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INTRODUCTION 
 
Hair plays an important role in an individual's general 
appearance [1].  Hair loss is a common disorder that 
occurs both in men and women.  Although it is not dan-
gerous or severe, it affects people’s quality of life and 
leads to psychological changes that lower self-esteem 
and even disturbing an individual capability to fulfill a 
normal lifestyle [1–3].   
 
The hair follicle (HF) is composed of two 
compartments, the epidermal (epithelial) and dermal 
(mesenchymal), and is formed via a coordinated and 
complicated crosstalk between dermal cells playing the 
role of inducers and epithelial cells as responders.  The 
mesenchymal is composed of specialized fibroblasts 
divided into the dermal papilla (DP), located at the pro- 

 

 
 
ximal end of the HF and surrounded by matrix cells, 
and the dermal sheath (DS), considered as a reservoir of 
DP cells [4].  The DP plays an important role in the 
induction and maintenance of the hair growth cycle by 
acting as inductive signal while driving the 
differentiation of epithelial stem cells residing in the 
bulge area of the HF, and generating the complex folli-
cular product, the shaft, and the sheath [5–8].  In the 
adult hair, the HF undergo continuous self-renewal and 
cycling, dividing in three phases anagen, catagen, and 
telogen [3].  During the growth phase or anagen, the DP 
regulates the migration of  bulge residing stem cells to 
the bulb region forming the matrix cells that will be 
proliferating and dividing into the hair shaft and the 
inner root sheath (IRS) [9,10].  The HF enters then a 
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ABSTRACT 
 
The hair follicle is a complex structure that goes through a cyclic period of growth (anagen), regression 
(catagen), and rest (telogen) under the regulation of several signaling pathways, including Wnt/ β-catenin, FGF, 
Shh, and Notch. The Wnt/β-catenin signaling is specifically involved in hair follicle morphogenesis, 
regeneration, and growth.  β-catenin is expressed in the dermal papilla and promotes anagen induction and 
duration, as well as  keratinocyte regulation and differentiation.  In this study, we demonstrated the activation 
of β-catenin by a polyphenolic compound 3,4,5-tri-O-caffeoylquinic acid (TCQA) in mice model and in human 
dermal papilla cells to promote hair growth cycle.  A complete regrowth of the shaved area of C3H mice was 
observed upon treatment with TCQA.  Global gene expression analysis using microarray showed an 
upregulation in hair growth-associated genes. Moreover, the expression of β-catenin was remarkably 
upregulated in vivo and in vitro.  These findings suggest that β-catenin activation by TCQA promoted the 
initiation of the anagen phase of the hair cycle. 
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regression phase known as catagen where the hair 
matrix cells stop proliferating and the hair is attached to 
a keratin matrix above the DP [11].  During the third 
phase (telogen), the follicle is resting and the hair shaft 
is dislodged in non-active follicle.  In order to initiate 
the transition from telogen to anagen, various signaling 
pathways play a key role in cell proliferation and 
differentiation during development and homeostasis of 
the HF [12].  Previous studies have identified Wnt, 
FGF, Shh, and Notch signaling and several transcription 
factors as regulators of the hair cycle.  Wnt/β-catenin 
signaling pathway plays a major role in the develop-
ment, growth, and proliferation of the HF and the 
regulation of the activity of embryonic and adult stem 
cell populations [13,14].  The activation of Wnt/β-
catenin is initiated by Wnt ligand that binds to frizzled 
(FZD) and LRP5/6 co-receptors to form a complex 
inducing β-catenin activation and translocation to the 
nucleus.  Therefore, β-catenin activates canonical target 
genes involved in the  growth of the HF including, Wnt 
signaling proteins expressed during anagen, and FGF 
signaling molecules involved in keratinocytes 
differentiation  [15–17].  Wnt/β-catenin activation in the 
HF initiates the anagen induction by inducing the 
proliferation and differentiation of the epithelial matrix 
cells that produces the hair shaft and IRS [18].  
 
Studies have shown that the lack of β-catenin inhibit the 
initiation of hair growth cycle and its activation in the 
DP promotes postnatal hair growth and the elongation 
of anagen phase [19–21]. Activating β-catenin expres-
sion is therefore considered significant in the initiation 
of the anagen phase and promotion of hair growth cycle.  
Recently, drugs like minoxidil and finasteride are used 
to promote hair growth cycle but they showed side 
effects [22–24].  
In this context, developing a drug with no undesirable 
side effects is becoming urgent in order to have an 
alternative therapy for promoting hair growth. Caf-
feoylquinic acid (CQA) is a phenylpropanoids com-
pound exhibiting several beneficial properties including 
anti-oxidant, anti-allergic, neuroprotective, and 
melanogenesis-regulating effects [25–28]. TCQA or 
3,4,5-tri-O-caffeoylquinic acid with IUPAC name 
(3R,5R)-3,4,5-tris[[(E)-3-(3,4-dihydroxyphenyl)prop-2-
enoyl]oxy]-1-hydroxycyclohexane-1-carboxylic acid, is 
a CQA derivative and chlorogenic acid (CGA) family 
member compound, that has a stable albumin affinity 
and is composed of multi-esters formed between quinic 
acid and one-to-four residues of trans-cinnamic acids .  
TCQA has been found to induce a powerful inhibitory 
activities against aldose reductase, hypertension, hyper-
glycemia, and Alzheimer's disease without unwanted 
secondary effects [29].  Moreover, TCQA induces 
neurogenesis, improves learning and memory in aged 
mice, and promotes the differentiation of human neural 

stem cells [30], however its effect on Wnt/β-catenin 
signaling pathway and hair growth promotion has not 
yet been assessed. This study was designed to elucidate 
the ability of TCQA to activate β-catenin and its target 
genes to promote hair growth, anagen induction and 
elongation in 8-weeks-old C3H male mice. Global gene 
expression analysis was performed to explain the hair 
growth-promoting effects.   Furthermore, β-catenin 
expression in DP and its effect on DP cell proliferation 
was evaluated. 
 
