded and 
analyzed, and consistent results were observed 
(Supplementary Figure 2, Supplementary Table 1). 
These results indicated that expression of energy 
metabolism-related genes was closely correlated with 
patients’ prognosis and molecular features in diffuse 
glioma. 
 
Considering the strong link between patients’ prognosis 
and energy metabolism status, we proposed to develop 
an energy metabolism-related signature for prognosis 
prediction. SAM analysis found that 463 genes were 
differentially expressed between LGG and GBM based 
on the P value. Univariate Cox regression analysis 
revealed 420 out of the differential genes were 
significantly correlated with patients’ OS, as shown in 
Figure 2A and B. Then, we applied a Cox proportional 
hazards model for selecting genes with best prognostic 
value (Figure 2C). A 29-gene signature was identified 
(Figure 2D and E) and the risk score was calculated 

 
 

Figure 2. Identification of an energy metabolism-related signature by Cox proportional hazards model in TCGA cohort. 
(A) Venn diagram shows prognosis-related genes which are also differentially expressed between LGG and GBM. (B) Heat map of 420 
energy metabolism-related genes correlated with patients’ OS. (C) Cross-validation for tuning parameter selection in the proportional 
hazards model. (D) Coefficient values for each of the 29 selected genes. (E) Heatmap of the 29 genes of the signature based on the 
risk score value. 
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with their expression level and regression coefficients. 
The biological function of these 29 genes was annotated 
with GO analysis (Supplementary Figure 3). For the 
CGGA validation set, the risk scores of patients were 
computed with the same regression coefficients.   
 
29-gene signature shows strong power for prognosis 
assessment 
 
Based on the median risk score, patients were assigned 
into high-risk and low-risk groups. Kaplan-Meier 
analysis showed patients in low-risk group had a 
significantly longer OS than those in high-risk group 
(Figure 3A, P<0.001). Then, we further explored the 
prognostic value of this signature in stratified patients 
by grade, IDH status, MGMT promoter status. The 
similar results were observed in most stratified patients 
expect patients with GBM (Figure 3B-G). Similarly, the 
prognostic value of this signature was also evaluated in 
the CGGA validation set. Consensus results were 

obtained by Kaplan-Meier analysis (Supplementary 
Figure 4). Further stratified analyses also revealed that 
high risk score conferred reduced OS in molecular 
subgroups (LGG IDH-wt, LGG IDH-mut and GBM 
IDH-mut) in both cohorts (Supplementary Figure 5). 
Univariate and multivariate Cox regression analysis 
revealed that this risk score was significantly corelated 
with patients’ OS (95% CI=1.415-2.907, P<0.001), 
independent of age, gender, grade, subtype, IDH and 
MGMT promoter status (Table 2). Furthermore, the risk 
score could also serve as an independent prognostic 
factor in CGGA cohort (95% CI=1.161-2.086, P=0.003) 
(Supplementary Table 2).  
 
Using ROC curve, we further evaluated the predictive 
accuracy by computing AUC (area under the curve) of 
risk score, age and grade. The AUC of risk score 
(87.2%) was much higher than that of age (80.1%) and 
grade (83.0%) (Figure 4A). Moreover, The AUC of risk 
score (79.1%) was substantially higher in CGGA 

 
 

Figure 3. Outcome prediction of the 29-gene signature in stratified patients of TCGA cohort. (A-G) survival analysis of the 
signature in patients stratified by grade, IDH and MGMT promoter status.  
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validation set (Figure 4B). These data demonstrated the 
powerful ability of the energy metabolism-related 
signature for predicting prognosis. 
 
Energy metabolism-related signature is associated 
with pathologic features in diffuse glioma 
 
We next determined whether the 29-gene signature was 
related to patients’ clinical molecular features. Patients 
were arrayed based on their risk scores. The signature 
scores distributed differently in stratified patients, with 
high level in high grade, classic or mesenchymal, IDH 
wild type and MGMT unmethylated patients (Figure 5). 
The statistical difference of these features between high 
and low-risk groups was evaluated using chi-square test. 
Except gender, most of features were found different 
between risk groups (Table 3, P<0.001). Additionally, 
similar results were obtained in CGGA cohort of glioma 

patients (Supplementary Figure 6, Supplementary Table 
3). These findings indicated a significant correlation 
between energy metabolism signature and pathologic 
features in diffuse glioma. 
 
