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ABSTRACT

It was unknown whether plasma protein levels can be estimated based on DNA methylation (DNAm) levels, and
if so, how the resulting surrogates can be consolidated into a powerful predictor of lifespan. We present here,
seven DNAm-based estimators of plasma proteins including those of plasminogen activator inhibitor 1 (PAI-1)
and growth differentiation factor 15. The resulting predictor of lifespan, DNAm GrimAge (in units of years), is a
composite biomarker based on the seven DNAm surrogates and a DNAm-based estimator of smoking pack-
years. Adjusting DNAm GrimAge for chronological age generated novel measure of epigenetic age acceleration,
AgeAccelGrim.
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Using large scale validation data from thousands of individuals, we demonstrate that DNAm GrimAge stands
out among existing epigenetic clocks in terms of its predictive ability for time-to-death (Cox regression P=2.0E-
75), time-to-coronary heart disease (P=6.2E-24), time-to-cancer (P= 1.3E-12), its strong relationship with
computed tomography data for fatty liver/excess visceral fat, and age-at-menopause (P=1.6E-12).
AgeAccelGrim is strongly associated with a host of age-related conditions including comorbidity count (P=3.45E-
17). Similarly, age-adjusted DNAm PAI-1 levels are associated with lifespan (P=5.4E-28), comorbidity count (P=
7.3E-56) and type 2 diabetes (P=2.0E-26). These DNAm-based biomarkers show the expected relationship with
lifestyle factors including healthy diet and educational attainment.

Overall, these epigenetic biomarkers are expected to find many applications including human anti-aging

studies.

INTRODUCTION

DNAm levels have been used to build accurate
composite biomarkers of chronological age [1-4].
DNAm-based age (epigenetic age) estimators, include
the pan tissue epigenetic clock by Horvath 2013 [1],
based on 353 CpGs, and an estimator developed by
Hannum 2013 [2], based on 71 CpGs in leukocytes.
These estimators predict lifespan after adjusting for
chronological age and other risk factors [5-9].
Moreover, they are also associated with a large host of
age-related conditions [10-20]. Recently, DNAm-based
biomarkers for lifespan (time-to-death due to all-cause
mortality) have been developed [21, 22]. For example,
Zhang et al (2017) combined mortality associated CpGs
[21] into an overall mortality risk score, while Levine et
al (2018) developed a lifespan predictor, DNAmM
PhenoAge, by regressing a phenotypic measure of
mortality risk on CpGs [22].

Many analytical strategies are available for developing
lifespan predictors from DNAm data. The reported
single stage approach involves the direct regression of
time-to-death (due to all-cause mortality) on DNAm
levels. By contrast, the current study employed a novel
two-stage procedure: In stage 1, we defined DNAm-
based surrogate biomarkers of smoking pack-years and
a selection of plasma proteins that have previously been
associated with mortality or morbidity. In stage 2, we
regressed time-to-death on these DNAm-based
surrogate biomarkers. The resulting mortality risk
estimate of the regression model is then linearly
transformed into an age estimate (in units of years). We
coin this DNAm-based biomarker of mortality "DNAm
GrimAge" because high values are grim news, with
regards to mortality/morbidity risk. Our comprehensive
studies demonstrate that DNAm GrimAge stands out
when it comes to associations with age-related con-
ditions, clinical biomarkers, and computed tomography
data.

RESULTS

Overview of the two-stage approach for defining
DNAm GrimAge

We constructed the DNAm GrimAge in two-stages.
First, we defined surrogate DNAm biomarkers of
physiological risk factors and stress factors. These
include the following plasma proteins: adrenomedullin,
C-reactive protein, plasminogen activation inhibitor 1
(PAI-1), and growth differentiation factor 15 (GDF15)
[23, 24]. In addition, given that smoking is a significant
risk factor of mortality and morbidity, we also used
DNAm-based estimator of smoking pack-years. Second,
we combined these biomarkers into a single composite
biomarker of lifespan, DNAm GrimAge, which is
expressed in units of years. We then performed a large-
scale meta-analysis (involving more than 7000 Illumina
array measurements), showing that DNAm GrimAge is
a better predictor of lifespan than currently available
DNAm-based predictors.

Our studies reveal a surprising finding; which is that in
some instances, the DNAm-based surrogate biomarkers
(e.g. for smoking pack-years) is a better predictors of
mortality than the actual observed (self-reported)
biomarker. We also correlated DNAm GrimAge with
lifestyle factors and a host of age-related conditions,
e.g. we demonstrate that these DNAm-based biomarkers
predict time to cardiovascular disease. Finally, we show
that DNAm GrimAge is also associated with age-related
changes in blood cell composition and leukocyte
telomere length.

Training and test data from the Framingham Heart
Study

We began by correlating the levels of 88 plasma protein
variables (measured using immunoassays) with DNAm
array data generated from the same blood samples of
n=2,356 individuals from the Framingham heart study
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(FHS) Offspring Cohort [25] (Supplementary Note 1).
We divided the FHS data randomly into a training set
(70% of the FHS pedigrees, N= 1731 individuals from
622 pedigrees) and a test data set (30% pedigrees,
N=625 individuals from 266 pedigrees, Supplementary
Table 1). The mean age of individuals donating DNA
for the training set was 66 years, while that of
individuals in the test dataset was 67. These participants
had similar demographic profiles, smoking history, and
number of years’ follow-up as those in the training set
(Supplementary Table 1).

Stage 1: DNAm-based surrogate biomarkers of
plasma proteins and smoking pack-years

We used the training data to define DNAm-based
surrogate markers of 88 plasma protein variables and
smoking pack-years. We restricted the analysis to CpGs
that are present on both the Illumina Infinium 450K
array and the new Illumina EPIC methylation array in

order to ensure future compatibility. Each of the 88
plasma protein variables (dependent variable) was
regressed on chronological age, sex, and the CpGs
levels in the training data using an elastic net regression
model [26], which automatically selected a subset of
CpGs (typically fewer than 200 CpGs) whose linear
combination best predicted the corresponding plasma
level in the training data (Methods). For example, the
DNAm levels of 137 CpGs and 211 CpGs allowed us to
estimate the plasma levels of GDF15 and PAI-1,
respectively. The predicted DNAm values of GDF15
and PAI-1 can then be used as surrogate markers for the
measured plasma levels. In general, we denote DNAm-
based surrogate markers of plasma proteins and
smoking pack-years by adding the prefix "DNAm" to
the respective variable name, e.g. DNAm pack-years
(Fig. 1 and Supplementary Table 2).

Not all of the available 88 plasma protein levels were
successfully imputed based on DNAm data.

> Stage 1:Develop DNAm based surrogates for > > Stage 2: Regress time-to-death on DNAm based >

plasma proteins & smoking pack years

biomarkers (from step1), age & gender

1. Candidate biomarker

* Immunoassay measured 88 plasma proteins

Smoking pack year

2. Conduct ElastNet regression to establish DNAm
based surrogates

* Use the FHS training data.

*  Regress each candidate biomarker (dependent
variable) on 485k CpGs, chronological age and
gender.

3. Test process

Validate the accuracy of the DNAm based surrogates

in the FHS test data.

4. Results

A total of 12 DNAm based biomarkers correlate with

their target biomarkers at r >0.35 in both training

and test datasets (e.g. DNAm ADM, DNAmB2M,

DNAm GDF-15, etc. ).

Resulting ElasticNet Cox model

DNAm GrimAge=—50.28483 + 8.3268 « X8

Figure 1. Flowchart for developing DNAm GrimAge. Surrogate DNAm-based biomarkers for smoking pack-years and plasma protein
levels were defined and validated using training and test data from the Framingham Heart study (stage 1). Only 12 out of 88 plasma
proteins exhibited a correlation r >0.35 with their respective DNAm-based surrogate marker in the test data. In stage 2, time-to-death
(due to all-cause mortality) was regressed on chronological age, sex, and DNAm-based biomarkers of smoking pack-years and the 12
above mentioned plasma protein levels. The elastic net regression model automatically selected the following covariates: chronological
age (Age), sex (Female), and DNAm based surrogates for smoking pack-years (DNAm PACKYRS), adrenomedullin levels (DNAm ADM),
beta-2 microglobulin (DNAm B2M), cystatin C (DNAm Cystatin C), growth differentiation factor 15 (DNAm GDF-15), leptin (DNAm Leptin),
plasminogen activation inhibitor 1 (DNAm PAI-1), tissue inhibitor metalloproteinase 1 (DNAm TIMP-1). The linear combination of the
covariate values XTB was linearly transformed to be in units of years. Technically speaking, DNAm GrimAge is a mortality risk estimator.

Metaphorically speaking, it estimates biological age.
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Table 1. Reproducibility and age correlations of DNAm based surrogate biomarkers.