RESULTS 
 
3,4,5-tri-O-caffeoylquinic acid (TCQA) promoted 
hair regrowth in C3H mice 
 
The ability of TCQA to promote hair regrowth was 
tested in eight-weeks-old male C3H mice.  Ten days 
after shaving, TCQA-treated group exhibited hair 
regrowth in the shaved area (Figure 1A).  TCQA 
significantly enhanced the hair growth by appro-
ximately 40%, 80%, and 120% at day 14, 20, and 30, 
respectively, compared with the control (Figure 1B).  
By the end of the treatment period (day 30), the treated 
group displayed a markedly complete regrowth of the 
hair in the clipped area.  In contrast, for the control 
group, only 37% hair regrowth area was observed 
(Figure 1A and 1B).  The direction of the growth was 
random in the treated and untreated mice. These results 
showed that TCQA stimulated the hair growth cycle. 
Minoxidil, a widely used drug against alopecia often 
used as a positive control ,induces hair regrowth in C3H 
mice within 28 days [31]. Our results showed that 
TCQA had the same effect as minoxidil in stimulating 
hair growth cycle.  Interestingly, the hair shaft was fully 
developed and the epidermis and the hair follicle (HF) 
displayed no sign of inflammation or irritation 
following TCQA application (Figure 1C). The anagen 
phase is divided into six sub-stages that goes from I to 
VI and starting the third phase the HFs development can 
be distinguished.  As shown in Figure 1C (indicated by 
arrows), the HF from the TCQA-treated mice were at 
advanced stage of anagen phase. The results indicated 
that TCQA induced the transition of the hair cycle from 
telogen to anagen phase accelerating hair growth in 
vivo.  
 
Gene expression changes in C3H mice skin caused 
by 3,4,5-tri-O-caffeoylquinic acid (TCQA)  
 
Microarray analysis was conducted from skin collected 
from the treated area with TCQA and milli-Q water to 
elucidate the mechanism behind the observed hair 
growth promoting effect of TCQA.  The expression of 
1235 genes was modulated by TCQA out of which, 435 
were   upregulated   while   800   downregulated.  Genes 
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relevant in β-catenin binding, epidermal growth factor, 
transcription regulation, and Wnt signaling were up-
regulated (Figure 2A).  On the other hand, genes 
involved in glycosylation, protein binding, and β-
catenin degradation complex were downregulated 
(Figure 2B).  A volcano plot was created to compare 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
the gene expression in the control group vs TCQA 
group (Figure 2C). TCQA significantly upregulated 
435 genes (2-fold change; red) and downregulated 800 
genes (2-fold change; green), while the gray color 
represents the other genes (≤2-fold change) (Figure 
2C).   

Figure 1. TCQA promoted hair regrowth in C3H mice skin. (A) The back skin of eight-weeks-old male C3H mice was 
shaved and treated daily with topical application of 1 wt% TCQA (1 g TCQA in 100 ml milli-Q water) and with milli-Q water 
(control) for 30 days. (B) The area of the new generated coat was measured by ImageJ. (C) Skin from treated area from TCQA-treated 
group and control group were cut at thickness of 10 µM and visualized under the microscope. *Statistically significant (P ≤0.05) difference 
between control and TCQA-treated group.  **Statistically significant (P ≤0.01) difference between control and TCQA-treated mice. 
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Genes with 2-fold change in expression (control vs 
TCQA) were subjected to hierarchical clustering that 
generated five clusters. In the first cluster (enrichment 
Score: 1.53), TCQA regulated genes including Wnt2b, 
Dock2, Rasgrp2, Agbl4, and Dgki that are relevant for 
protein binding (P=0.0048), Ras signaling pathway 
(P=0.023), and intracellular signal transduction 
(P=0.017), and microtubule (P=0.0018) (Figure 2D).  
Moreover, a regulation of genes including, Ctnnb1, Wls, 
Rassf1, and Map3k12 that plays a role in ATP binding 
(P=0.023),  kinase  activity (P=0.0152),  Wnt  signaling 
(P=0.02152),  and  phosphorylation  (P=0.025) was ob- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
served in cluster two (enrichment score: 0.83). The third 
cluster with enrichment score of 0.29 is composed of 
genes that are significant for cell adhesion (P=0.0049), 
cAMP signaling pathway (P=0.02), and neuroactive 
ligand-receptor interaction (P=0.0049). The last two 
clusters with an enrichment score of 0.89 and 0.55, 
respectively, represent the genes that were down-
regulated upon treatment with TCQA. Those genes are 
significant for metal binding (P=0.0045), Wnt 
signaling repression (P=0.0015), and cell surface 
receptor linked signal transduction (P=0.0175) (Figure 
2D).  

Figure 2. Transcriptome changes induced by TCQA, 1235 genes were significantly selected: 435 were upregulated and 800 
downregulated.  (A) Summary of the functional categories of upregulated genes in response to TCQA treatment. (B) Summary of the 
functional categories of downregulated genes in response to TCQA treatment. Analyses for the down and upregulated genes were performed 
individually using Database for Annotation, Visualization and Integrated Discovery v6.8 (DAVID).  Bars represent the number of genes 
implicated in each category. *Statistically significant (P ≤0.01).  **Statistically significant (P ≤0.001). ***Statistically significant (P ≤0.0001). 
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Figure 2. Transcriptome changes induced by TCQA, 1235 genes were significantly selected: 435 were upregulated and 800 
downregulated.  (C) Hierarchical clustering of the genes altered after treatment with TCQA using Euclidean distance and average 
linkage algorithm of the TIGR Mev version 3.0.3 software (The Institute for Genomic Research, MD, USA).  Horizontal stripes represent 
genes and columns represent control and TCQA. The significant fold change in gene expression is 2-fold change (control vs TCQA). (D) The 
volcano plot represents the regulated genes between the control and TCQA. The red color represents the upregulated genes, the green 
color the downregulated genes, and the grey color the unregulated genes.  The expression of the genes above or below, left or right, the 
lines differed more than 2-fold change between the control and TCQA group. 
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Tables 1, 2, 3, and 4 summarize the significantly 
modulated genes and their biological activities.  An 
upregulation in the expression of canonical Wnt-
associated genes, Ctnnb1, Wls, Wnt2b, and Wnt4 was 
observed (Table 1). Notch, FGF, and Rac/Ras 
pathway-related genes were upregulated as well.  
Genes significant for keratinocytes differentiation, 
including Foxn1, Rps3 were upregulated.  In addition,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the expression of genes involved in cell differentiation, 
cell cycle, ATP binding, and oxidation-reduction 
process like Sapcd2, Smchd1, and Txnrd1, were 
enhanced by TCQA (Table 2).  Genes associated with 
telogen phase, repression of Wnt signaling, β-catenin 
degrada-tion, and aging (Ldb3, Ak1, Gsk3b, Tcf3, 
Soct, and Nfatc1), were downregulated (Tables 3 and 
4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Top upregulated anagen-associated genes in TCQA-treated mice (vs control) *. 

