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INTRODUCTION 
 
Alzheimer’s disease (AD) is a neurological disorder 
caused by the generalized and progressive death of 
neurons. It is the most widespread neurodegenerative 
disease of humankind and is accompanied by the 
accumulation of damaged, misfolded or otherwise 
abnormal proteins. The main neuromorphological 
features of AD are amyloid plaques composed largely 
of the beta-amyloid peptide (Aβ), and neurofibrillary 
tangles of the microtubule binding protein tau [1–3]. 
The accumulation of pathological proteins causing 
neuronal death is associated with the dysfunction and/or 

dysregulation of intracellular protein homeostasis 
systems [4–6]. The first such system to be impaired is 
the ubiquitin-proteasome system (UPS). Impairments of 
the UPS initiate learning and memory deficits in Aβ 
transgenic animals that is associated with AD 
development [4]. The UPS marks damaged or misfolded 
proteins by the covalent attachment of polyubiquitin. 
Ubiquitylated proteins are then targeted for degradation 
by the proteasome, a large multiprotein complex 
possessing both proteasome-associated trypsin- and 
chymotrypsin-like endoproteolytic activities. Previously, 
it was shown that the chymotrypsin-like activity of the 
proteasome was reduced in AD brains [7,8]. Impairment 
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also found that the loss of Ate1 in neuroblastoma Neuro-2a cells eliminated the apoptosis-inducing effects of 
Aβ peptides. Together, our results show that the apoptotic effect of Aβ peptides is linked to their impairment 
of Ate1 catalytic activity leading to suppression of the Arg/N-end rule pathway proteolytic activity and 
ultimately cell death. 
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of proteasomal activity in AD is linked to Aβ, a highly 
amyloidogenic, 39-43 amino acid polypeptide that has 
been shown to induce apoptosis leading to neuronal cell 
death [9,10]. Although it is unclear exactly how Aβ 
leads to apoptosis, Aβ42 was shown to directly decrease 
chymotrypsin-like activity of proteasome [11,12]. 
However, additional studies in both animal and cellular 
models of AD, as well as in vitro, reported a variety of 
Aβ effects on the proteasome ranging from decreased to 
increased and even unchanged activity [13–15]. 
Therefore, a greater understanding of the relationship 
between Aβ and the UPS is needed in order to 
appreciate how Aβ is toxic to cells and how it induces 
apoptosis in neurons.  
 
The N-end rule pathway is a part of the UPS and plays 
critical role in proteolytic signaling and protein-quality 
control. This pathway recognizes proteins and 
polypeptides containing N-terminal degradation signals 
(termed N-degrons) and facilitates their poly-
ubiquitylation thereby facilitating their degradation by 
the proteasome [16–18]. The main determinant of an N-
degron is a destabilizing N-terminal residue. N-degrons 
are recognized by specific E3 ubiquitin ligases of the N-
end rule pathway. In mammals this pathway consists of 
the two branches, the Ac/N-end rule pathway, which 
degrades proteins bearing acetylated N-terminal amino 
acids [19–21], and the Arg/N-end rule pathway, which 
degrades proteins bearing non-acetylated N-terminal 
arginine, lysine, histidine, leucine, phenylalanine, 
tryptophan, tyrosine, isoleucine or methionine (if 
followed by a hydrophobic amino acid) [17,22–24]. A 
number of additional N-terminal amino acids are 
destabilizing as well but require their prior 
modifications before recognition by N-end rule E3 
ligases. N-terminal amidohydrolases catalyze the 
conversion of asparagine and glutamine into aspartate 
and glutamate, respectively [25–27]. Proteins bearing 
N-terminal aspartate, glutamate and oxidized cysteine 
are N-terminally arginylated by the arginyl-tRNA-
protein transferase (Ate1) [28–30]. Protein arginylation 
is a two-step reaction. Initially, tRNA is charged with 
arginine by aminoacyl-tRNA synthetase (RS) in a 
manner that requires ATP. Arginine is then transferred 
from tRNAArg to the substrate by R-transferase Ate1 
[31,32]. Previously, Brower, et al. found that Ate1 was 
capable of arginylating Aβ peptides and that arginylated 
Aβ42 is destroyed by proteasome [24]. However, the 
role of Ate1 and the Arg/N-end rule pathway in Aβ-
associated neurotoxicity has not been fully explored. 
Additionally, Piatkov, et al. found that the Arg/N-end 
rule pathway counteracts apoptotic cell death by 
degrading proapoptotic protein fragments generated by 
caspase activation. They showed that caspases were 
capable of inactivating Ate1 as well as additional 
components of the Arg/N-end rule pathway suggesting a 

mutual suppression between proapoptotic signaling and 
the N-end rule pathway [23]. We hypothesize that the 
apoptosis-inducing effect of Aβ is mediated through the 
inhibition of the Arg/N-end rule pathway of the UPS. 
 