Correlation (r) gjil;l;lg) (N’I=‘e6s2t 5)
Observed Observed

biomarker Age biomarker Age
DNAm based surrogate
adrenomedullin 0.65 0.63 0.38 0.64
beta-2-microglobulin 0.62 0.83 0.43 0.85
CD56 0.86 0.17 0.36 0.17
ceruloplasmin 0.56 0.04 0.49 -0.02
cystatin-C 0.58 0.81 0.39 0.83
EGF fibulin-like ECM proteinl 0.59 0.72 0.41 0.87
growth differentiation factor 15 0.74 0.71 0.53 0.81
leptin 0.68 0.06 0.35 0.05
myoglobin 0.50 -0.04 0.38 0.03
plasminogen activator inhibitor 1 0.69 0.19 0.36 0.16
serum paraoxonase/arylesterase 1 0.57 -0.22 0.51 -0.22
tissue Inhibitor Metalloproteinases 1 0.43 0.92 0.35 0.90
smoking pack-years 0.79 0.17 0.66 0.13

The table reports the correlation coefficients between the observed marker (i.e. observed plasma protein level or self-
reported smoking pack-years) and its respective DNAm-based surrogate marker in 1) the FHS training data and 2) the FHS
test data. Each of the DNA-based surrogate biomarkers (rows) leads to a correlation r > 0.35 in both training and test
datasets (columns 2 and 4). DNAm-based pack-years is highly correlated with the self-report pack-years in both training and
test datasets (r > 0.66). The table also reports the correlation coefficients between the DNAm-based surrogate biomarkers
(rows) and chronological age in the FHS training and test data (columns 3 and 5).

Instead, only 12 of the 88 plasma proteins exhibited a
moderately high correlation coefficient (1>0.35)
between their measured levels and their respective
DNAm-based surrogate marker in the test data set
(Table 1). We focused on these 12 DNAm surrogate
biomarkers in stage 2. Additionally, we constructed a
DNAm-based surrogate of self-reported smoking pack-
years, DNAm pack-years, based on a linear combina-
tion of 172 CpGs.

Stage 2: Constructing a composite biomarker of
lifespan based on surrogate biomarkers

In stage 2, we developed a predictor of mortality by
regressing time-to-death due to all-cause mortality
(dependent variable) on the following covariates: the
DNAm-based estimator of smoking pack-years,
chronological age at the time of the blood draw, sex,
and the 12 DNAm-based surrogate biomarkers of
plasma protein levels. The elastic net Cox regression
model automatically selected the following covariates:
DNAm pack-years, age, sex, and the following 7
DNAm-based surrogate markers of plasma proteins:

adrenomedullin (ADM), beta-2-microglobulim (B2M),
cystatin C (Cystatin C), GDF-15, leptin (Leptin), PAI-1,
and tissue inhibitor metalloproteinases 1 (TIMP-1),
(Supplementary Table 2). DNAm-based biomarkers for
smoking pack-years and the 7 plasma proteins are based
on fewer than 200 CpGs each, totaling 1,030 unique
CpGs (Supplementary Table 2). Details on the plasma
proteins can be found in Supplementary Note 2.

The linear combination of covariates resulting from the
elastic net Cox regression model can be interpreted as
an estimate of the logarithm of the hazard ratio of
mortality. We linearly transformed this parameter into
an age estimate, i.e., DNAm GrimAge, by performing a
linear transformation whose slope and intercept terms
were chosen by forcing the mean and variance of
DNAm GrimAge to match that of chronological age in
the training data (Methods, Fig. 1). In independent test
data, DNAm GrimAge is calculated without estimating
any parameter because the numeric values of all
parameters were chosen in the training data. Following
the terminology from previous articles on DNAm-based
biomarkers of aging, we defined a novel measure of
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epigenetic age acceleration, AgeAccelGrim, which, by
definition, is not correlated (r=0) with chronological
age. Toward this end, we regressed DNAmM GrimAge on
chronological age using a linear regression model and
defined AgeAccelGrim as the corresponding raw
residual (i.e. the difference between the observed value
of DNAm GrimAge minus its expected value). Thus, a
positive (or negative) value of AgeAccelGrim indicates
that the DNAm GrimAge is higher (or lower) than
expected based on chronological age.

Unless indicated otherwise, we used AgeAccelGrim
(rather than DNAm GrimAge) in association tests of
age-related conditions because age was a confounder in

DNAmMGrimAge
DNAMTIMP_1
DNAmCystatin_C
DNAmMGDF_15
Age

DNAmMB2M
DNAmadm
mortality.res
DNAmMPACKYRS
DNAmpai_1
Female

DNAmleptin

-0.05

these analyses. For the same reason, we also used age-
adjusted versions of our DNA-based surrogate markers
(for smoking pack-years and the seven plasma protein
levels). In general, all association tests were adjusted for
chronological age and, when required, other con-
founders as well (such as sex, Methods).

Pairwise correlations between DNAm GrimAge and
surrogate biomarkers

Using the test data from the FHS, we calculated
pairwise correlations between DNAm GrimAge and its
underlying variables (Fig. 2 and Supplementary Table
2). DNAm GrimAge is highly correlated with DNAmM

Corr

Figure 2. Heat map of pairwise correlations of DNAmM based biomarkers. The heat map color-codes the pairwise Pearson
correlations of select variables (surrounding the definition of DNAm GrimAge) in the test data from the Framingham Heart Study
(N=625). DNAm GrimAge is defined as a linear combination of chronological age (Age), sex (Female takes on the value 1 for females
and 0 otherwise), and eight DNAm-based surrogate markers for smoking pack-years (DNAm PACKYRS), adrenomedullin levels (DNAm
ADM), beta-2 microglobulin (DNAm B2M), cystatin C (DNAm Cystatin C), growth differentiation factor 15 (DNAm GDF-15), leptin
(DNAm Leptin), plasminogen activation inhibitor 1 (DNAm PAI-1), issue inhibitor metalloproteinase 1 (DNAm TIMP-1). The figure also
includes an estimator of mortality risk, mortality.res, which can be interpreted as a measure of "excess" mortality risk compared to
the baseline risk in the test data. Formally, mortality.res is defined as the deviance residual from a Cox regression model for time-to-
death due to all-cause mortality. The rows and columns of the Figure are sorted according to a hierarchical clustering tree. The
shades of color (blue, white, and red) visualize correlation values from -1 to 1. Each square reports a Pearson correlation coefficient.
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TIMP-1 (r=0.90) and chronological age (r=0.82). An
estimate of excess mortality risk (called mortality
residual  mortality.res) exhibits higher positive
correlations with both DNAm GrimAge and DNAm
TIMP-1 (r ~ 0.40) than with chronological age (r ~
0.35, Fig. 2), in keeping with our later finding that these
DNAm biomarkers are better predictors of lifespan than
chronological age. With the exception of DNAm
Leptin, all of the DNAm-based biomarkers exhibited
positive correlations with the measure of excess
mortality risk (0.41 > r > 0.16, Fig. 2). With the
exception of DNAm Leptin, all DNAm based surrogate
biomarkers exhibited moderate to strong pairwise
correlations with each other. DNAm Leptin is elevated in
females (Supplementary Fig. 1A, B) consistent with what
has been reported in the literature [27, 28]. After
stratifying by sex, we find that plasma leptin levels
increase weakly with age (r=0.18 and P=2.1E-3 in males;
r=0.19, P=4.8E-4 in females, Supplementary Fig. 1E, F).

Predicting time-to-death in validation data

To evaluate whether our novel DNAm-based bio-
markers are better predictors of lifespan than
chronological age, we analyzed N=7,375 Illumina
methylation arrays generated from blood samples of
6,935 individuals comprising 3 ethnic/racial groups:
50% European ancestry (Caucasians), 40% African
Americans, and 10% Hispanic ancestry (Table 2,
Methods, and Supplementary Note 1). The data came
from different cohort studies: test data from the FHS,
BA23 and EMPC study from the Women’s Health
Initiative (WHI), the InCHIANTI cohort study, and
African Americans from the Jackson Heart Study (JHS).
We stratified each cohort by race/ethnicity (resulting in
9 strata) to avoid confounding and to ascertain whether
the mortality predictors apply to each group separately.

The mean chronological age at the time of the blood
draw was 63.0 years. The mean follow-up time (used
for assessing time-to-death due to all-cause mortality)
was 13.7 years. Since chronological age is one of the
component variables underlying DNAmMGrimAge, it is
not surprising that the latter is highly correlated with
age in each of the study cohorts (» = 0.79, Supple-
mentary Fig. 2).

While each (age-adjusted) component variable
underlying DNAm GrimAge is a significant predictor of
lifespan (Fig. 3), DNAm pack-years (meta-analysis
P=1.7E-47) and DNAm PAI-1(P=5.4E-28) exhibit the
most significant meta-analysis P-values. The fixed
effects = meta-analysis  P-values  reveal  that
AgeAccelGrim stands out when it comes to lifespan
prediction (meta-analysis P=2.0E-75, Fig. 3A). The
same applies when the analysis is restricted to never-

smokers (Supplementary Fig. 3) or to former/current
smokers (Supplementary Fig. 4). AgeAccelGrim remains
a highly significant predictor of lifespan after restricting
the analysis to never-smokers (N=3,988, meta analysis
P=1.1E-16, Supplementary Fig. 3A) or to former/current
smokers (P=3.5E-33, Supplementary Fig. 4A).

Instances in which DNAm-based surrogates
outperform observed biomarkers

The DNAm-based surrogate biomarker for smoking
pack-years has two surprising properties. First, it
predicts lifespan in never-smokers (P=1.6E-6, Sup-
plementary Fig. 3I). Second, the surrogate marker is a
more significant predictor of lifespan than self-reported
pack-years: P=8.5E-5 for DNAm marker versus
P=2.1E-3 for observed pack-years in in the FHS test
data; similarly, P=5.3E-4 versus 0.18 in the InChianti
Study (Supplementary Table 3). The superior predictive
performance of DNAm based surrogate biomarkers vis-
a-vis their observed/ counter parts also applies to PAI-1
plasma levels (P=8.7E-4 for the DNAm marker versus
P=0.074 for the observed levels), TIMP-1 (P=3.8E-4 for
the DNAm marker versus P=0.017), and to a lesser
extent to cystatin C (P=0.019 for the DNAm estimator
versus P=0.054 for the observed level, Supplementary
Table 4).