Gene 
symbol 

Gene name  Biological function  Fold-
change  

P value ** 

Wls Wntless Wnt secretion 3.39 0.026 

Fgf1 Fibroblast growth factor 1 Hair morphogenesis  3.22 0.026 

Ctnnb1 Catenin (cadherin 
associated protein), beta 1 

Cell differentiation; hair follicle 
morphogenesis; hair cycle process; 
positive regulation of fibroblast growth 
factor 

3.2 0.043 

Wnt4 Wingless-related MMTV 
integration site 4 

Hair morphogenesis  2.87 0.047 

Tspan10 Tetraspanin 10 Notch signaling promotion 2.86 0.011 

RBPj Recombination signal 
binding protein for 
immunoglobulin kappa J 
region-like 

Hair fate determination of hair follicular 
stem cells 

2.72 0.003 

AlpL Alkaline phosphatase Dermal papilla marker  2.33 0.007 

Dlx  Distal-less homeobox Regulator of hair follicle differentiation 
and cycling 

2.31 0.034 

Rps3 Ribosomal protein S3 Positive regulation of NF-kB required  
for anagen maintenance 

2.17 0.000017 

Wnt2b Wingless related MMTV 
integration site 2b 

Hair morphogenesis  2.16 0.0002 

Foxn1 Forkhead box N1 Keratinocyte differentiation; hair follicle 
development   

2.06 0.00015 

Krt14  Keratin 14 Formation of epithelial hair buds; hair 
cycle 

2.04 0.002 

Corin  Corin serine peptidase Dermal papilla marker upregulated 
during anagen  

2.03 0.006 

Fgf2 Fibroblast growth factor 2 Hair follicle growth  2.02 0.006 

*Genes functions were obtained from Mouse Genome Informatics (MGI). 
**ANOVA was performed to assess the level of significance between groups.  The gene expression was considered 
significant when fold change was ≥ 2-fold (control vs TCQA). 
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3,4,5-tri-O-caffeoylquinic acid (TCQA) stimulated  
β-catenin expression in vivo  
 
TCQA-treated mice were observed to have an 
accelerated anagen phase and at the same time Ctnnb1 
gene expression was observed to be upregulated based 
on microarray analyses results, the effect of TCQA on 
β-catenin  expression  was  further  determined  in  mice 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
skin tissue.  Results revealed that β-catenin expression 
in TCQA-treated mice skin was increased in the HF, in 
the area where the dermal papilla (DP) cells are, in the 
root sheath, and in the bulb area (Figure 3A).  In case of 
the control mice, β-catenin expression was located in 
the epidermis and the upper part of the dermis (Figure 
3A). In addition, the gene expression of Ctnnb1 in 
treated skin tissues was enhanced up to 2.3-fold 

Table 2. Top upregulated genes associated with the observed hair growth in TCQA-treated mice (vs 
control) *. 

 
  

Gene name  Biological function  Fold- 
change  

P value 
** 

Smchd1 SMC hinge domain 
containing 1 

ATP binding  6.83 0.021 

Dock2 Dedicator of cyto-kinesis 2 Positive regulation of Rac protein signal 
transduction 

2.78 0.00014 

Rassf1 Ras association 
(RalGDS/AF-6) domain 
family member 1 

Ras protein signal transduction ; cell 
cycle 

2.69 0.007 

Sapcd2 Suppressor APC domain 
containing 2 

Cell proliferation; cell cycle 2.66 0.005 

Txnrd1 Thioredoxin reductase 1 Oxidation-reduction process; protection 
against oxidative stress 

2.63 0.001 

Tada3 Transcriptional adaptor 3 Stabilization and activation of the p53 2.58 0.011 

Fmo4 Flavin containing 
monooxygenase 4 

Oxidation-reduction process 2.49 0.0003 

Cyp11a1 Cytochrome P450, family 
11, subfamily a, 
polypeptide 1 

Oxidation-reduction process 2.42 0.003 

Kif1b Kinesin family member 1B ATP binding 2.3 0.004 

Rasgrp2 RAS, guanyl releasing 
protein 2 

Ras activation  2.28 0.0004 

Agbl4 ATP/GTP binding protein-
like 4 

ATP binding  2.2 0.0001 

Dgki Diacylglycerol kinase, iota Ras protein signal transduction 
regulation  

2.17 1.26E-07 

Plk2 Polo-like kinase 2 Ras protein signal transduction 2.17 0.027 

Map3k12 Mitogen-activated protein 
kinase kinase kinase 12 

ATP binding, cell-cycle progression 2.11 0.004 

*Genes functions were obtained from Mouse Genome Informatics (MGI). 
**ANOVA was performed to assess the level of significance between groups.  The gene expression was considered 
significant when fold change was ≥ 2-fold (control vs TCQA) 
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compared with the control (Figure 3B).  This upregu-
lation of Ctnnb1 expression was followed by an 
increase in β-catenin protein expression level as shown 
in Figure 3C and 3D.   
 
Figure 3E illustrates the summary of the modulated 
genes by TCQA.  β-catenin target genes that are involv- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ed in HF development and keratinocyte  differentiation 
including, Foxn1, Dlx, Fgf, and others, were upregulated.  
In contrast, genes that inhibit Wnt/β-catenin signaling 
including Gsk3b, Tcf3, and Igfbp4 were downregulated 
(Figure 3E). These results indicated that the observed 
hair regrowth effect appears to be caused by increased β-
catenin expression following TCQA treatment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Top downregulated genes in TCQA-treated mice (vs control)*. 