Functional annotation of 29-gene signature 
 
We further compared gene expression between the 
high-risk and low-risk groups. PCA showed that high 
and low-risk groups of patients tended to distribute in 
two sides clearly in both TCGA and CGGA cohort 
(Supplementary Figure 7). Based on the top 2000 genes 
of differential expression (P<0.05, ranked by fold 
change) identified by SAM, GO analysis revealed that 
antigen processing and presentation, immune response, 
inflammatory response and T cell costimulation were 
significantly enriched in high-risk group, while the low-
risk group showed enrichment of translational initiation  

Table 2. Univariate and multivariate Cox regression analysis of clinical pathologic features for OS in TCGA 
cohort. 

Characteristics Univariate analysis   Multivariate analysis 
HR 95% CI P-value   HR 95% CI P-value 

Age 1.076 1.063-1.089 <0.001  1.059 1.042-1.076 <0.001 
Gender 0.957 0.705-1.299 0.779     
Grade 5.285 4.047-6.902 <0.001  1.315 0.888-1.946 0.171 
Subtype 2.398 2.038-2.822 <0.001  0.973 0.754-1.255 0.832 
IDH  0.101 0.07-0.144 <0.001  1.517 0.568-4.052 0.405 
MGMT promoter  0.276 0.196-0.39 <0.001  0.812 0.546-1.208 0.305 
Risk score 2.434 2.144-2.764 <0.001   2.028 1.415-2.907 <0.001 
HR = hazard ratio; CI = confidence interval; IDH = isocitrate dehydrogenase; MGMT = methylguanine methyltransferase. 
 

 
 

Figure 4. Prognostic power of the identified 29-gene signature in TCGA and CGGA cohorts. (A) ROC curve analysis of age, 
grade and risk score in TCGA cohort. (B) ROC curve analysis of age, grade and risk score in CGGA cohort. AUC, area under the curve. 
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Figure 5. Association between the energy metabolism-related signature and pathologic features in TCGA cohort. (A-F) 
Distribution of the risk score in stratified patients by grade, subtype, IDH and MGMT promoter status. 
 

 
 

Figure 6. Functional analysis of the 29-gene signature. (A) GO annotations based on the top 2000 genes positively and 
negatively associated with the 29-gene signature. (B-C) GSEA analysis based on the median value of risk score. 
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and glutamate receptor signaling pathway (Figure 6A). 
GSEA found that the differentially expressed genes in 
two groups were associated with humoral immune 
response, leukocyte mediated immunity, lymphocyte 
mediated immunity and glutamate receptor signaling 
pathway (Figure 6B and C). As shown in 
Supplementary Figure 8, analysis of the CGGA cohort 
displayed consensus results. Moreover, we also 
performed functional analyses in LGG and GBM 
respectively. Consequently, GO and GESA analyses 
showed similar outcomes (Supplementary Figure 9). 
The corresponding biologic functions might contribute 
to patients’ high risk and poor prognosis.  

DISCUSSION 
 
Increasing evidence has revealed that metabolism 
deregulation is one of the emerging hallmarks of cancer 
cells. Energy metabolic difference between normal and 
tumor cells has attracted extensive attention worldwide 
for decades. In glioma, resent studies demonstrated that 
multiple catabolic pathways are involved in its energy 
metabolism, such as glycolysis, OXPHOS and fatty acid 
metabolism [18]. In the present study, we detected the 
local energy metabolic status and its prognostic value in 
patients with glioma with RNA sequencing data. Since 
energy metabolic gene could distinguish patients’ 
clinical and molecular features, we further developed a 
signature that could stratify patients with high or low-
risk of poor outcome. Considering that univariate Cox 
model is insufficient for variables selection with 
dimensional data, we first performed univariate Cox 
model to filter genes related to OS and applied an 
elastic net regression Cox model to increase the 
predictive performance of the prognostic index [19], 
and the obtained 29 genes showed a cumulative effect 
on survival prediction. This energy metabolism-related 
signature could serve as a powerful prognostic indicator 
and stratify patients for energy metabolism-targeted 
therapies in future.  
 