Mortality prediction based on observed plasma
protein levels

The AgeAccelGrim is a composite biomarker derived
from DNAm-based surrogate biomarkers of plasma
protein levels and smoking pack-years. This begs the
question whether a predictor of lifespan based directly on
observed plasma protein levels and self-reported smoking
pack-years, would outperform its DNAm-based analog?
Analogous to our construction of DNAm GrimAge, we
used a Cox regression model to regress time to-death on
the observed plasma protein levels and self-reported
pack-year in the training data (Methods). The resulting
mortality risk estimator (defined as weighted average of
the observed biomarkers) was linearly transformed into
units of years. The resulting predictor, i.e., observed
GrimAge, and its age-adjusted version. i.e., DNAm based
AgeAccelGrim, were compared in the FHS, showing
similar HRs (observed AgeAccelGrim HR=I1.10,
P=3.2E-7; DNAm based AgeAccelGrim HR= 1.12,
P=8.6E-5, Supplementary Table 5). Overall, this
comparison shows that DNAm levels in general and our
DNAm-based surrogate biomarkers in particular capture
a substantial proportion of the information that is
captured by the 7 selected plasma proteins and self-
reported smoking pack-years. Since our study focuses on
DNAm-based biomarkers, we will only consider DNAm-
based biomarkers in the following.
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Figure 3. Meta analysis forest plots for predicting time-to-death due to all-cause mortality. Each panel reports a meta-
analysis forest plot for combining hazard ratios predicting time-to-death based on a DNAm-based biomarker (reported in the figure
heading) across different strata formed by racial group within cohort. (A) Results for AgeAccelGrim. Each row reports a hazard ratio (for
time-to-death) and a 95% confidence interval resulting from a Cox regression model in each of 9 strata (defined by cohort and racial
groups). Results for (age-adjusted) DNAm-based surrogate markers of (B) adrenomedullin (ADM), (C) beta-2 microglobulin (B2M), (D)
cystatin C (Cystatin C), (E) growth differentiation factor 15 (GDF-15), (F) leptin, (G) plasminogen activation inhibitor 1 (PAI-1), (H) tissue
inhibitor metalloproteinase 1 (TIMP-1) and (l) smoking pack-years (PACKYRS). The sub-title of each panel reports the meta-analysis p-
value and a p-value for a test of heterogeneity Cochran Q test (Het.). (A) Each hazard ratio (HR) corresponds to a one-year increase in
AgeAccelGrim. (B-H) Each hazard ratio corresponds to an increase in one-standard deviation. (I) Hazard ratios correspond to a 1 year
increase in pack-years. The most significant meta-analysis P value (here AgeAccelGrim) is marked in red. A non-significant Cochran Q
test p-value is desirable because it indicates that the hazard ratios do not differ significantly across the strata. For example, the hazard
ratios associated with AgeAccelGrim exhibit insignificant heterogeneity across the strata (Cochran Q test P;2=0.16).

Age-related conditions

Our Cox regression analysis of time-to-coronary heart
disease (CHD), reveals that AgeAccelGrim is highly
predictive of incident CHD (HR=1.07, P=6.2E-24 and
P2=0.4, Fig. 4A). As expected, several underlying
DNAm-based surrogate biomarkers also individually the
predict incident CHD; notably the age-adjusted ver-
of DNAm smoking pack-years (HR=1.02,
P=6.4E-14) and DNAm PAI-1 (HR=1.31 per SD,

sions

P=3.6E-12).

Similarly, time-to-congestive heart failure (CHF) is also
associated with AgeAccelGrim (HR=1.10 and P=4.9E-
9), age-adjusted DNAm cystatin C (HR=2.02 and

Cross sectional studies reveal that AgeAccelGrim is
associated with hypertension (odds ratio [OR]=1.04 and

physical

5.1E-13, Supplementary Fig. 6), type 2 diabetes
(OR=1.02 and P=0.01,
functioning  (Stouffer
mentary Fig. 8). All of the reported associations are in
expected directions,
AgeAccelGrim are associated with lower physical
functioning levels. In women, early age at menopause is
associated  with

Supplementary Fig. 7), and
P=1.7E-8, Supple-

e.g. higher values of

significantly higher values of

AgeAccelGrim (P=1.6E-12, Supplementary Fig. 9A)
and to a lesser extent with all of the age-adjusted

versions of the DNAm based surrogate markers, notably
DNA cystatin C (P=2.2E-6) and DNAm GDF-15
(P=1.3E-5, Supplementary Fig. 9).
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Figure 4. Meta analysis forest plots for predicting time-to-coronary heart disease. Each panel reports a meta-analysis forest
plot for combining hazard ratios predicting time to CHD and the DNAm-based biomarker (reported in the figure heading) across different
strata formed by racial groups within cohorts. (A) Results for AgeAccelGrim. Each row reports a hazard ratio (for time-to-CHD) and a 95%
confidence interval resulting from a Cox regression model in each of 9 strata (defined by cohort and racial groups). Results for (age
adjusted) DNAm-based surrogate markers of (B) adrenomedullin (ADM), (C) beta-2 microglobulin (B2M), (D) cystatin C (Cystatin C), (E)
growth differentiation factor 15 (GDF-15), (F) leptin, (G) plasminogen activation inhibitor 1 (PAI-1), (H) tissue inhibitor metalloproteinase
1 (TIMP-1) and (I) smoking pack-years (PACKYRS). The sub-title of each panel reports the meta-analysis p-value and a p-value for a test of
heterogeneity Cochran Q test (Het.). (A) Each hazard ratio (HR) corresponds to a one-year increase in AgeAccelGrim. (B-H) Each hazard
ratio corresponds to an increase in one-standard deviation. (I) Hazard ratios correspond to a one unit increased in DNAm pack-years. The
most significant meta-analysis P value (here AgeAccelGrim) is marked in red.

DNAm plasminogen activation inhibitor 1

mentary Figs.

5-7 and 9), while lower levels are

AgeAccelGrimAge outperforms (age-adjusted versions
of) DNAm smoking pack-years and the 7 DNAm-based
surrogate markers of plasma protein levels individually
with regards to prediction of time-to-death or time-to-
coronary heart disease (Figs. 3 and 4). However, age-
adjusted DNAm PAI-1 outperforms AgeAccelGrim for
several age-related traits (Supplementary Fig. 5-9),
notably the comorbidity index (defined as the total
number of age-related conditions) where Stouffer's
meta-analysis P value for DNAm PAI-1 (P=7.3E-56) is
more significant than that for AgeAccelGrim (P=2.0E-
16, Fig. 5). As with AgeAccelGrim, higher levels of
age-adjusted DNAm PAI-1 are associated with hyper-
tension status, type 2 diabetes status, time-to-CHD (Fig.
4), time-to-CHF, and early age at menopause (Supple-

associated with disease free status (Stouffer P=2.9E-11,
Supplementary Fig. 10) and better physical functioning
(Stouffer P=1.4E-8, Supplementary Fig. 8).

Heritability analysis

We used pedigree based polygenic models (Methods) to
measure heritability estimates of AgeAccelGrim and the
individual biomarkers. There is significant heritability
for AgeAccelGrim (h? =0.30, P=0.022) and observed
AgeAccelGrim (h? =0.37, P=0.006, Supplementary
Table 6). Similarly, several of our DNAm-based
surrogate biomarkers (PAI1, B2M, ADM, and GDF15)
and their observed counterparts are also highly heritable
(Supplementary Table 6), e.g. DNAm PAI-1 (h? =0.34
and P=7.1E-3), observed PAI-1 levels (h? =0.51 and
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P=6.2E-4), DNAm Beta 2 microglobulin levels (h?
=0.45 andP=2.4E-3), and observed B2M (h? =0.34 and
P=3.3E-3). Overall, these results suggest that many
observed and DNAm-based biomarkers are heritable.

AgeAccelGrim versus other epigenetic measures of
age acceleration

Using the same validation datasets (N=7,375 arrays),
we compared DNAm GrimAge with three widely-used
DNA-based biomarkers of aging: DNAm age estimator
based on different somatic tissues by Horvath (2013)
[1],the DNAm age estimator based on leukocytes by
Hannum (2013) [2] and the DNAm PhenoAge estimator
by Levine (2018) [22]. The respective age-adjusted
measures of epigenetic age acceleration will be denoted
as AgeAccel (or AgeAccelerationResidual), AgeAccel
Hannum, and AgeAccelPheno following the notation of
previous publications. The four epigenetic measures of
age acceleration (including AgeAccelGrim) are in units

A AgeAccelGrim B

of year. AgeAccelGrim exhibits moderate positive
correlations with each of the three alternative measures
of epigenetic age acceleration (0.17 < r < 045,
Supplementary Fig. 11) with the strongest correlation
with AgeAccelPheno. The relatively weak correlation
with Horvath’s pan-tissue clock (r=0.17) probably
reflects the fact that DNAm GrimAge was developed
exclusively with blood methylation data. It is evident
that AgeAccelGrim is superior with respect to meta-
analysis P-values for prediction of time-to-death:
AgeAccelGrim  (P=2.0E-75, HR=1.10), AgeAccel
(Meta P=8.9E-5, HR=1.02, Supplementary Fig. 12),
AgeAccelHannum (Meta P=6.8E-16, HR=1.04),
AgeAccelPheno (Meta P=3.5E-36, HR=1.05). The
results remain qualitatively the same after restricting the
analysis to never-smokers or former/current smokers
(Supplementary Figs. 13 and 14).