Gene 
symbol 

Gene name  Biological function  Fold-
change  

P value 
** 

Ldb3 LIM domain binding 3 Regulator of transcription during 
telogen 

-8.65 0.040 

Cryab Crystallin, alpha B Negative regulator of apoptosis  -6.89 0.035 

Ak1 Adenylate kinase 1 Cell cycle arrest  -6.24 0.027 

Dst Dystonin Cell cycle arrest  -5.34 0.027 

Gsk3b Glycogen synthase kinase 3 
beta 

Phosphorylation of β-catenin -5.08 0.002 

Tcf3 Transcription factor 3 Wnt/β-Catenin repression  -4.72 0.042 

Soct Sclerostin Negative regulation of  
Wnt/β-Catenin 

-4.53 0.013 

Aebp1 AE binding protein 1 Regulator of telogen hair follicle  -3.8 0.015 

Satb1 Special AT-rich sequence 
binding protein 1 

Regulator of transcription during 
telogen 

-3.36 0.026 

H2afv H2A histone family Stem cell quiescence -3.31 0.040 

Egr1 Early growth response 1 Negative regulation of  
Wnt/β-Catenin; upregulated with aging 

-2.59 0.045 

Igfbp4 Insulin-like growth factor 
binding protein 3 

Negative regulation of  
Wnt/β-Catenin 

-2.55 0.031 

lL-6 Interleukin 6 Inflammation response  -2.44 0.026 

Shisa3 Shisa family member 3 Negative regulator of  
Wnt/β-Catenin 

-2.39 0.002 

Abra Actin-binding Rho activating 
protein 

Regulator of transcription during 
telogen  

-2.22 0.046 

Nfatc1 Nuclear factor of activated T 
cells, cytoplasmic, calcineurin 
dependent 1 

Stem cells quiescence  -2.09 0.011 

*Genes functions were obtained from Mouse Genome Informatics (MGI). 
**ANOVA was performed to assess the level of significance between groups.  The gene expression was considered 
significant when fold change was ≥ 2-fold (control vs TCQA) 
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3,4,5-tri-O-caffeoylquinic acid (TCQA) increased the 
proliferation of hair bulb cells  
 
To determine the cytotoxic effect of TCQA, if any, on 
the cells that reside in the bulb area of the HF, a 
proliferation assay (MTT assay) of human epidermal 
melanocytes (HEM) and human hair follicle dermal 
papilla cells (HFDPC) was conducted. The cells were 
treated with 0, 5, 10, 15, and 25 µM TCQA for 48 and 
72 h.  Results showed that TCQA was not cytotoxic to 
the cells at all concentrations and in fact, the proli-
feration of the cells was stimulated (Figure 4A and 4B).             
 
3,4,5-tri-O-caffeoylquinic acid (TCQA) increased the 
ATP content of human hair follicle dermal papilla 
cells (HFDPCs) 
 
The number of hair matrix and the size of the HF is 
determined by DP cells.  10 µM of TCQA significantly 
enhanced the ATP content of DP cells by around 60% 
after 48 h treatment (Figure 4C). This result was 
supported by the microarray analyses that showed an 
upregulation in genes related to ATP binding. 
 
3,4,5-tri-O-caffeoylquinic acid (TCQA) induced 
alkaline phosphatase (ALPL) and β-catenin 
expression in human hair follicle dermal papilla cells 
(HFDPCs)  
 
Alkaline phosphatase (ALP) is known to be a marker of 
DP cells.  As microarray results showed an upregulation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
in its gene expression, the validation using DP cells was 
carried out. Results showed an upregulation in ALPL 
expression after 6 and 12 h treatment (Figure 4D) 
confirming that TCQA stimulated the proliferation of 
DP cells. 
 
The absence of β-catenin in DP cells results to an early 
entry to catagen phase [32]. To confirm the effect of 
TCQA on β-catenin stimulation, its protein and gene 
expression levels in HFDPCs were evaluated.  β-catenin 
was observed to be stimulated by 10 µM TCQA after 12 
h treatment, and this expression level was maintained 
until after 24 h (Figure 5A and 5B).  Moreover, accord-
ing to the immunocytochemistry results, TCQA caused 
the accumulation and nuclear translocation of β-catenin 
(Figure 5C). The expression of β-catenin gene 
(CTNNB1) was significantly upregulated after 6 and 12 
h treatment with 10 µM TCQA (Figure 5D) suggesting 
that TCQA promoted hair growth by activating β-
catenin expression in the DP at the onset or early stage 
of anagen phase. 
 
3,4,5-tri-O-caffeoylquinic acid (TCQA) upregulated 
β-catenin expression in human hair follicle dermal 
papilla cells (HFDPCs) after inhibition with XAV939 
 
XAV939 inhibits the activation of β-catenin stimulating 
its phosphorylation and non-translocation to the nucleus 
[33].  Here, HFDPCs were treated with various concen-
tration of XAV939 for 48 h and 10 µM XAV939 was 
used for further experiment as it didn’t show any 

Table 4.  Telogen-associated genes downregulated by TCQA*. 
Function  Gene symbol 

Cell cycle arrest  Ak1,Dst  

Regulation of transcription  Ldb3,Abra, Satb, Cebpd1,Synpo2, Aebp1, Rora, lrrfip 

Negative regulator of cell growth  Igfbp4 

Anti-apoptosis  Cryab,Tsc22d3 

Transport  Rpb7 

Signal transduction  Hspb6, Obscn 

Carbohydrate metabolic process Pygm, Gpd1, Agl 

Proteolysis  Pcolce 

Aging  Jun, Egr1, Fos 

*Genes functions were obtained from Mouse Genome Informatics (MGI). 
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cytotoxicity effect on the cells (Figure 5E).  After that, 
the cells were treated with 10 µM XAV939 for 6 and 
12 h and results showed that CTNNB1 expression was 
significantly decreased upon treatment confirming the 
inhibitory effect of XAV939 on Wnt/ β-catenin 
signaling (Figure 5F).  The cells were then treated with 
10 µM XAV939 (6 and 12 h) and then with 10 µM 
TCQA (6 and 12 h).  Results showed that treatment 
with TCQA significantly upregulated CTNNB1 
expression suppressing XAV939 inhibition. Finally, 
after co-treatment with XAV939 and TCQA, the gene 
expression of β-catenin was maintained higher than  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

after treatment with the inhibitor only.  These results 
further proved the activation of β-catenin by TCQA in 
DP promoting hair growth cycle. 
 