Functional analysis suggested that differences of 
biologic processes between high-risk and low-risk 
groups of patients were mainly involved in immune and 
inflammatory response, indicating an interface between 
energy metabolism and immune environment. Recently, 
compelling studies have identified numerous alterations 
in glioma cells metabolism that may play an important 
role in immune regulation [20]. The accumulation of 
lactic acid from aerobic glycolysis in tumor cells can 
shape the immune system, including increasing the 
transcription of cytokines, inhibiting differentiation of 
monocytes to dendritic cells [21, 22]. Expression of 
IDO1 (indoleamine 2, 3-dioxygenase 1), tryptophan 
metabolic enzyme, increases the recruitment of 
regulatory T cells and negatively impacts survival in 
glioma cells [23]. IDO1 inhibition combined with PD-
L1 and CTLA-4 inhibitors can enhance the therapeutic 
efficacy [24]. M2 macrophages use arginine to produce 
ornithine and urea, leading to anti-inflammatory effects 
and CD4+ T cell-mediated immune suppression [25]. 
To further understand the relationship between this risk 
score and immune response, immune checkpoints (PD-
1, PD-L1, CTLA-4, CD80 and TIM-3) [26-28] and 
inflammatory genes (INF-α, INF-γ, TNF-α, IL-6, IL-17, 
CCL2, CXCL2 and HLA-A) [29-32] were selected. 
Correlation analysis revealed that expression of these 
immune checkpoints was positively correlated with the 
risk score in both TCGA and CGGA cohorts 
(Supplementary Figure 10A and B), indicating an 

Table 3. Characteristics of patients in low-risk and 
high-risk groups in TCGA cohort. 

 
Characteristics 

 
n 

Risk score  
P-value Low High 

Total Cases 550 275 275  

Age     

≤48 287 197 90 <0.001 

>48 263 78 185  

Gender     

Male 319 156 163 0.307 

Female 231 119 112  

Subtype     

Classical 141 2 139 <0.001 

Mesenchymal 31 1 30  

Proneural 345 264 81  

Neural 33 8 25  

Grade     

   II 191 155 36 <0.001 

   III 211 119 92  

   IV 148 1 147  

IDH     

Mut 338 274 64 <0.001 

WT 212 1 211  

MGMT promoter     

Methylated 383 257 126 <0.001 

Unmethylated 135 18 117  

NA 32 0 32  

IDH = isocitrate dehydrogenase;  
MGMT = methylguanine methyltransferase. 
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immunosuppressive state in high-risk group of glioma 
patients. In addition, the risk score was also positively 
associated with the expression of INF-γ, IL-6, CCL2 and 
HLA-A (Supplementary Figure 10C and D), suggesting 
that macrophages and T cell mediated immune response 
were involved in high-risk group of glioma patients.  
 
Collectively, we uncovered the energy metabolism gene 
expression and its prognostic value in diffuse glioma 
and identified an energy metabolism-related signature 
which could classify glioma patients with high-risk and 
low-risk groups of reduced survival. However, more 
prospective studies were further needed and the 
predictive ability of this signature should be tested for 
clinical application. Our findings offer new 
understanding about energy metabolism status and will 
benefit energy metabolism-targeted therapies in glioma. 
 
MATERIALS AND METHODS 
 
Datasets 
 
The TCGA RNA sequencing data and corresponding 
clinical information, such as age, gender, histology, 
methylguanine methyltransferase (MGMT) promoter 
status, isocitrate dehydrogenase (IDH) mutation status 
and survival information, were downloaded from 
TCGA database (http://cancergemome.nih.gov/) as 
training set. Similarly, the CGGA RNA sequencing data 
and clinical information ware downloaded from CGGA 
database (http://www.cgga.org.cn) as validation set 
[33]. The characteristics of glioma patients from these 
two datasets were listed in Table 4. 
 
Consensus clustering 
 
Two energy metabolism-related gene sets (Reactome 
energy metabolism and energy-requiring part of 
metabolism) were downloaded from Molecular 
Signature Database v5.1 (MSigDB) 
(http://www.broad.mit.edu/gsea/msigdb/) [34]. 
Overlapped genes were removed and the acquired 
energy metabolism-related gene set contained 587 
genes. Measured by median absolute deviation (MAD), 
the most variable genes were used for subsequent 
clustering. Consensus clustering was performed with R 
package “ConsensusClusterPlus”. The optimal number 
of subgroups was evaluated using cumulative 
distribution function (CDF) and consensus matrices 
[35]. 
 
Gene signature identification 
 
Significance analysis of microarray (SAM) was 
performed to identify the differentially expressed 
energy metabolism-related genes between lower grade 

glioma (LGG) and GBM with R package “samr”. 
Simultaneously, univariate Cox analysis was used to 
determine the prognosis-related genes. After that, the 
Cox proportional hazards model was applied for 
selection of optimal prognostic gene set with R package 
“glmnet”, which was suitable for the regression analysis 
of high-dimensional data [19]. Risk score for each 
patient of the TCGA training set was calculated with the 
linear combinational of the signature gene expression 
weighted by their regression coefficients. Risk score = 
(exprgene1 x coefficientgene1) + (exprgene2 x 
coefficientgene2) + … + (exprgenen x coefficientgenen). 
Then, the regression coefficients from the training set 
was applied into the CGGA validation set for risk score 
calculation.  