To test this hypothesis, we examined the Arg/N-end 
rule pathway in the presence of Aβ42 or its pathogenic 
mutant carrying the ‘English’ mutation H6R (H6R-
Aβ42), which is more amyloidogenic and is associated 
with early-onset AD [33–35]. We found that the 
apoptotic effects of Aβ peptides are associated with 
decreased Atel activity and inhibition of protein 
degradation via the Arg/N-end rule pathway. 
 
RESULTS 
 
Aβ peptides inhibit the proteolytic activity of the 
Arg/N-end rule pathway 
 
To evaluate the ability of Aβ42 and H6R-Aβ42 to 
modulate activity of the Arg/N-end rule pathway the 
ubiquitin reference technique (URT) was used [36]. 
This technique is based on the comparison of 
degradation rates of a test protein with a destabilizing 
N-terminal residue and a reference protein, which is not 
recognized by components of the N-end rule pathway. 
In this study we utilized fDHFR-UbR48, a flag-tagged 
derivative of the mouse dihydrofolate reductase as a 
reference protein, and PTPRN (Ica512) fragment as a 
test protein. As was shown earlier, calpain-generated 
Lys609-PTPRN fragment is a short-lived substrate of the 
Arg/N-end rule pathway [23]. In the URT-based pulse-
chase assays the fDHFR-UbR48-X609-PTPRNf (X = Asp, 
Arg-Asp) fusion protein is co-translationally cleaved by 
deubiquitilases, yielding equimolar quantities of the test 
and reference proteins (Fig. 1А). The labeled test 
protein was quantified by measuring its level relative to 
the level of a stable reference at the same time point. 
 
The N-terminal amino acid residues of the test protein 
X609-PTPRNf were Asp, which required Ate1 for 
degradation by the Arg/N-end rule pathway, and Arg, 
which bypasses the need for Ate1 and is directly 
recognized by the Arg/N-end rule E3 ubiquitin ligases 
[17]. In the absence of amyloid peptides both Asp-
PTPRNf and Arg-PTPRNf are rapidly degraded in the 
URT-based pulse-chase assays (initial posttranslational 
t1/2 ~60 min for Asp609-PTPRNf and ~14 min for Arg-
Asp-PTPRNf) (Fig. 1В, С, D, E). In the presence of 
Aβ42 however, degradation of Asp-PTPRNf was 
completely inhibited whereas Arg-PTPRNf was 
unchanged (Fig. 1В, С, D, E), which suggests that Aβ42 
disrupts the arginylation of proteins.  
 
H6R-Aβ42 had significantly stronger inhibitory effects 
on the degradation of Asp609-PTPRNf compared to 
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Aβ42. Thus IC50 (half maximal inhibitory concentration) 
for H6R-Aβ42 is 1.83 ± 0.56 μM compared to 4.27 ± 
0.15 μM for Aβ42 (Fig. 2). 
 
Aβ42 interacts with the R-transferase Ate1 
 
It was shown earlier that different isoforms of Ate1 can 
arginylate Aβ42 with unequal effectiveness [24]. In this 
study we used the Ate1-3 and Ate1-1 isoforms. The 
Ate1-3 isoform is more effective in arginylating the 
peptide than Ate1-1 isoform. Interaction of Aβ42 with 
tRNA and Ate1 was probed using the sandwich ELISA 

method (Fig. 3А). A pair of antibodies was used that 
recognize different segments of Aβ42, the N-terminal 
Aβ1-17 and C-terminal Aβ36-42. tRNA, Ate1 and their 
combination were added to Aβ42 bound to immobilized 
anti-Aβ1-17 antibodies. Interaction of any component of 
the reaction mixture with Aβ42 blocks binding of the 
anti-Aβ36-42 antibodies to the C-terminal segment of the 
peptide, as well as the secondary anti-rabbit antibodies, 
leading to decreased spectrophotometric signal. 
Addition of Ate1-1 or Ate1-3 significantly reduced 
optical density of the solution, indicating that the 
interaction of Aβ42 with detection antibodies was 