DISCUSSION 
 
The hair follicle (HF) goes through a life-long cyclical 
transformations, progressing through stages of growth, 
regression, and quiescence, and is considered an 
established model to study the pathways that govern 
proliferation, differentiation, and growth [34]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. TCQA enhanced β-catenin expression in the hair follicle.  (A) Immunohistochemistry was performed to 
measure β-catenin expression in the hair follicle and the epidermis in skin collected from the treated area from mice dorsal skin 
at 30 days after treatment. The figure is divided into four panels, the first panel is the phase, the second is DAPI to stain the 
nucleus, the third is for β-catenin staining, and the last panel is a merge between β-catenin and the nucleus. (B) Ctnnb1 mRNA 
relative expression was measured after treatment with TCQA at 30 days after treatment. The mRNA level was quantified using 
TaqMan real-time PCR from RNA extracted from the treated area (TCQA or milli-Q water) from the mice dorsal back. 
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Figure 3. TCQA enhanced β-catenin expression in the hair follicle.  (C) β-catenin protein expression was determined at the 
end of the treatment period. The protein was extracted from the treated area from the mice dorsal part, and western blot was 
carried away. (D)  Band intensities was done assessed using LI-COR system.  Results represent the mean ± SD of three independent 
experiments. *Statistically significant (P ≤0.05) difference between control and TCQA-treated mice.  **Statistically significant (P 
≤0.01) difference between control and TCQA-treated mice. (E) Summary of the up and downregulated genes modulated by TCQA 
compared with the control. The red color represents the upregulated genes and the green color the downregulated genes. 
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Here, we showed that stimulating Wnt//β-catenin 
activation with a polyphenolic compound 3,4,5-tri-O-
caffeoylquinic acid (TCQA) promoted hair growth in 
vivo and in vitro.  TCQA induced a complete hair 
recovery in the shaved area of the back of eight-week-
old C3H mice (Figure 1A and 1B). The observed results 
were similar to what have been reported for minoxidil 
hair regrowth stimulating effect in C3H mice [31]. The 
HF from TCQA-treated mice displayed a developed 
morphology compared to control mice (Figure 1C). In 
addition, during the anagen phase, the inferior segment 
of the HF is present and grow to form the hair bulb sur- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
rounding the dermal papilla (DP), and the hair shaft 
becomes rooted deep in the sebaceous gland and the 
dermis [35].  The appearance of the HF from TCQA-
treated mice indicates that the hair is in the anagen 
phase.  The anagen phase can be further classified into 
six sub-stages from anagen I to anagen VI [36].  The 
regeneration of the HF can be morphologically 
distinguished starting anagen III and keeps growing 
until at least anagen VI  where the HF reaches its full 
length, and is entirely surrounded by the IRS, and the 
bulb and DP reach their optimum size [37].  As shown 
in Figure 1C, TCQA-treated mice HF are in advanced 

 

Figure 4. TCQA stimulated hair bulb cells proliferation. (A) Cell proliferation of human epidermal melanocytes (HEM) was 
assessed after 48 and 72 h treatment with various concentrations of TCQA. (B) Cell proliferation of human hair follicle dermal papilla 
cells (HFDPCs) was assessed after 48 and 72 h treatment with various concentrations of TCQA. (C) ATP content determination after 
treatment with 5 and 10 µM of TCQA and 0.1 µM of minoxidil (Minox) used as positive control. (D) Gene expression of ALPL (Alkaline 
Phosphatase) after 6 and 12 h treatment with 0, 10 µM TCQA, and 0.1 Minox. The mRNA level was quantified using TaqMan real-time 
PCR after treatment. Results represent the mean ± SD of three independent experiments. *Statistically significant (P ≤0.05) difference 
between control and treated cells.  **Statistically significant (P ≤0.01) difference between control and treated cells. ##Statistically 
significant (P ≤0.01) difference between Minox-treated cells and TCQA-treated cells. 
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stage of anagen phase of the hair cycle confirming that 
TCQA promoted the transition of the telogen phase to 
the anagen phase. 
 
Several molecular pathways including, Wnt/ β-catenin, 
Shh, Notch, and FGF are responsible for the 
maintenance of the HF, the differentiation of the hair 
matrix cells, and the regulation of the hair growth cycle 
[38,39].  An upregulation of genes involved in Wnt/β-
catenin signaling, β-catenin binding, and transcription, 
and a downregulation in genes relevant in glycosylation, 
protein binding, and β-catenin degradation complex was 
observed in TCQA-treated group (Figure 2). 
  
TCQA upregulated Wnt/β-catenin-related genes, Wnt2b, 
Wls, Wnt4, and Ctnnb1 (Table 1).  β-catenin targets 
Foxn1 involved in the activation of the matrix cells that 
differentiated to form the hair shaft to regenerate the HF 
[40–42].  The HFs of TCQA-treated mice were in the 
anagen phase and this was clearly caused by increased 
Wnt proteins level known to initiate HF development, 
and in addition, by the upregulation of β-catenin and its 
target Foxn1. Various studies have shown that β-catenin 
is strongly expressed during anagen phase in the DP and 
in the outer root sheath, and the absence of β-catenin 
induces a premature catagen phase [40,43,44].  In this 
study, TCQA caused β-catenin to move to the DP, 
upregulated its expression in mice treated skin 
confirming that the HF is in the anagen phase (Figure 
3).  Fibroblast growth factors (FGF) pathway-related 
genes Fgf1 and Fgf2 are required, respectively, in the 
promotion of the anagen phase in telogenic C57BL/6 
mice, and the stimulation of hair growth [38,45].  In 
Table 1, we observed an upregulation of these genes.  
The increase in FGF-related genes expression may be 
attributed to the stimulation of Wnt/β-catenin as the 
absence of Wnt/β-catenin signaling alters FGF signaling 
genes [32].  Microarray results also revealed an 
upregulation in the expression of Notch signaling-
associated genes including, RBPj and Tspan10.  RBPj 
binds to Notch in the nucleus to trans-activate the 
transcription of hair growth-associated genes, and the 
mutation of which is associated with hair loss and 
impaired matrix cell differentiation, and Tspan10 is 
involved in the regulation of hair growth [46–49].  More 
specifically, the expression of several transcription 
factors regulated by Notch such as Dlx3 was enhanced.  
Mutation in Dlx3 causes alopecia due to hair shaft 
differentiation failure [17,50]. On the other hand, an 
upregulation in DP marker was observed including Alpl 
and Corin (Table 1). Alkaline phosphatase (ALP) is 
known to be marker of DP cells expressed through the 
hair cycle, as for Corin is reported to be upregulated in 
DP during anagen phase [10].  A summary of TCQA-
modulated genes linked to cell cycle, ATP binding, and 
oxidation-reduction process is presented in Table 2, and 