Similarly, AgeAccelGrim stands out when comparing
individuals in the top 20% percentile of epigenetic age
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Figure 5. Meta-analysis of associations with total number of age-related conditions. Each panel reports a meta-analysis
forest plot for combining regression coefficients between the comorbidity index and the DNAm-based biomarker (reported in the figure
heading) across different strata, which are formed by racial group within cohort. (A) Meta analysis of the regression slope between
AgeAccelGrim and the comorbidity index. Analogous results for (age-adjusted) DNAm based surrogate markers of (B) adrenomedullin
(ADM), (C) beta-2 microglobulin (B2M), (D) cystatin C (Cystatin C), (E) growth differentiation factor 15 (GDF-15), (F) leptin, (G)
plasminogen activation inhibitor 1 (PAI-1), (H) tissue inhibitor metalloproteinase 1 (TIMP-1) and (1) smoking pack-years (PACKYRS). The
individual study results were combined using fixed effect meta-analysis (reported in the panel heading). Cochran Q test for
heterogeneity across studies (Het.). The effect sizes correspond to one year of age acceleration in panel A, one pack-year in panel | and
one standard deviation in other panels for DNAm proteins. The estimate with the most significant meta P value is marked in red.
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acceleration to those in the bottom 20% percentile
(Stouffer meta-analysis P= 6.4E-38, Supplementary Fig.
15), AgeAccelPheno (P=5.7E-21), AgeAccelHannum
(P=1.3E-5), and AgeAccel (P=0.17).

When it comes to significant associations with
comorbidity index, age-adjusted DNAm PAI-1(
Ppnam pai—1=7-3E-56, Fig.5) outperforms all other
DNAm-based biomarkers including AgeAccelGrim
(Pageaccetgrim  =2.0E-16)  and  AgeAccelPheno

(Pageaccetpheno=7-8E-21, Supplementary Fig. 16).

AgeAccelGrim is more informative than
AgeAccelPheno in predicting time-to-CHD
(PAgeAccelGrim =6.2E-24 and HRAgeAccelGrim:1-07
Versus PAgeAccelPheno: 1.7E-8 and HRAgeAccelPheno
=1.03, Supplementary Fig. 17) even after stratifying the
analysis by smoking status (Supplementary Figs. 18 and
19).

AgeAccelGrim greatly outperforms the other 3
measures of epigenetic age acceleration including
predicting time to (any) cancer (AgeAccelGrim P=
1.3E-12 versus AgeAccelPheno P=2.7E-3, Supple-
mentary Fig. 20) and as related to an inverse association
with early age at menopause in women (AgeAccelGrim
P=1.6E-12 versus AgeAccel P=2.2E-3, Supplementary
Fig. 21). A sensitivity analysis reveals that the latter
finding remains qualitatively the same even after
removing the InChianti cohort, which exhibited the
strongest negative association between epigenetic age
acceleration and age at menopause (Supplementary Fig.
22).

Multivariate Cox models adjusting for traditional
risk factors

The above-mentioned Cox regression models were
adjusted for age at blood draw (baseline), batch,
pedigree, and intra-subject correlation as needed. We
also fit multivariate Cox regression models that
included additional covariates assessed at baseline:
body mass index, educational level, alcohol intake,
smoking pack-years, prior history of diabetes, prior
history of cancer, and hypertension status (Methods).
Even after adjusting for these known risk factors for
morbidity, AgeAccelGrim remained a highly significant
predictor of lifespan (P=5.7E-29, Supplementary Fig.
23) and time-to-CHD (P=3.7E-11, Supplementary Fig.
24) and outperformed previously published measures of
epigenetic age acceleration.

Stratified analyses

We evaluated AgeAccelGrim and underlying DNAm
biomarkers in different strata characterized by age

(younger/older than 65 years), body mass index (obese
versus non-obese), educational attainment, prevalent
condition at baseline such as prior history of cancer,
type 2 diabetes, or hypertension. In all of these strata,
AgeAccelGrim remains a significant predictor of time-
to-death (Supplementary Table 7) and time-to-CHD
(Supplementary Table 8). Furthermore, AgeAccelGrim
outperforms existing DNAm-based biomarkers of aging
in all strata except for one (comprised of n=281
individuals with a prior history of cancer).

These subgroup analysis results also confirm that
epigenetic age acceleration is an independent predictor
of earlier mortality even after adjusting for possible
confounders and within major subgroups of the popula-
tion. Additional results applied to age-adjusted DNAm
proteins and DNAm pack-years are listed in Supple-
mentary Data 1. With few exceptions, we found that
DNAm-based PAI-1, TIMP-1 and pack-years remained
highly significant in each stratum.

Exceptionally fast/slow agers

The DNAm GrimAge estimate allows an intuitive
interpretation as physiological age since it is in units of
years. However, if someone is 8 years older than
expected, this does not mean that this person has on
average a 8 year shorter life expectancy. Rather, one
should use the hazard ratio when it comes to assessing
mortality risks. It is a statistical co-incidence that the
hazard ratio associated with one-year increase in
AgeAccelGrim is the same in strata comprised of never-
smokers (HR=1.10, Supplementary Fig. 3A),
former/current smokers (HR=1.10, Supplementary Fig.
4A), and among all individuals combined (HR=1.10,
Fig. 3A). This allows us to evaluate the mortality risks
in exceptionally fast and slow agers (according to
AgeAccelGrim) irrespective of their smoking status.
The top 5" percentile and the 95% percentile of
AgeAccelGrim corresponds to -7.5 years and + 8.3
years respectively (Supplementary Table 9). A person in
the top 95" percentile of AgeAccelGrim (=8.3 years)
faces a hazard of death that is twice that of the average
person in their stratum (whose AgeAccelGrim equals
0). Specifically, fast aging status is associated with a
hazard ratio of HR=2.2=1.10*’. Conversely, a slow ager
in the bottom 5™ percentile (-7.5 years) faces a hazard
of death that is half that of the average person in their
stratum, HR=0.49=1.107".

DNAm GrimAge versus single stage estimators of
mortality risk

DNAm GrimAge was built using a novel two-stage
approach that critically depended on the development of
DNAm-based surrogate biomarkers. To justify the

WWWw.aging-us.com

AGING



utility of this indirect approach, we compared DNAm
GrimAge with several DNAm-based mortality risk
predictors that were developed by directly regressing
lifespan on DNAm data (referred to as single stage
mortality predictors). To this end, we developed a new
mortality predictor, DNAm Mortality (in year units) by
directly regressing time-to-death (due to all-cause
mortality) on CpGs in the FHS training data. DNAm
Mortality was calculated as linear combination of 59
CpGs. The direct approach entailed the constructions of
DNAm Mortality, an elastic net Cox regression model,
and linear transformation of the mortality risk to ensure
that the values of DNAm Mortality are in units of years
(Methods). In addition, we also evaluated the published
mortality predictor by Zhang [21] which, remarkably, is
based on only 10 CpGs (Methods). The latter two
(single-stage) lifespan predictors were found to
correlate highly with each other (r=0.77 in the FHS test
data).

The novel age-adjusted DNAm Mortality estimator
(HR=1.07, P=3.0E-44) and both versions of Zhang's
mortality risk estimator (P=4.2E-39, Supplementary
Fig. 25) lead to a less significant meta-analysis P-value
for lifespan prediction than AgeAccelGrim (P=2.0E-
75). It is not meaningful to compare HR estimates (here
HR=1.02 and HR=1.10, respectively) because these HR
estimates critically depend on the scale/distribution of
the respective mortality predictors. To provide a
meaningful and scale-independent comparison, we
focused on the meta-analysis P-values.

AgeAccelGrim also stands out in terms of its meta-
analysis  P-value for predicting time-to-CHD
(AgeAccelGrim P=6.2E-24, AgeAccelMortality
P=4.6E-11, AgeAccelZhang P=9.5E-12, Supplementary
Fig. 26).

It is useful to characterize the different lifespan
predictors in terms of their correlation with DNAm
pack-years because smoking is a major risk factor. Age-
adjusted DNAm pack-years exhibits positive correla-
tions with both DNAm Mortality and Zhang's mortality
predictor (» > 0.55). The connection of single stage
mortality predictors to smoking can also be observed at
the CpG level. DNAm Mortality, Zhang’s mortality
predictor, and DNAm pack-years explicitly use CpG
cg05575921 (in the AHRR gene on chromosome
5p15.33), which has previously been identified by
epigenome-wide association studies of cumulative
smoking exposure [21, 29]. Overall, these results
suggest that the two single-stage lifespan predictors
relate more strongly to cumulative smoking exposure
than does AgeAccelGrim.

Association with blood cell composition

DNAm data allow one to estimate several quantitative
measures of blood cell types as described in Methods
[30, 31]. We previously showed that DNAm biomarkers
of aging, which capture age-related changes in blood
cell composition, are better predictors of lifespan than
those that are independent of blood cell counts [7].
Therefore, we hypothesized that several of our novel
DNAm biomarkers would exhibit significant cor-
relations with these imputed measures of blood cell
composition. This is indeed the case as can be seen
from our large scale meta-analysis across the validation
data (Supplementary Fig. 27, Supplementary Data 2).
AgeAccelGrim is significantly associated with a
decrease in naive CD8 naive cells (r=-0.22, P=9.2E-62,
Supplementary Fig. 27A and Supplementary Data 2),
CD4+T cells (r=-0.21, P=1.8E-57), and B cells (r=-0.18,
P=9.7E-43) and with an increase in granulocytes/neut-
rophils (r=0.24, P=1.5E-74) and plasma blasts (r=0.22,
P=7.3E-63). While these results demonstrate that
AgeAccelGrim is associated with an age-related decline
in immune system functioning, our cross sectional
analysis does not allow us to dissect cause-and-effect
relationships.