 
 
Figure 1. Inhibition effect of Aβ42 (10 μM) on the proteolytic activity of the Arg/N-end rule pathway. (A) Diagram of the 
fDHFR-UbR48-X609-PTPRNf (X = Asp, Arg-Asp) fusion. Co-translational cleavage of the fusion by deubiquitylases produces a test protein 
X609-PTPRNf and a stable ’reference’ protein fDHFR-UbR48 at the initially equimolar ratio. (B) Degradation of Asp609-PTPRNf in 
reticulocyte lysate in the presence or absence of Aβ42. Asp609-PTPRNf was expressed in reticulocyte lysate and co-translationally 
labeled with 35S-Met for 30 min at 30°C in the presence or absence of Aβ42, followed by a chase, immunoprecipitation with anti-flag 
M2 antibody, SDS-PAGE, and autoradiography. (C) Same as (B) but with Arg-Asp609-PTPRNf fragment. (D) Quantification of (B). The 
level of Asp609-PTPRNf was normalized on the level of fDHFR-UbR48. The level of Asp609-PTPRNf detected immediately after stopping of 
protein expression in reticulocyte lysate (0 min chase) was taken as 100%. "% remaining" is the level of non-degraded Asp609-PTPRNf 
at shown time points after stopping of protein expression. The absence of Aβ42 - dark-gray column; the presence of Aβ42 – light-gray 
column. (E) Quantification of (C). Each value is the mean ± SD of at least three independent experiments; *p < 0.01, **p < 0.001. 
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blocked by Ate1 (Fig. 3C). In contrast, tRNA had no 
impact on the interaction of Aβ42 with detection 
antibodies. The concurrent addition of tRNA and Ate1-
1 did not change the signal compared to control, 
however the combination of tRNA and Ate1-3 blocked 
the interaction of Aβ42 with detection antibodies 
similarly to Ate1-3 alone (Fig. 3C). 
 
Interaction of the N-terminal region of Aβ42 with Ate1 
isoforms and tRNA was studied using anti-Aβ36-42 as 
capture antibodies, and anti-Aβ1-17 as detection 
antibodies (Fig. 3B). tRNA did not affect the interaction 
of Aβ42 with antibodies. We revealed cross-reactivity of 
Ate1 and secondary anti-mouse antibodies (Suppl. Fig. 
1). This effect was used to detect the binding of Ate1 
with Aβ42. Addition of Ate1-1 or Ate1-3 significantly 
enhanced optical density of the solution, indicating that 
Ate1 isoforms interact with N-terminus of Aβ42 (Fig. 
3D). tRNA blocked the interaction of the amyloid 
peptide with both Ate1 isoforms. 

Aβ peptides decrease enzymatic activity of Ate1 
 
We examined the kinetic parameters of protein 
arginylation using isothermal titration calorimetry 
(ITC). ATP hydrolysis carried out by RS is an 
exothermic reaction (Suppl. Fig. 2A, B). Rate data for 
this reaction were fitted to the Michaelis-Menten 
equation, and kinetic constants were obtained (Table 1). 
Amyloid peptides were added to the calorimetric cell as 
a competitive inhibitor (Suppl. Fig. 2C, D, E, F). The KI 
of RS for Aβ42 and H6R-Аβ42 were 157 and 161 μM, 
respectively (Table 1). 
 