one of these genes is Smchd1 with an ATP binding 
function (Table 2).  During the changes of hair cycle 
from telogen to anagen phase in guinea-pig, ATP 
content increase following by a development of the size 
of the HF and an expansion in DNA content [51].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. TCQA stimulated β-catenin expression in 
human hair follicle dermal papilla cells (HFDPCs). (A) β-
catenin protein expression after 12 and 24 h treatment with 0 
and 10 µM TCQA and 0.1 µM Minox.  (B) Band intensities was 
done using LI-COR system after 12 h and 24 h treatment. 
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Other studies have described the role of Wnt/β-catenin 
and its interaction with AKT and ERK pathways to 
promote hair growth [31,52].  In this paper, an 
upregulation of Wnt/β-catenin and its interaction with 
other pathways that are linked to hair growth was 
observed.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rac/Ras-related genes are involved in cell migration, 
homeostatic, structural plasticity, and memory [53–55].  
It has been reported that Rac/Ras pathway is expressed 
in the inner ear and may affect hair cell development, 
and Rho and Rac protein are activated by Wnt/ β-
catenin signaling and this activation is required for 

Figure 5. TCQA stimulated β-catenin expression in human hair follicle dermal papilla cells (HFDPCs). (C) 
Immunocytochemistry of β-catenin expression in HFDPC after 24 h treatment with 0, 10 µM TCQA and 0.1 µM Minox. Scale bar=25 
µm; magnificence 40 X. (D) Gene expression of CTNNB1 (β-catenin) after treatment with 0 and 10 µM TCQA, and 0.1 µM Minox for 6 
h and 12 h.  The mRNA level was quantified using TaqMan real-time PCR after treatment. 
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vertebrate gastrulation [18,56–58]. TCQA modulated 
Rac/Ras- genes, Rasgrp, Dock2, Rassf1, Dgki, and Plk2 
(Table 2). The effect of Wnt/β-catenin on Rac/Ras 
pathway regulation and involvement in hair growth 
stimulation has not yet been assessed, but here, we 
report for the first time that TCQA can, through Wnt/ β-
catenin signaling activates Rac/Ras pathway, and as a 
result promoted hair development. 
 
TCQA downregulated genes repressing Wnt/β-catenin 
pathway including, Gsk3b, Tcf3, Igfbp4, and Shisa3 
(Table 3). Gsk3b phosphorylates β-catenin leading to its 
degradation and non-translocation to the nucleus 
inducing catagen phase in the HF [59].  Tcf3 and Igfbp4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inhibit Wnt/ β-catenin signaling during neocortical 
development [60,61].  Other genes were negatively 
modulated by TCQA like Aebp1 and Nfatc1.   Aebp1 is 
only expressed in the HF at telogen phase and it is 
known to regulate MAPK pathway [62].  Nfatc1 regu-
lates HF stem cells quiescence, and is upregulated 
during telogen, and its expression level decreases during 
the transition from telogen to anagen in order to reduce 
the quiescence of stem cells promoting the proliferation 
[63–65]. A downregulation in genes upregulated with 
aging such as Egr1 and Fos was observed (Table 4). 
Here, we introduce TCQA as drug to accelerate hair 
cycle and prevent hair aging and loss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. TCQA stimulated β-catenin expression in human hair follicle dermal papilla cells (HFDPCs). (E) Cell 
proliferation of HFDPC was assessed after 48 h treatment with various concentrations of XAV939 (β-catenin inhibitor). (F) Gene 
expression expressions of CTNNB1 (β-catenin) after treatment with 10 µM XAV939 for 6 and 12 h, with 10 µM XAV939 for 6 and 
12 h then with 10 µM TCQA for 6 h and 12 h (XAV939/TCQA), and finally with co-treatment of 10 µM XAV939 and 10 µM TCQA 
for 6 and 12 h (XAV939+TCQA). Results represent the mean ± SD of three independent experiments. *Statistically significant (P 
≤0.05) difference between control and treated cells.  **Statistically significant (P ≤0.01) difference between control and treated 
cells. ##Statistically significant (P ≤0.01) difference between Minox-treated cells and TCQA-treated cells.  
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The HF goes through a continual cycle regulated by the 
DP that maintains the stem cells niche during telogen 
and its activates them during anagen [7,65,66].  As 
mentioned earlier in this paper, the ATP content 
increases during anagen promoting the expansion of the 
size of DP [51].  TCQA not only stimulated the pro-
liferation of human hair follicle dermal papilla cells 
(HFDPCs) but also the ATP content (Figure 4A and 4C) 
and this is correlated with the upregulation of Smchd1 
in vivo (Table 2).  In the DP, β-catenin activity is 
strongly associated with the anagen phase prolongation, 
and it direct the hair shaft morphogenesis while 
regulating the expression of secreted growth factors 
[44].  After treatment with TCQA, the gene and the pro-
tein expression of β-catenin was strongly enhanced in 
the DP and this explains the fast entry of TCQA-treated 
mice HFs into the anagen phase (Figures 1 and 5).  
 
On the other hand, a knockdown of Tankyrase known to 
play a role in the activation of  Wnt/ β-catenin leads to 
tumorigenesis [67].  XAV939 is a small molecule that 
inhibit Tankyrase inducing β-catenin phosphorylation 
and non-activation in lung adenocarcinoma A549 cell 
[68]. The inhibitory effect of XAV939 on β-catenin in 
DP cells has not yet been checked.  In this study, 
XAV939 downregulated β-catenin gene expression 
(CTNNB1) in HFDPCs, however, after treatment with 
TCQA, CTNNB1 expression significantly upregulated 
again (Figure 5F).  Moreover, after a co-treatment of 
XAV939 and TCQA, CTNNB1 expression remained 
unchanged proving that TCQA target specifically β-
catenin and inhibit its phosphorylation.  
 
In summary, the activation of β-catenin stimulated the 
expression of Wnt proteins, Rac/Ras pathway, and hair 
growth-associated genes include FGF- and Notch-
related genes promoting the transition from telogen to 
anagen, anagen initiation and elongation, hair matrix 
differentiation, and hair shaft development (Figure 
3E).   
 
Furthermore, the observed stimulation of hair growth 
cycle was supported by the downregulation of telogen- 
and aging-associated genes that caused bulge stem cells 
to migrate and differentiate promoting the anagen 
induction.  The repression of Wnt signal inhibitors 
contributed to further enhance the effect of β-catenin 
and Wnt proteins activation. 
 