Table 4. Clinical characteristics of diffuse glioma 
patients. 

TCGA cohort (550)  CGGA cohort (309) 

Characteristic No.  Characteristic No. 

Age   Age  

≤48 287  ≤43 166 

>48 263  >43 143 

Gender   Gender  

Male 319  Male 194 

Female 231  Female 115 

Subtype   Subtype  

Classical 141  Classical 69 

Mesenchymal 31  Mesenchymal 65 

Proneural 345  Proneural 99 

Neural 33  Neural 76 

Grade   Grade  

II 191  II 104 

III 211  III 67 

IV 148  IV 138 

IDH   IDH  

Mut 338  Mut 155 

WT 212  WT 154 

MGMT promoter   MGMT promoter  

Methylated 383  Methylated 136 

Unmethylated 135  Unmethylated 111 

NA 32  NA 62 

IDH = isocitrate dehydrogenase; MGMT = methylguanine 
methyltransferase. 
 



www.aging-us.com 3194 AGING 

Gene ontology (GO), gene set enrichment analysis 
(GSEA) and principal components analysis (PCA) 
 
GO analysis was applied for the main function 
annotation of differential expression genes 
(http://david.ncifcrf.gov/). GSEA was performed to 
identify gene sets of statistical difference between two 
groups by using the GSEA v3 software 
(http://www.broadinstitute.org/gsea/index.jsp) [34]. 
PCA was carried out to detect expression difference 
within groups using R package “princomp” [36].  
 
Statistical analysis 
 
According to the risk score, patients were divided into 
high-risk and low-risk groups based on the median 
value. Kaplan-Meier with 2-sided log-rank test was 
used to evaluate the overall survival (OS) differences 
between these two groups. Chi-square test was 
performed to detect the difference of the pathologic 
features between these two groups of patients. 
Univariate and multivariate Cox regression analysis was 
conducted to identify independent prognostic factors. 
ROC curve analysis was used to predict OS with R 
package “pROC”. All statistical analyses were 
conducted using SPSS or R software. P<0.05 was 
considered significant.  
 
Abbreviations 
 
CGGA, Chinese Glioma Genome Atlas; TCGA, The 
Cancer Genome Atlas; OS, overall survival; LGG, 
lower grade glioma; GBM, glioblastoma; HR, hazard 
ratio; CI, confidence interval; GO, gene ontology; 
GSEA, gene set enrichment analysis; OXPHOS, 
oxidative phosphorylation; TCA, tricarboxylic acid; 
AUC, area under the curve; PCA, principal components 
analysis. 
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SUPPLEMENTARY MATERIAL 
 
 
 
 
 
 
Supplementary Table 1. Characteristics of patients in class 1 and class 2 in CGGA cohort.  

Characteristics n Class 1 Class 2 P-value 
Total Cases 309 185 124  

Age     

≤43 166 80 86 <0.001 

>43 143 105 38  

Gender     

Male 194 120 74 0.401 

Female 115 65 50  

Subtype     

Classical 69 64 5 <0.001 

Mesenchymal 65 65 0  

Proneural 99 44 55  

Neural 76 12 64  

Grade     

   II 104 17 87 <0.001 

   III 67 41 26  

   IV 138 127 11  

IDH     

Mut 155 51 104 <0.001 

WT 154 134 20  

MGMT promoter     

Methylated 136 79 57 <0.001 

Unmethylated 111 81 30  

NA 62 25 37  

IDH = isocitrate dehydrogenase; MGMT = methylguanine methyltransferase. 
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Supplementary Table 2. Univariate and multivariate Cox regression analysis of clinical pathologic features for 
OS in CGGA cohort. 