Age-adjusted DNAm TIMP-1 exhibits the most
significant correlations with the measures of blood cell
composition (e.g. proportion of granulocytes 1=0.36,
P=2.7E-172, Supplementary Fig. 27H and Supplemen-
tary Data 2) followed by age-adjusted DNAm Cystatin
C (proportion of CD4+ T cells counts r=-0.33, P=3.4E-
142). Although many of our DNAm biomarkers are
correlated with blood cell counts, this does not mean
that these measures only capture changes in blood cell
composition as can be seen from the following. First,
measures of blood cell composition correlate weakly
with our age-adjusted DNAm surrogate markers of
smoking pack-years (strongest correlation r=-0.14,
Supplementary Fig. 271) and PAI-1 levels (strongest
correlation r=0.17, Supplementary Fig. 27G) even
though both biomarkers are strongly associated with
mortality risk and age-related conditions as shown
above. Second, the DNAm surrogate markers remain
significant predictors of mortality in multivariate Cox
regression models that include blood cell counts as
additional covariates as detailed in the following.

Cox models that include blood cell counts

Our multivariate Cox regression models demonstrate
that AgeAccelGrim remains highly predictive of
lifespan (P=2.6E-53) even after adjusting for seven co-
variates that assess imputed blood cell counts
(Supplementary Fig. 28A). Note that this p-value is only
slightly lower than that obtained without adjustment for
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blood cell counts (P=2.0E-75 in Fig. 3A). Further,
AgeAccelGrim remains highly predictive for time-to-
CHD (OR=1.07, P=1.1E-17 Supplementary Fig. 29A)
even after adjusting for blood cell counts.

Similarly, our other DNAm biomarkers (such as DNAm
PAI-1, DNAm PACKYRS) remain predictive of
lifespan and time-to-CHD after adjusting for blood cell
counts (Supplementary Figs. 28 B-I and 29 B-I). While
this adjustment typically lowers statistical significance
levels, there is one notable exception: DNAm leptin
levels exhibits more significant P values after adjusting
for blood cell counts (Supplementary Fig. 28 F versus
Fig. 3F; Supplementary Fig. 29F versus Fig. 4F).

Association with leucocyte telomere length

Leukocyte telomere length (LTL) has been found to be
weakly predictive of mortality and cardiovascular
disease. Our meta-analysis reveals a statistically
significant but weak negative correlation between LTL
and AgeAccelGrim (= -0.12 and meta P= 3.3E-10,
Supplementary Table 10) across data from the FHS,
WHI (BA23 sub-study) and JHS (total N =2,702, 27%
White and 73% African American). Similarly, LTL
exhibits (weak) negative correlations with DNAm based
surrogate biomarkers for GDF-15 (= -0.10, meta P=
3.4E-7), DNAm PAI-1 (= -0.10, meta P= 5.1E-8) and
DNAm smoking pack-years (= -0.09 and meta P=
2.9E-6).

Functional annotation of sets of CpGs

The genomic locations of the 1030 CpGs underlying the
DNAm GrimAge estimator were analyzed using the
GREAT software tool [32] which assigns biological
meaning to a set of genomic locations (here CpGs) by
analyzing the annotations of nearby genes. At a false
discovery rate of FDR < 0.05 we found 361 gene sets
from GO, KEGG, PANTHER. Among those, 28
surpassed the more stringent Bonferroni correction
including MHC class II receptor activity (nominal
P=1.2E-6), cytokine-mediated signaling pathway
(P=6.9E-5), response to interferon-gamma (P=1.5¢e-4),
regulation of protein sumoylation (P=4.4E-5), endo-
derm formation (P=5.9E-5), epigenetic regulation of
gene expression (P=6.7E-5), and fatty acid trans-
membrane transport (P=9.5E-5).

Similarly, we evaluated sets of CpGs underlying
DNAm-based surrogate biomarkers. At FDR < 0.05, we
found n=388, 307, and 153 significant gene sets for
DNAm B2M, PAI-1, and Cystatin-C, respectively. Of
those, the top gene sets are involved in immune function
(nominal P=1.1E-9 for DNAm B2M CpGs), adipo-

cytokine signaling pathway (P =3.6E-7 for DNAm PAI-
1 CpGs) or lipid function (P =3.8E-7 for DNAm PAI-1
CpGs). The significant gene sets for all DNAm
surrogate biomarkers can be found in Supplementary
Data 3.

Diet, education, and life style factors

Several previous measures of epigenetic age
acceleration in blood have been shown to exhibit
statistically significant but weak correlations with
lifestyle factors and biomarkers of metabolic syndrome
[22, 33]. Here we revisited these cross-sectional studies
in the WHI (comprising approximately 4000 post-
menopausal women, Methods) with our novel measures
of AgeAccelGrim and its underlying DNAm-based
surrogate biomarkers (Fig. 6).

All (age-adjusted) DNAm-based biomarkers correlate
with plasma biomarkers measuring vegetable
consumption, but AgeAccelGrim (robust correlation
coefficient r=-0.26, P=9E-39, Fig. 6) and DNAm PAI-1
(r=-0.25, P=7E-36) stand out in terms of their strong
relationship with mean carotenoid levels (Fig. 6, Sup-
plementary Fig. 30). Far less significant associations
could be observed for self-reported measures of fruit,
vegetable, and dairy intake, which highlights the
limitations of self-reported measures of dietary intake.

The following novel results could not be observed with
previous DNAm-based biomarkers of aging: (self-
reported) proportion of carbohydrate consumption was
associated with lower AgeAccelGrim (robust
correlation r=-0.12, P=4E-13) and DNAm PAI-1 (r=-
0.15, P=3E-20). Conversely, an increased proportion of
fat intake (but not protein intake) was associated with
increased AgeAccelGrim (r=0.09, P=2E-8) and DNAm
PAI-1 (r=0.13, P=1E-14). Measures of lipid meta-
bolism, triglyceride levels and HDL cholesterol levels,
were significantly correlated with AgeAccelGrim
(r=0.11 and r=-0.10, respectively) and even more so
with (age adjusted) DNAm PAI-1 levels (1=0.34 and r=-
0.11). Similarly, measures of glucose metabolism,
insulin- and glucose levels, exhibited positive cor-
relations with AgeAccelGrim (r=0.16 and r=0.12,
respectively) and with (age adjusted) DNAm PAI-1
levels (r=0.30 and r=0.22).

Similar to what we observed with previous DNAm
based biomarkers of aging, plasma C-reactive protein
levels exhibited comparatively strong positive cor-
relations with DNAm-based biomarkers, particularly
AgeAccelGrim (r=0.28, P=2E-52), DNAm TIMP-1
(r=0.27, P=2E-49), and DNAm PAI-1 (r=0.26, P=1E-
46).
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Figure 6. Cross sectional correlations between DNAm biomarkers and lifestyle factors. Robust correlation coefficients
(biweight midcorrelation [62]) between 1) AgeAccelGrim and its eight age-adjusted underlying DNAm-based surrogate biomarkers and 2)
38 variables including self-reported diet, 9 dietary biomarkers, 12 variables related to metabolic traits and central adiposity, and 5 life
style factors. The 2-color scale (blue to red) color-codes bicor correlation coefficients in the range [-1, 1]. The green color scale (light to
dark) applied to unadjusted P values. The analysis was performed on the WHI cohort in up to 4200 postmenopausal women. An
analogous analysis stratified by race/ethnicity can be found in Supplementary Fig 30.

Measures of adiposity, BMI and waist-to-hip ratio, are
associated with increased AgeAccelGrim, age-adjusted
DNAm PAI-1, and other DNAm-based surrogate bio-
markers. Higher education and income are associated
with lower AgeAccelGrim (P=2E-9 and P=2E-6).
AgeAccelGrim stands out when it comes to detecting a
beneficial effect of physical exercise (r=-0.10, P=3E-10).

Several of our results in the WHI could be replicated in
a smaller dataset (N< 625 individuals from the FHS test
data) that included lipid and metabolic biomarker data
(Supplementary Fig. 31). In the FHS, hemoglobin A1C
and albumin levels (in urine) exhibited significant
positive correlations with AgeAccelGrim, age-adjusted
DNAm PAI-1 (0.10 <7 <0.12 and 1.4E-7 < P <2.3E-3),
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and to a lesser extent with our other DNAm based
surrogate biomarkers (Supplementary Fig. 31).

Omega-3 polyunsaturated fatty acid
supplementation

Omega-3  polyunsaturated fatty acid (PUFAs)
supplementation is increasingly used for protection
against cardiovascular disease. However, omega-3
PUFA supplementation was not found to be associated
with a lower risk of cardiac death, sudden death,
myocardial infarction, stroke, or all-cause mortality,
[34-36]. We studied the association between self-
reported omega-3 intake and AgeAccelGrim in n=2,174
participants of the FHS and found that omega-3 acids
intake was negatively correlated with AgeAccelGrim
(robust correlation r=-0.10, P=4.6E-7, linear mixed
effects P=1.3E-5, Supplementary Table 11). The effect
of omega 3 supplementation is more pronounced in
males (r=-0.08, P=0.012) than in females (r=-0.05,
P=0.07).