Comparison of the enzymatic kinetic parameters of 
Ate1 isoforms were carried out for its well-known 
substrate BSA [31,32,37] (Suppl. Fig. 3A, B; 4A, B), 
Аβ42 (Suppl. Fig. 3C, D; 4C, D) and H6R-Аβ42 (Suppl. 
Fig. 3E, F; 4E, F). For Аβ42 the values of kcat for Ate1-1 
and Ate1-3 were ~6- and ~13-fold lower than for BSA, 
respectively (Table 2). At the same time, Km values for 

 
 
Figure 2. Effect of different concentrations of amyloid peptides on the proteolytic activity of the Arg/N-end rule 
pathway. Degradation of 35S-methionine labeled Asp609-PTPRNf in the presence of Aβ42 (A) or H6R-Aβ42 (B) was assayed as described 
in the legend to Figure 1B. (C) – quantification of (A) and (B) at 60 min chase (Aβ42 – black squares, H6R-Aβ42 – red circles). Each value 
is the mean expressed as a percentage of the level of Asp609-PTPRNf at 0 min chase ± SD of at least three independent experiments. 
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Аβ42 decreased ~8-fold for Ate1-1 and ~11-fold for 
Ate1-3 compared to BSA. Arginylation of H6R-Аβ42 
proceeded at an even slower rate (Table 2), with kcat 
values for Ate1-1 and Ate1-3 decreasing ~14-fold and 
~55-fold, respectively; and Km values decreasing ~14-
fold and ~23-fold, respectively, relative to BSA.  
 
Ate1 is required for apoptosis induced by amyloid 
peptides  
 
The apoptotic effect of Aβ peptides on differentiated 
mouse neuroblastoma Neuro-2a cells was assessed by 
flow cytometry after 20 hours of incubation of cells 

with peptides. We found that the percentage of early 
apoptotic wild type Neuro-2a cells (Annexin V+ 
propidium iodide-) increased ~2-fold (from ~6% to 
~12%) in the presence of Аβ42 (Fig. 4A). H6R-Aβ42 had 
an even greater effect as the number of early apoptotic 
wild type cells increased ~4-fold relative to untreated 
cells (from ~6% to ~24%) (Fig. 4A) the number of late 
apoptotic cells increased 3-fold relative to control 
(Suppl. Fig. 5A). At the same time presence of Aβs 
results in increase the number of necrotic cells in 
population (Suppl. Fig. 5C). Consistent with the 
apoptotic effects of amyloid peptides being mediated 
through Ate1, we found no increase in percentage of 

 
 

Figure 3. Interaction of Aβ42, tRNA, and Ate1. Schematic representation of ELISA assay with immobilized anti-Aβ1-17  antibodies 
(A) or anti-Aβ36-42 antibodies (B). (C) Detection of tRNA and Ate1 ability to interact with C-terminus of Aβ. (D) Same as (C) but with 
N-terminal region of Aβ. OD450 – optical density measured at 450 nm. Each value is the mean ± SD of at least four independent 
experiments; *p < 0.04, **p < 0.01, ***p < 0.001. 
 

Table 1. Inhibition effect of Аβ peptides on the enzyme kinetics of RS. 

Inhibitior Km (µМ) kcat (s-1) KI (µМ) ∆H (kcal/mol) 

- 35.7 ± 1.2 0.56 ± 0.09 - -3.16 

Аβ42 - - 157.0 ± 5.2 -1.48 

H6R-Аβ42 - - 161.0 ± 1.3 -2.77 
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early and late apoptotic Ate1-lacking Neuro-2a cells 
treated with either Aβ42 or H6R-Aβ42 (Fig. 4B, Suppl. 
Fig. 5B). In the presence of H6R-Aβ42 the percentage of 
necrotic Ate1-lacking Neuro-2a cells increased, which 
may be due to its nonspecific membrane-damaging 
effect (Suppl. Fig. 5D). 
 
DISCUSSION 
 
AD results from the progressive dysfunction and death 
of neurons associated with the amyloidogenic peptide, 
Aβ. A number of familial mutations of Aβ enhance its 
oligomerization and toxic properties, triggering the 
development of early-onset AD [38–41]. One of such 
mutations is the ‘English’ mutation defined by the H6R 
substitution (H6R-Aβ42) [33]. Many studies over the 
past decade have shown toxicity associated with Aβ in 
various oligomeric states [9,42–44]. Large aggregates 
can result in mechanical damage of the cell membrane, 
leading to disruption of the ion homeostasis and 
necrosis. Small Aβ oligomers can bind to membrane 
receptors and/or penetrate cells where they disrupt 

function of the cellular systems and trigger apoptosis. 
One major anti-apoptotic systems in cells is the Arg/N-
end rule pathway of the ubiquitin proteasome system, 
which degrades caspase-generated pro-apoptotic protein 
fragments. Indeed, even a partial inhibition of this 
pathway leads to the accumulation of pro-apoptotic 
protein fragments, an increase in caspase activation by 
positive feedback, and increased apoptosis [23]. In this 
study, we found that Aβ, and especially H6R-Aβ42, 
induces cellular apoptosis by inhibiting protein 
arginylation by Ate1 and subsequent protein 
degradation through the Arg/N-end rule pathway. 
 