Clinical studies would be however necessary to validate 
the observed hair growth promotion effect of TCQA.  
The potential effect of the activation of β-catenin by 
TCQA on hair pigmentation and follicular melanocytes 
will be looked at as β-catenin regulates the transcription 
factor of the melanogenesis enzyme microphthalmia-
associated transcription factor (MITF). 

MATERIALS AND METHODS 
 
Sample preparation  
 
Synthesized 3,4,5-tri-O-caffeoylquinic acid (TCQA) 
with 97% purity was provided by Dr. Kozo Sato from 
Synthetic Organic Chemistry Laboratories, the 
FUJIFILM Corporation (Kanagawa, Japan).  For the in 
vivo experiment, TCQA was prepared by first dissol-
ving in a small volume of 70% ethanol and then diluted 
in purified water.  For the in vitro assay, a highly 
concentration of TCQA was dissolved in 70% ethanol 
and then diluted in cell culture medium. 
 
Animal experiment  
 
Eight-weeks-old male C3H mice were purchased from 
Charles River Laboratories, Japan Inc. (Kanagawa, 
Japan) and housed individually in cages at Gene 
Research Center of the University of Tsukuba. After 
one week of acclimatization, the mice were randomly 
assigned to experimental groups (n=5 for each group) 
TCQA-treated group and milli-Q water treated group 
(control group).  The mice were anesthetized using 
isoflurane (Wako Pure Chemical Industries, Tokyo, 
Japan), then the telogen hair on the dorsal part of the 
mice back were shaved using hair clipper in order to 
induce the anagen phase. Each mouse then received a 
topical application of 1% TCQA or water daily for four 
weeks.  The dorsal part of the shaved area was observed 
and photographed daily starting on the 14th day after 
treatment.  At the end of the treatment period, the mice 
were sacrificed by cervical spine dislocation and the 
skin collected from the treated area were divided into 
four parts and washed with phosphate-buffered saline 
(PBS), then immediately immersed in liquid nitrogen 
and kept at −80 °C.  The ImageJ processing program 
(National Institutes of Health, Bethesda, USA) was used 
to measure the hair regrowth in the treated area.  The 
experiment was approved by the Animal Study 
Committee of the University of Tsukuba (No.17-060) 
and the procedures were handled according to the 
guidelines of the Care and Use and Use of Animals 
approved by the Council of the Physiological Society of 
Japan. 
 
DNA microarray  
 
RNA used as a template were extracted from skin 
tissues collected from treated area of mice dorsal part 
using ISOGEN solution (Nippon Gene, Tokyo, Japan) 
following the manufacturer’s instructions. The total 
RNA extracted were then amplified and labeled. The 
labeled fragmented aRNA was then hybridized to the 
Affymetrix mouse Array strips (Affymetrix, Santa 
Clara, USA). The GeneChip (Mouse Genome 430 2.0 
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Array) was washed, stained, and scanned using 
Affymetrix GeneAtlas Imaging Station to obtain the 
mRNA expression of various genes from mouse ge-
nome. The gene ontology, biological process, and fold-
change in gene expression (2-fold change, control vs 
TCQA) were then analyzed using Transcriptome 
Analysis Console (TAC) Software (version 4.0.1) and 
database for annotation, visualization, and integrated 
discovery (DAVID) bioinformatics resources 6.8 
[69,70] . The average signal log2 (control vs TCQA) 
was subjected to hierarchical clustering using Euclidean 
distance and average linkage algorithm of the TIGR 
Mev version 3.0.3 software (The Institute for Genomic 
Research, MD, USA). 
 
Immunohistochemistry 
 
Skin tissues from mice treated with TCQA and milli-Q 
water were collected, embedded in optimum cutting 
temperature (OCT) compound, and then cut at a 
thickness of 10 µM.  The sections were then dried and 
fixed in 4% paraformaldehyde (SIGMA, Saint Louis, 
USA) and washed in different solutions of PBS, 20 mM 
glycine/PBS (SIGMA, Saint Louis, USA), and 0.1% v/v 
Triton X-100 /PBS (SIGMA, Saint Louis, USA).  The 
skin samples were then blocked and immersed in a 
solution of 1:100 dilution of rabbit anti- β-catenin 
(Abcam, Rockford, USA) for overnight at 4°C in a wet 
chamber. Then washing in 0.1% v/v Triton X-100 /PBS 
was conducted. The samples were incubated with Alexa 
594-conjugated anti-rabbit (Abcam, Rockford, USA) 
for 1 h at room temperature (RT) and stained with 
Hoechst and mounted in antifade solution (p-phenyl-
enediamine, PBS, and glycerol). 
 
Cells and cell culture  
Human hair follicle dermal papilla cells (HFDPCs) 
were purchased from Cell Application Inc. (Tokyo, 
Japan). HFDPCs were maintained in papilla cell growth 
medium (Toyobo, Osaka, Japan) supplemented with 
growth factors: fetal calf serum, insulin transferrin 
triiodothyronine, bovine pituitary extract, and cypro-
terone solution (Toyobo, Osaka, Japan). 
 
Human epidermal melanocytes (HEM) were purchased 
from Gibco Invitrogen cell culture. HEM were 
maintained in Medium 254 (Gibco, South America) 
supplemented with human melanocyte growth 
supplement HMGS (Gibco). The medium was changed 
every other day until the cells were 60% confluent and 
ready to be subcultured. 
 
The cells were kept under sterile conditions at 37 °C in 
75-cm2  flask (BD Falcon, England, UK) in a humidified 
atmosphere of 5% CO2.  The viability of the cells was 
determined using trypan blue exclusion method. 

Cell proliferation assay 
 
The effect of TCQA on cell proliferation was assessed 
using the 3-(4,5-dimethyl-thiazol-2-y1) 2,5-diphenyl 
tetrazolium bromide or MTT assay (Dojindo, 
Kumamoto, Japan).  The cells were seeded in 96-well 
plate at 3×105 cells/well at 37 °C.  After 24 h seeding, 
the growth medium was replaced by various 
concentrations of TCQA and incubated for 48 h and 72 
h.  MTT reagent (5 mg/ml) was added to the cells and 
incubated further for 8 h followed by an addition of 
10% sodium dodecyl sulfate (SDS) and incubation 
overnight.  Absorbance was measured at 570 nm using 
microplate reader (Powerscan HT, NJ, USA).  The 
viability of the cells was quantified as the percentage 
(%) of living cells relative to the control (untreated 
cells).  To detect any change in the morphology, the 
cells were observed using a contrast microscope (Leica 
Microsystems, Wetzlar, Germany). 
 