A multivariate linear mixed model analysis revealed an
association between AgeAgelGrim and omega-3 acid
levels (linear mixed effects P=0.017) after adjusting for
gender, educational levels, data status (an indicator of
training data), and smoking pack-year.

Computed tomography measures of fatty organs

Computed tomography (CT) imaging techniques
provide "shadow images of fat" that can be used for the
indirect quantification of organ quality (e.g. liver).
Radiographic pixels measure the density of an organ
(referred to as attenuation) in Hounsfield units (HU).
CT scans are used for diagnosing fatty liver disease: a
low density/attenuation value (low HU) is associated
with Aigh fat content in the liver.

We analyzed CT scan data from liver, spleen, paraspinal
muscle, visceral adipose tissue (VAT), and sub-
cutaneous adipose tissue (SAT) from the Framingham
Heart Study cohort [37, 38] (Methods).

As expected, BMI exhibited strong positive correlations
with volumetric measures of SAT (r=0.82, Fig. 7) and
VAT (r=0.69). Further, we observed strong negative
correlations between body mass index and density
(attenuation) values in liver (r=-0.55, p=1E-101, Fig. 7),
spleen (r=-0.62,P=3E-157), paraspinal muscle (r=-0.34,
P=7E-42), subcutaneous adipose tissue (SAT, r=-0.42,
P=2E-49), and visceral adipose tissue (VAT, r=-0.60,
P=1E-126). With the exception of muscle, CT values
exhibit only weak correlations with chronological age in
this cohort comprised of older individuals (Sup-
plementary Fig. 32). We previously found that body

mass index is strongly correlated (1=0.42) with
epigenetic age acceleration in human liver but exhibits
only weak correlations with epigenetic age acceleration
in blood (r around 0.10) [39].

Compared to previous epigenetic biomarkers of aging
(Supplementary Fig. 33), AgeAccelGrim and DNAm
PAI-1 stand out in terms of their strong correlations
with CT-derived measures of adiposity (Fig. 7):
AgeAccelGrim is negatively correlated with liver
density (bicor= -0.24, P=1.79E-10) and positively
correlated with VAT volume (bicor=0.23, P=1.77E-12)
in both sexes.

Most of our DNAm-based surrogate biomarkers of
proteins are significantly associated with CT measures
of adiposity (Fig. 7) except for our DNAm-based
surrogate biomarkers of B2M and smoking pack-years
(which exhibit non-significant correlations after
adjusting for multiple comparisons).

The  strong  marginal correlations  between
AgeAccelGrim and CT measures beg the question
whether they reflect confounding by BMI or sex. This is
not the case as can be seen from a multivariate
regression model that regressed AgeAccelGrim
(dependent variable) on BMI, sex, and several CT
derived measures of organ density and fat volume. Even
after  adjusting  for  potential  confounders,
AgeAccelGrim exhibits a significant association with
liver density (P=6.86E-4) (Model I in Supplementary
Table 12 and Methods). Interestingly, BMI is no longer
associated with AgeAccelGrim after adjusting the
analysis for liver density or VAT volume
(Supplementary Table 12) which suggests that liver
density mediates the relationship between BMI and
AgeAccelGrim.

A multivariate model analysis reveals that
AgeAccelGrim is more strongly associated with VAT
volume (P= 5.54E-4) than with SAT volume (Model 11
in Supplementary Table 12) which supports the widely
held view that VAT is more dangerous than SAT.

A comprehensive multivariate model that includes both
organ density measures and volumetric measures of
SAT/VAT reveals that liver density (P=7.32E-3)
exhibits the most significant association with
AgeAccelGrim (Model I1I in Supplementary Table 12).

Age-adjusted DNAm-based surrogate markers of PAI-1,
ADM, TIMP-1, and leptin also exhibit significant
correlation with the CT measures (Fig. 7). The finding
associated with age-adjusted DNAm leptin echoes the
earlier significant association between immunoassay
based leptin with SAT and VAT variables [37].
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Figure 7. Computed tomography variables versus with body mass index and age-adjusted DNAm biomarkers in the FHS.
The columns correspond to BMI, AgeAccelGrim and age-adjusted DNAm surrogates of plasma proteins. The rows correspond to
computed tomography-derived organ density measures (Hounsfield units) or volumetric measures for subcutaneous adipose tissue (SAT
CM3) or visceral adipose tissue (VAT CM3). The columns report the available sample size (n) in the FHS, the robust correlation coefficient
(bicor, based on the biweight midcorrelation coefficient [62]). To avoid confounding by pedigree structure, we computed the p-value
using a linear mixed effect model (pedigree as random effect). The bicor correlation coefficients are color-coded (blue to red) across its
range of [-1, 1]. P-values are color-coded in green (light to dark green scale). We applied the correlation analysis to males and females,
respectively, and then combined the results via fixed effect models weighted by inverse variance (listed in the top rows, denoted as “ALL”).

Age adjusted DNAm PAI-1 exhibits the strongest
associations with CT-based measures of adiposity: it is
strongly and positively correlated with VAT volume
(r=0.42, P=1.5E-41, Figu 7), SAT volume (r=0.28) and
negatively correlated with liver density (r=-0.41,
P=2.9E-37), VAT density (r=-0.37), and spleen density
(r=-0.23). A multivariate regression analysis of age-
adjusted PAI-1 (dependent variable) reveals highly
significant associations with liver density (P=3.17E-14
in Model I) and VAT volume (P=4.22E-13, Model 1I in
Supplementary Table 13) even after adjusting for BMI
and other confounders. Including all CT variables as
covariates in a multivariate model reveals significant
associations with both liver density (P=3.16E-8) and
VAT volume (P=1.38E-7, Model III in Supplementary
Table 13).

Overall, these results suggest that fatty liver and excess
VAT are the most significant CT-based measures of
(age-adjusted) DNAm PAI-1 and DNAm Grim.

DISCUSSION

Several articles have previously described DNAm-based
biomarkers for measuring tissue age and for predicting
lifespan [10, 40]. This work shows that DNAm
GrimAge, which is as a linear combination of chronolo-
gical age, sex, and DNAm-based surrogate biomarkers
for seven plasma proteins and smoking pack-years,
outperforms all other DNAm-based biomarkers, on a
variety of health-related metrics. An age-adjusted version
of DNAm GrimAge, which can be regarded as a new
measure of epigenetic age acceleration (AgeAccelGrim),
is associated with a host of age-related conditions,
lifestyle factors, and clinical biomarkers. Using large
scale validation data from three ethnic groups, we
demonstrate that AgeAccelGrim stands out among pre-
existing epigenetic clocks in terms of its predictive ability
for time-to-death, time-to-coronary heart disease, time-to-
cancer, its association with computed tomography data
for fatty liver/excess fat, and early age at menopause.
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Our DNAm-based surrogate biomarker of smoking
might complement self-reported assessments of pack-
years. The surprising finding that DNAm pack-years
outperforms self-reported pack-years in predicting
lifespan could reflect a) erroneous self-reporting or b)
the fact that DNAm pack-years captures intrinsic
variation across individuals with lasting biological
damage that results from smoking, i.e., inter-individual
sensitivities to smoking.

Markers of inflammation and metabolic conditions are
associated with several epigenetic biomarkers including
AgeAccelGrim, age-adjusted DNAm TIMP-1, and
DNAm PAI-1. However, DNAm PAI-1 stands out
when it comes to associations with type 2 diabetes
status, glucose-, insulin-, triglyceride levels, anthro-
pometric measures of adiposity (body mass index and
waist-to-hip ratio), and computed tomography data on
fatty liver and excess adipose tissue.

Our DNAm-based surrogate biomarkers of plasma
protein levels may be leveraged by researchers who rely
on bio-banked DNA samples without the availability of
plasma samples. Strong evidence supports links
between plasma proteins used in the construction of
GrimAge and various age-related conditions: ADM
levels are increased in individuals with hypertension
and heart failure [41]. Plasma B2M is a clinical
biomarker associated with cardiovascular disease,
kidney function, and inflammation [42]. Plasma
cystatin-C is used to assess kidney function [43]. ADM,
B2M, cystatin C, and leptin relate to many age-related
traits including cognitive functioning [44-46]. GDF-15
is involved in age-related mitochondrial dysfunction
[46]. PAI-1 plays a central role in a number of age-
related subclinical and clinical conditions[47], and
recent genetic studies link PAI-1 to lifespan [48]. The
tissue inhibitor of metalloproteinases, TIMP-1, plays an
anti-apoptotic function [49]. We acknowledge the
following limitations. The levels of relatively few
plasma proteins (12 out of 88) were accurately imputed
based on DNAm levels in blood. In the FHS data, the
measurement of the plasma proteins (exam 7) preceded
the measurement of blood DNAm data (exam 8) by 6.6
years, suggesting that the DNAm profiles may not
represent a highly accurate snapshot of the status of
these proteins at the time of blood collection. That said,
the elucidation of cause-and-effect relationships
between plasma proteins and DNAm will require future
longitudinal cohort studies and mechanistic evaluations.
Despite their obvious strengths, DNAm-based bio-
markers are unlikely to replace existing clinical bio-
markers such as blood glucose or blood pressure
measurements in medical practice. Rather, these
epigenetic biomarkers are expected to complement
existing clinical biomarkers when evaluating the

individual’s ‘aging’ status. Since DNAm captures
important properties of the DNA molecule, these
DNAm biomarkers are proximal to innate aging
processes [10].