The Arg/N-end rule dependent degradation of proteins 
(or protein fragments) bearing N-terminal Asp, Glu, or 
oxidized Cys requires their conjugation, by one of the 
ATE1-encoded isoforms of the arginyl-tRNA-protein 
transferase (Ate1) to arginine [17,45–47]. This reaction 
also requires tRNAArg formed by aminoacyl-tRNA 
synthetases (RS). Mammals have at least six Ate1 
isoforms produced through alternative splicing that 
differ by 1 and 7 exons [45]. The level of Ate1 isoforms 

Table 2. Parameters of Ate1 enzyme kinetics.  

Substrate Enzyme Km (µМ) kcat (s-1) ∆H (kcal/mol) 

BSA 

Ate1-1 

33.2 ± 4.0 6.6 ± 0.6 5.87 

Аβ42 4.3 ± 0.5 1.07 ± 0.09 -10.4 

H6R-Аβ42 2.4 ± 0.5 0.46 ± 0.05 -7.85 

BSA 

Ate1-3 

52.5 ± 11.8 9.3 ± 1.7 5.78 

Аβ42 4.6 ± 0.3 0.70 ± 0.04 -9.77 

H6R-Аβ42 2.3 ± 0.3 0.17 ± 0.03 -7.25 

 

 
 

Figure 4. Apoptotic effects of Aβ peptides (10 µM, 20 h) on Neuro-2a (A) cells and Ate1 knockout Neuro-2a cells (B). The Annexin-V 
positive and PI negative cells were considered early apoptotic. Each value is expressed as a percentage of the total number of cells ± 
SD. The experiments were performed three times in triplicates; *p < 0.01, **p < 0.001.  
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significantly varies in different tissues and intracellular 
compartments, suggesting that specific isoforms may 
have distinct functions [46,47]. All isoforms have 
different activity and substrate specificity [31,46,47]. It 
was shown that Ate1-2 and Ate1-3 arginylate Aβ42 with 
significantly higher efficiency than Ate1-1 and Ate1-4 
[24]. 
 
We found that the amyloid peptides Aβ42 and H6R-Aβ42 
had little effect on RS activity (Suppl. Fig. 2, Table 2) 
but were capable of binding the Ate1 isoforms 1-1 and 
1-3 (Fig. 3B). We also found that the presence of tRNA 
decreased Ate1-1, but not Ate1-3 binding to Aβ42 (Fig. 
3B). This may underlie the differences between Ate1-1 
and Ate1-3 in their abilities to arginylate Aβ42 [24]. We 
also found that Aβ42 and H6R-Aβ42 have a higher 
affinity for Ate1 than BSA, a well-characterized 
substrate of Ate1 [31,32,37] (Suppl. Fig. 3C, D, E, F, 
Fig. 4C, D, E, F, and Table 2). At the same time kcat of 
Aβs arginylation was significantly lower than for BSA 
(Table 2). Finally, we found that Aβ peptides inhibited 
the degradation of substrate proteins bearing N-terminal 
Asp but had no effect on the degradation of proteins 
bearing primary destabilizing N-terminal amino acids 
directly recognized by E3 ubiquitin ligases of the 
Arg/N-end rule pathway (e.g. Arg). Collectively, these 
data indicate that amyloid peptides compete with 
natural Ate1 substrates resulting in their decreased 
arginylation and increased stability. In the case of pro-
apoptotic protein fragments that require N-terminal 
arginylation for degradation by the Arg/N-end rule 
pathway, such competition by amyloid peptides 
increases the pro-apoptotic signal within cells. In 
support of this conclusion, using a genetic approach, we 
found that Aβ peptides induced the apoptosis of 
differentiated wild type Neuro-2a cells but not Neuro-2a 
cells in which Ate1 was ablated by Crispr/Cas9. 
 