Adenosine triphosphate (ATP) assay  
 
Luminescence luciferase assay kit (Toyo Ink, Tokyo, 
Japan) was used to measure the ATP content. HFDPCs 
were seeded in 96-well plate at 3×105 cells/ 100 µl well 
for 24 h, then the medium was replaced by fresh culture 
medium containing various concentrations of TCQA or 
0.1 µM of the positive control minoxidil (Tokyo 
Chemical Industry, Tokyo, Japan).  After 24 h and 48 h, 
the plate was incubated for 15 min at RT, then 100 µl of 
ATP reagent was added, followed by homogenization, 
and 1 min incubation in the dark.  Then, 150 µl of the 
suspension was transferred to white 96-well plate and 
incubated for 10 min at RT.  Intracellular ATP content 
was measured by luminescence and calculated as the 
percentage (%) of TCQA treated-cells relative to the 
control (untreated cells). 
 
RNA extraction  
 
HFDPCs were seeded at a density of 5×105 cells per 
100-mm petri dish.  The cells were allowed to attach 
overnight and then the growth medium was replaced 
with a fresh one containing 0 and 10 µM of TCQA or 
0.1 µM minoxidil used as positive control (Tokyo 
Chemical Industry, Tokyo, Japan).  HFDPCs were 
treated as well with only 10 µM XAV939 (SIGMA, 
Saint Louis, USA), then with 10 µM XAV939 
following by a further incubation with 10 µM TCQA 
(XAV939/TCQA), and finally co-treated with 10 µM 
XAV939 and TCQA simultaneously (XAV939+ 
TCQA).  After 6 and 12 h treatment, the growth medi-
um was removed, and the cells washed with cold PBS 
before the total RNA was extracted using ISOGEN kit 
(Nippon Gene, Tokyo, Japan) following the 
manufacturer’s instructions. The RNA concentration 
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was assessed using a NanoDrop 2000 spectro-
photometer (NanoDrop Technologies, Massachusetts, 
USA). 
 
Quantitative real-time PCR analysis 
 
The extracted RNAs were used as templates for reverse 
transcription PCR using SuperScript III reverse 
transcription kit (Invitrogen, CA, USA).  The cycling 
protocol is as follows: 95 °C for 10 min, 40 cycles of 95 
°C for 15 s, and 60 °C for 1 min.  TaqMan Universal 
PCR mix and TaqMan probes specific to Ctnnb1 (Mm 
00483039_ m1), CTNNB1 (Hs99999168_m1), and 
ALPL (Hs01029144) (Applied Biosystems, CA, USA) 
were used for real-time PCR.  The real-Time PCR was 
performed using 7500 Fast Real-Time PCR Software 
1.3.1 (Applied Biosystems, CA, USA).  Gapdh 
(Mm99999915_g1) and GAPDH (Hs 02786624_ g1) 
(Applied Biosystems, CA, USA) were used as 
endogenous control.  All reactions were run in 
triplicates. 
 
Protein extraction 
 
HFDPCs were seeded at density of 5×105 cells per 100-
mm petri dish.  After overnight incubation, the medium 
was removed and the cells were treated with 10 µM 
TCQA and 0.1 µM minoxidil (Tokyo Chemical 
Industry, Tokyo, Japan).  After 12 h and 24 h treatment, 
total protein extraction was achieved using radio-
immunoprecipitation assay (RIPA) buffer (SIGMA, 
Saint Louis, USA) and protease inhibitor following the 
manufacturer’s instructions. 
 
Proteins from tissues collected from treated area at mice 
dorsal part were also extracted. The skin sections were 
crushed using a homogenizer in RIPA buffer (SIGMA, 
Saint Louis, USA) and protease inhibitor following the 
manufacturer’s instructions. 
 
Protein samples (15 µg) were quantified using 2-D 
Quant kit according to manufacturer’s instructions (GE 
Healthcare, Chicago, USA). 
 
Western blot 
 
The protein samples were resolved in 10% sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred to polyvinylidene 
difluoride membrane (PVDF) (Millipore, NJ, USA).  
The proteins were blotted with β-catenin 71-2700 
(Thermo Fisher Scientific, Massachusetts, USA) and 
GAPDH sc32233 (Santa Cruz Biotechnology, Texas, 
USA) primary antibodies and incubated with the second 
antibody goat anti-rabbit IRDye 800 CW or IRDye 680 
LT goat anti-mouse and the expression detected using 

LI-COR Odyssey Infrared Imaging System (LI-COR, 
NE, USA). 
 
Immunocytochemistry 
 
The cells were seeded at density of 3×104/well  in lab-
tek slides chambers (SIGMA, Saint Louis, USA), and 
then allowed to attached for overnight at 37 °C.  
HFDPCs were treated with 0, and 10 µM TCQA and 
0.1 µM Minox for 24 h. The medium was then removed 
and the cells were washed with 0.1% v/v Triton X-100 
/PBS (SIGMA, Saint Louis, USA).  After 1 h incubation 
at RT with the blocking solution, the first antibody 
rabbit anti- β-catenin (Abcam, Rockford, USA) was 
added for overnight at 4 °C.  Therefore, the cells were 
immersed in a solution of 1:10000 dilution of Alexa 
594-conjugated anti-rabbit (Abcam, Rockford, USA) 
and mounted with DAPI. 
 
Statistical analysis  
 
Results were expressed as mean ± standard deviation 
(SD). Statistical analysis was performed using Student’s 
t-test when comparing two value sets (control vs 
TCQA).  P value of ≤0.05 was considered significant.  
ANOVA (One-way between-subject ANOVA unpaired) 
was performed to assess the level of significance 
between treated groups in vivo.  The gene in gene 
expression was considered significant when change in 
expression was at least 2-fold (control vs TCQA).  
ANOVA (one way between-subject ANOVA unpaired) 
was performed to assess the level of significance 
between Minox and TCQA-treated cells; A P value of 
≤0.05 was considered significant. 
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