Beyond lifespan prediction, AgeAccelGrim (and several
of its underlying surrogate biomarkers including DNAm
PAI-1) relate to many age-related conditions (multi-
morbidity, metabolic  syndrome, markers of
inflammation) in the expected way, i.e. high values are
associated with a bad risk profile.

In general, epigenetic aging is distinct from senescence-
mediated aging and is not prevented by telomerase
expression [50-52]. In spite of this, we do find that
higher values of AgeAccelGrim (and several DNAm-
based surrogate markers) are associated with shorter
telomere length and an imputed blood cell composition
that is indicative of immunosenescence.

Overall, we expect that these DNAm-based biomarkers
will find useful applications in numerous human
studies, especially those of anti-aging interventions.

METHODS

Study cohort

To establish DNAm based estimators and DNAm
GrimAge, we used 2,356 individuals composed of 888
pedigrees from the FHS cohort [25], a large-scale
longitudinal study started in 1948, initially investigating
risk factors for cardiovascular disease (CVD). The FHS
cohort contains medical history and measurements,
immunoassays at exam 7, and blood DNA methylation
profiling at exam 8. The technology of immunoassay
was based on Luminex xMAP assay, an extension of the
enzyme-linked  immunosorbent assay  (ELISA)
performed with multiple analyte-specific capture
antibodies bound to a set of fluorescent beads. The
DNA methylation profiling was based on the Illumina
Infinium HumanMethylation450K BeadChip.

We assigned 70% pedigrees (1731 individuals/622
pedigrees) to the training process and the remaining
30% of pedigrees (625 individuals/266 pedigrees) to the
FHS test data (Supplementary Table 1). The training
dataset was used to build the DNAm based surrogate
markers for plasma proteins, smoking pack-years, and
the composite biomarker DNAm GrimAge.

Validation data from S cohorts
Our validation analyses involved 7,375 Illumina arrays

measuring blood methylation levels in N=6,935
individuals from five independent cohorts: the FHS test
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dataset (N=625), WHI BA23 (N=2107), WHI EMPC
study (N=1972), JHS (N=1747), and InChianti (N=924
from 1 to 2 longitudinal measures on 484 individuals,
Table 2 and Supplementary Note 1). All the statistical
analyses were adjusted for the correlation structure due
to pedigree effects or repeated measurements as
described below.

Estimation of surrogate DNAm based biomarkers

We developed estimators for plasma proteins based on
blood methylation data. We leveraged immunoassay
measurements in the FHS which profiled 88 plasma
protein biomarkers (in units of pg/mL), including
cardiovascular disease related plasma proteins such as
C-reactive protein [53] and growth differentiation factor
15 (GDF-15) [54]. For each protein marker, missing
values were imputed by the respective median value.
The median missing rate was < 0.3%. Next the resulting
observed plasma levels were regressed on DNAm data
in the FHS training data.

Each plasma protein was regressed on the CpGs using
the elastic net regression model implemented in the R
package glmnet. Ten-fold cross validation was
performed in the FHS training data to specify the
underlying tuning parameter A. The selection of CpGs
by the penalized regression model is not robust. Similar
estimator could be built using different sets of CpGs.

We required the predicted variable associated with the
target variable with >0.35 correlation in both training
and test datasets. Only 12 out of 88 proteins exhibited a
correlation greater than 0.35 between observed plasma
levels and their respective DNAm based estimators in
the FHS test data (Table 1). The missing rates of the 12
ImmunoAssay proteins were less than 0.7%. The
correlation estimates have a distribution of 0.64+0.12
[0.43, 0.86] (mean+tSD [range]) in the training dataset
and a distribution of 0.43+0.09 [0.35, 0.66] in the test
dataset.

DNA methylation data

Our study involved DNA methylation data generated on
two different Illumina array platforms: Illumina Inf
450K array and the Illumina EPIC array. Our analysis
focused on the subset of 450,161 CpGs that were
present on both platforms. We used meta analysis
techniques to combine the results from the difference
cohorts since the respective methylation data were
normalized using different methods, e.g. the WHI BA23
were normalized using the background correction
method implemented in GenomeStudio. By contrast, the
JHS data were normalized using the "noob" nor-
malization method implemented in the minfi R package

[55, 56]. We kept the original normalization methods to
ensure consistency with previous publications.

Smoking Pack-Years

The variable "smoking pack-years" attempts to measure
the cumulative amount of cigarettes consumed by the
smoker. It is calculated by the number of packs of
cigarettes smoked per day multiplied by the number of
years the person smoked. We computed smoking pack-
years using the information up to exam 8 in the FHS
cohort.

Definition of DNAm GrimAge

We again used an elastic net Cox regression model[26]
to regress time-to-death (due to all-cause mortality)
since exam 7 on the 12 DNAm based surrogate markers
for plasma proteins and on DNAm PACKYR,
chronological age, and sex. As part of stage 2, we
validated the accuracy of the DNAm based surrogate
markers for their observed counterparts in the FHS test
dataset. However, mortality predictor (DNAmGrimAge)
was only fit in the FHS training dataset (N=1731). In the
training dataset, we performed 10-fold cross validation to
specify the value of the tuning parameter A. A completely
unbiased evaluation of DNAm GrimAge is achieved in
the validation data sets (WHI, JHS, and InChianti).

Calibration of DNAm GrimAge into units of years

The final elastic net Cox model listed in Supplementary
Table 2 results in an uncalibrated DNAm GrimAge
estimate, which can be interpreted as the linear
combination of the covariates, XT3 , or alternatively as
the logarithm of the hazard ratio,

log[ h(t)/ho(t)] = X" B,

where hy(t) is the baseline hazard at time. The linear
combination, XTB, can be interpreted as an un-
calibrated version of DNAm GrimAge. To facilitate an
intuitive interpretation as a physiological age estimator,
we linearly transformed it so that the resulting estimate
would be in units of years. Toward this end, we
imposed the following requirement:

the mean and variance of the resulting value, DNAm
GrimAge, should be the same as the mean and variance
of the age variable in the FHS training data (exam 7).

This resulted in the following transformation
DNAm GrimAge = —50.28483 + 8.3268 * X7 .

Observed GrimAge

While our DNAm GrimAge was defined with respect to
DNAm based surrogate biomarkers, our observed Grim
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Age estimators is not based on DNA methylation levels.
Rather, it is based on observed plasma protein levels,
self-report pack-years, age, and gender. Observed
GrimAge was built by fitted a Cox regression model
using the observed variables in the same FHS training
data that were used for building the DNAm GrimAge
estimator. We computed a corresponding measure of
age acceleration, called observed AgeAccelGrim, by
adjusting observed GrimAge for chronological age
(defined as raw residual resulting from regressing
observed GrimAge on chronological age).

Statistical models used in validation analysis

Validation analysis was performed on 7,735
observations across 6,395 individuals (Table 2 and
Supplementary Note 1) coming from five datasets: the
FHS test dataset (N=625), WHI BA23 (N=2107), WHI
EMPC (N=1972), Jackson Heart Study (JHS, N=1747),
and InChianti study (N=924 from 1 to 2 longitudinal
measures on 484 individuals, Table 2 and Supple-
mentary Note 1). Our validation analysis involved 1)
Cox regression for time to death, for time-to-CHD, and
for time to coronary heart failure, ii) linear regression
for our DNAm based measures (independent variable)
associated with and number of age-related conditions
(dependent variable) and physical function score,
respectively, iii) linear regression for age at menopause
(independent variable) associated with our DNAm
measure, iv) logistic regression analysis for estimating
the odds ratios of our DNAm based measure associated
with any cancer, hypertension, type 2 diabetes, emphy-

sema, and disease free status. The variable of “number
of age-related conditions” includes arthritis, cataract,
cancer, CHD, CHF, emphysema, glaucoma, lipid con-
dition, osteoporosis, type 2 diabetes, etc. (see
Supplementary Note 1). In our validation analysis, we
used AgeAccelGrim (the age-adjusted measure of
DNAm GrimAge), and used the scaled measures of
seven DNAm surrogates for plasma proteins based on
the mean and standard deviation (SD) of the FHS
training dataset such that the effect size was approxi-
mately corresponding to one SD. All the models were
adjusted for age, and adjusted for batch effect as
needed. To avoid the bias due to familial correlations
from pedigrees in the FHS cohort or the intra subject
correlations from the repeated measures, we accounted
for the correlations accordingly in all the analyses in the
following. In Cox regression analysis, we used robust
standard errors, the Huber sandwich estimator,
implemented in R coxph function. We used linear
mixed models with a random intercept term, imple-
mented in /me R function. We used generalized
estimation equation models (GEE), implemented in R
gee function, for our logistic regression models. Addi-
tional covariates related to demographic characteristics,
psychosocial behaviors and clinical covariates were
adjusted in multivariate Cox models analysis. The
additional covariates includes BMI (category),
education attainment (category), alcohol consumption
(gram/day), self report smoking pack-years, three
medical covariates: status of cancer, hypertension and
type 2 diabetes at baseline. The categories associated
with BMI ranges are a) 18.5 -25 (normal), b) 25 to 30

Table 2. Overview of the cohorts used in the validation analysis.