Characteristics Univariate analysis   Multivariate analysis 
HR 95% CI P-value   HR 95% CI P-value 

Age 1.038 1.022-1.053 <0.001  0.999 0.983-1.016 0.914 
Gender 0.843 0.597-1.189 0.33     
Grade 3.469 2.709-4.443 <0.001  2.097 1.511-2.91 <0.001 
Subtype 0.583 0.492-0.691 <0.001  0.782 0.659-0.929 0.005 
IDH 0.257 0.179-0.37 <0.001  1.106 0.566-2.159 0.768 
MGMT Promoter 0.529 0.374-0.75 <0.001  0.78 0.53-1.147 0.207 
Risk score 2.232 1.912-2.607 <0.001   1.556 1.161-2.086 0.003 
HR = hazard ratio; CI = confidence interval; IDH = isocitrate dehydrogenase; MGMT = methylguanine methyltransferase. 
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Supplementary Table 3. Characteristics of patients in low-risk and high-risk groups in CGGA cohort. 

 
Characteristics 

 
n 

Risk score  
P-value Low High 

Total Cases 309 154 155  

Age     

≤43 166 112 54 <0.001 

>43 143 42 101  

Gender     

Male 194 91 103 0.181 

Female 115 63 52  

Subtype     

Classical 69 8 61 <0.001 

Mesenchymal 65 3 62  

Proneural 99 86 13  

Neural 76 57 19  

Grade     

   II 104 92 12 <0.001 

   III 67 36 31  

   IV 138 26 112  

IDH     

Mut 155 136 19 <0.001 

WT 154 18 136  

MGMT promoter     

Methylated 136 79 57 <0.001 

Unmethylated 111 30 81  

NA 62 45 17  

IDH = isocitrate dehydrogenase; MGMT = methylguanine methyltransferase. 
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Supplementary Figure 1. Profile of carbohydrate, lipid and protein metabolism genes involved in energy metabolism 
between IDH-wt and IDH-mut LGG. (A-C) Venn diagrams show carbohydrate, lipid and protein metabolism genes involved in energy 
metabolism. (D and E) Heat map and GO analysis of differentially expressed carbohydrate metabolism genes between IDH-wt and IDH-mut 
LGG. (F and G) Heat map and GO analysis of differentially expressed lipid metabolism genes. (H and I) Heat map and GO analysis of 
differentially expressed protein metabolism genes.  
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Supplementary Figure 2. Energy metabolism-related genes could distinguish glioma patients with different clinical and 
molecular features. (A) Consensus clustering CDF for k = 2 to k = 10. (B) Relative change in area under CDF curve for k = 2 to k = 10. (C) 
Consensus clustering matrix of 309 samples from CGGA dataset for k = 2. (D) Heat map of two clusters defined by the top 50 variable 
expression genes. (E) survival analysis of patients in cluster 1 and cluster 2. 
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Supplementary Figure 3. Functional annotation of the signature genes. 
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Supplementary Figure 4. Prognostic evaluation of the 29-gene signature in stratified patients of CGGA cohort. (A-G) 
Survival analysis of the signature in patients stratified by grade, IDH and MGMT promoter status. 
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Supplementary Figure 5. Prognostic evaluation of the 29-gene signature in molecular subgroups. (A-D) Survival analysis of the 
signature in LGG IDH-wt, LGG IDH-mut, GBM IDH-wt and GBM IDH-mut patients of TCGA cohort. (E-H) Survival analysis of the signature in 
LGG IDH-wt, LGG IDH-mut, GBM IDH-wt and GBM IDH-mut patients of CGGA cohort. 
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Supplementary Figure 6. Association between the energy metabolism-related signature and clinical features in CGGA 
cohort. (A) Heatmap of the 29 genes of the signature based on the risk score value. (B-G) Distribution of the risk score in stratified patients 
by grade, subtype, IDH and MGMT promoter status. 
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Supplementary Figure 7. Principal components analysis of high and low-risk groups of patients based on whole gene 
expression data. (A-B) PCA in TCGA and CGGA cohorts. 
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Supplementary Figure 8. Functional analysis of the 29-gene signature in CGGA cohort. (A) GO annotations based on the top 
2000 genes positively and negatively associated with the 29-gene signature. (B-C) GSEA analysis based on the median value of risk score.  
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Supplementary Figure 9. Functional analysis of the 29-gene signature in LGG and GBM of TCGA cohort. (A) GO annotations 
based on the top 2000 genes positively and negatively associated with the 29-gene signature in LGG. (B) GSEA analysis based on the median 
value of risk score in LGG. (C) GO annotations based on the top 2000 genes positively and negatively associated with the 29-gene signature 
in GBM. (D) GSEA analysis based on the median value of risk score in GBM. 
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Supplementary Figure 10. Association between the energy metabolism-related signature and immune, inflammatory 
responses. (A-B) Correlation analysis between risk score and immune checkpoints. (C-D) Correlation analysis between risk score and 
inflammatory genes. 
 