Smoking status

Years of
Study N Female Age Never Former Current Pack-years Follow-up
FHS* 66.9+8.64 14.7£19.91 7.7£1.78
test 625 3% ] (61,73 37% 2% 10% | [0.23] (73.88]
65.3+7.1 9.5+18.55 16.944.63
_WHIBA23 2107 100% | [60,709] 52% 36% 10% | [012.5] | [15.8,19.9]
63.3£7.03 9+17.27 18+4.02
_WHIEMPC 1972 . 100% _ [57.9.687] _ __  52% . 38% . 9% | [012.5] ] [17.9.20.1]
56.2+12.31 11.742.55
JES 1747 63% | [46.5,654] _ _ _ 65% 2% . 14% NA ] [11.2,13.1]
924 67+16.64 10.3£17.33 5.4+4.84
InChianti** (484) 54% [60,78] 57% 29% 14% [0,16.8] [0.1,9.3]
NA=not available.

Quantitative variables are presented in the format of mean +SD [25th, 75‘h].
*The distribution of age is based on exam 8.
**The statistics are based on the number of 924 observations across 484 individuals.

The table summarizes the characteristics of 6,935 individuals (corresponding to 7,375 lllumina arrays) from five independent cohorts
that were used in our validation analysis. For example, up to two longitudinal measurements were available for each of 484 individuals
in the InChianti cohort.
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(over), and c¢) >30 (obese). The categories associated
with education attainment are a) less than high school,
b) high school degree, c) some college, and d) college
degree and above. Both smoking pack-years and
education variables were not available in the JHS
cohort. Smoking category (never, former and current)
was used in the analysis using the JHS cohort.

Meta analysis

We used fixed effect models weighted by inverse
variance to combine the results across validation study
sets into a single estimate by using the metafor R
function in most situations. We also used Stouffer’s
meta analysis method (weighted by the square root of
the sample size) in specific situations where the
harmonization of covariates across cohorts was chal-
lenging, e.g. when evaluating the number of age-related
conditions, disease free status and physical function
scores (Fig. 5).

Heritability analysis

In general, epigenetic measures of age acceleration are
highly heritable [52, 57, 58]. To evaluate whether
AgeAccelGrim is heritable as well, we estimated the
narrow sense heritability h? using the polygenic models
defined in SOLAR [59] and its R interface solarius [60].
Heritability is defined as the total proportion of
phenotypic variance attributable to genetic variation in
the polygenic model. All traits were adjusted for age
and gender. The robust polygenic model (with the
option of a t-distribution) was used to estimate heri-
tability of AgeAccelGrim and DNAm based proteins.
The heritability estimate correspondents to the variance
component associated with the kinship coefficient. If
the corresponding P value is significant (P<0.05), the
underlying trait is deemed to be heritable.

Two stage estimate of mortality versus a single stage
estimate of mortality

To develop our single stage mortality estimator, DNAm
Mortality, we used elastic net Cox regression to regress
time-to-death on the CpG markers, chronological age
and sex in the FHS training data. We used the same
options in the training process (i.e., 10-fold cross
validation for choosing the lambda tuning parameter).
The resulting mortality risk estimator, (uncalibrated)
DNA Mortality, is a linear combination of 59 CpGs and
chronological age. Next we used the same age calibra-
tion method that we previously used for DNAm
GrimAge to arrive at a mortality risk estimator in units
of years, DNAm Mortality. We also evaluated the two
mortality risk estimators by Zhang (on the basis of 10
CpGs) [21]. The first risk estimator from Zhang is a

composite score based on 10 CpGs with weights
determined by a Cox regression with lasso penalty. Of
the 10 CpGs, cg06126421 and cg23665802 were absent
in the JHS cohort and had to be imputed (by the respec-
tive median values in the FHS training data).

To provide an unbiased comparison with our mortality
predictors, we applied our age calibration method to the
Zhang estimator as well, resulting in the mortality
predictor "DNAmZhang". The second Zhang estimator,
referred as DNAmZhangScore, was defined as the total
sum of scores of the 10 CpGs with aberrant methylation
[21]. The resulting risk score ranges from 0 to 10.

AgeAccelGrim versus blood cell composition

The imputed blood cell abundance measures were
related to DNAm Grim Age models using the validation
study sets: FHS test, WHI BA23, JHS, and InChianti,
involving n=6,003 individuals. The following imputed
blood cell counts were analyzed: B cell, naive CD4+ T,
CD4+ T, naive CD8+ T, CD8+ T, exhausted cytotoxic
CDS8+ T cells (defined as CD8 positive CD28 negative
CD45R negative), plasma blasts, natural killer cells,
monocytes, and granulocytes. The abundance of naive T
cells, exhausted T cells, and plasma blasts were based
on the Horvath method [61]. The remaining cell types
were imputed using the Houseman method [31]. More
details were described in Supplementary Methods. To
avoid confounding by age, we used AgeAccelGrim and
adjusted all DNAm based surrogate biomarkers by
chronological age (by forming residuals). The correla-
tion results were combined across studies via the same
fixed effect models.

Cox models that include blood cell counts

We also fit multivariate Cox regression models that
adjusted for imputed blood cell counts in addition to
chronological age, batch, and pedigree structure, for
predicting time-to-death and time-to-CHD. The blood
cell counts were imputed based on DNA methylation
levels (as detailed above). To avoid multi-collinearities
between blood cell counts, we only included the
following 7 blood cell counts into the multivariate
model: naive CD8+T, exhausted cytotoxic CD8+ T
cells, plasma blasts, CD4+T, natural killer cells, mono-
cytes and granulocytes.

GREAT analysis

We applied the GREAT analysis software tool [32] to
sets of CpGs (e.g. 1030 CpGs underlying DNAm
GrimAge).CpGs in non-coding regions typically lack
annotation with respect to biological functions. GREAT
assigns biological meaning to a set of non-coding geno-
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mic regions (implicated by the CpGs) by analyzing the
annotations of the nearby genes. Toward this end, the
GREAT software performs both a binomial test (over
genomic regions) and a hypergeometric test over genes
when using a whole genome background. We per-
formed the enrichment based on default settings
(Proximal: 5.0 kb upstream, 1.0 kb downstream, plus
Distal: up to 1,000 kb) for gene sets associated with GO
terms, MSigDB, PANTHER and KEGG pathway. To
avoid large numbers of multiple comparisons, we res-
tricted the analysis to the gene sets with between 10 and
3,000 genes. We report nominal P values and two adjust-
ments for multiple comparisons: Bonferroni correction
and the Benjamini-Hochberg false discovery rate.

Lifestyle factors including diet and education

We performed a robust correlation analysis (biweight
midcorrelation, bicor [62]) between our novel
biomarkers (AgeAccelGrim and its eight age-adjusted
components) and 38 variables from the WHI including
12 self-reported dietary variables, behavioral variables,
9 dietary biomarkers, 12 variables related to metabolic
related traits and central adiposity, and 5 life style
factors. We combined the postmenopausal women from
the WHI BA23 and WHI EMPC (roughly n= 4000
women). This cross sectional, robust correlation
analysis was conducted in all groups combined and in
three separate ethnic groups (Hispanic ancestry,
European ancestry, African Ancestry). Ancestry infor-
mation was verified using ancestry informative SNP
markers. Blood biomarkers were measured from fasting
plasma collected at baseline. Food groups and nutrients
are inclusive, including all types and all preparation
methods, e.g. folic acid includes synthetic and natural,
dairy includes cheese and all types of milk. The
individual variables are explained in [33].

Computed tomography data from the Framingham
Heart Study

The computed tomography (CT) in liver, spleen,
paraspinal muscle, subcutaneous adipose tissue (SAT),
and visceral adipose tissue (VAT) were performed in
n=2,803 individuals from the FHS Offspring, Third
Generation and Omni 2 Cohort participants between
September 2008 and December 2011 [37, 38]. Of those,
1,177 Offspring Cohort participants were included in
our FHS study. The age at CT scan was in general
slightly older than the age at blood draw for the DNA
methylation profile (mean age difference= 3.7 years,
ranging from 1.2 to 6.1 years).

Organ density measures, more precisely CT attenuation
coefficients, reflect how easily a target can be penet-
rated by an X-ray. The Hounsfield unit (HU) scale is a

linear transformation of the original linear attenuation
coefficient measurement into one in which the
radiodensity of distilled water is defined as zero Houns-
field units (HU). Radiation attenuation in liver, spleen,
or muscle is inversely related to respective measures of
fat content.

The CT measures from three areas of the liver, two
areas of the spleen and two areas of the paraspinal
muscle were averaged to determine the average Houns-
field units in liver, spleen and muscle, respectively. The
CT-scan measures of visceral and sub-cutaneous
adipose tissue are described in [38].

In our analysis, we first performed marginal robust
correlation analysis (biweight midcorrelation, bicor
coefficient) [62] to study the association between the
CT-scan derived measures and DNAm based bio-
markers. As gender affects adipose associated
parameters, we performed the analysis in males and
females, separately. Next we combined the results
across the two genders using fixed effects meta
analysis. To adjust for potential confounders, we also
performed three types of multivariate linear mixed
effects models that included gender, BMI as fixed
effects and pedigree structure as random effect. In
Model I, we regressed a DNAm based biomarker (e.g.
AgeAccelGrim) on CT derived covariates: liver density,
spleen density, and paraspinal muscle density. In Model
II, we regressed the DNAm based biomarker (dependent
variable) on volumetric measures of adipose tissue
(both SAT and VAT volume). We omitted measures of
adipose tissue density from the analysis since a) they
were not significant after adjusting for SAT/VAT
volumes, and b) we wanted to protect the model fit from
issues of multi-collinearity.

In Model III, we used all CT measures as covariates
(i.e. liver, spleen and muscle density, SAT volume, and
VAT volume). We used the BMI measure assessed at
exam 9 in the FHS, i.e. the closest exam following the
CT-scan exam.
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