Apart from protein degradation by the Arg/N-end rule 
pathway, post-translational arginylation has been shown 
to be involved in a number of cellular processes 
including the modulation of the cell cytoskeleton 
[48,49], regeneration of neural tissue in lesions [50–52], 
G-protein signaling [53,54], and angiogenesis [55,56]. 
Arginylation also plays a protective role in aging [57], 
stress response regulation [58] and in the prevention of 
protein aggregation in neurodegeneration [59]. 
Recently, N-terminal arginylation by Ate1 was shown 
to signal protein degradation via the autophagy system 
[60–62] as well. Dysfunction of UPS leads to 
accumulation of misfolded or damaged proteins in cells. 
This stimulates translocation of endoplasmic reticulum 
chaperones, such as BiP, into the cytoplasm where they 
bind unwanted proteins. Their N-terminal arginylation 
mediated by Ate1 activates autophagic adaptor 
p62/STQSM/Sequestosome-1, promoting autophagic 

flux and lysosomal degradation [60,62,63]. As such, a 
decrease in protein arginylation by Ate1 activity caused 
by amyloid peptides may affect a wide array of cellular 
processes leading to apoptosis.   
 
In conclusion, we suggest that the following succession 
of events takes place in the cell affected by amyloid 
peptides. Pathological processes invoked by AD lead to 
the accumulation of Aβ in the cells [64–68]. When a 
critical concentration of Aβ is reached, Ate1 function is 
disrupted, leading to the stabilization of misfolded and 
toxic proteins, including pro-apoptotic protein 
fragments otherwise degraded by the Arg/N-end rule 
pathway, triggering apoptosis leading to neuronal cell 
death. 
 
MATERIALS AND METHODS 
 
Plasmids and primers 
 
43-kDa mouse X609-PTPRN (X=Asp, Arg-Asp) 
fragment was amplified by polymerase chain reaction 
(PCR) using following primers: AAAAACCGCGGAG 
GAGATGAGCGCCTGGCAGCGCTGGGGC and 
TTTTAATCGATCTGGGGCAGGGCCTTGAGGAT 
for Asp609-PTPRN; AAAAACCGCGGAGGACGTGA 
TGAGCGCCTGGCAGCGCTGGGGC and TTTTAAT 
CGATCTGGGGCAGGGCCTTGAGGAT for Arg-
Asp609-Ica512. Encyclo polymerase (Evrogen) was used 
for PCR. The resulting PCR products were cut with 
SacII/ClaI and cloned into SacII/ClaI-cut pKP496[36]. 
Turbo E. сoli (NEB) was used for cloning and 
maintaining plasmids. Sequences of all constructed 
plasmids were verified by DNA sequencing. Plasmids 
pCB407 and pCB409 encoding Ate1 isoforms were 
described previously [69]. 
 
Preparation of Aβ peptides 
 
Synthetic peptide Aβ42: [H2N]-DAEFRHDSGYEVHH 
QKLVFFAEDVGSNKGAIIGLMVGGVVIA-[COOH] 
and its mutant H6R-Aβ42: [H2N]-DAEFRRDSGYEVH 
HQKLVFFAEDVGSNKGAIIGLMVGGVVIA-[COOH] 
were purchased from Biopeptide. Monomerization of 
Aβ peptides was performed as described previously 
[70]. Briefly, chilled hexafluoroisopropanol (HFIP, 
Fluka) was added to solid Aβ peptide to a concentration 
of 1 mM and incubated for 60 min at room temperature. 
Then this solution was put on ice for 10 min and 
aliquoted into non-siliconized microcentrifuge tubes 
(0.23 mg peptide per tube). HFIP evaporated overnight 
in the hood at room temperature. Peptide in the tubes 
was dried under vacuum using Eppendorf Concentrator 
5301 to remove traces of HFIP. Dried peptide was 
stored at -80°C. 5 mM peptide stock solution was 
prepared by adding 10 μl of 100% anhydrous DMSO 
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(Merck) to 0.23 mg peptide and incubating for 60 min at 
room temperature.  
 
For arginyltransferase (Ate1) kinetics measurements Aβ 
peptides were dissolved in 10% NH4OH in a 
concentration of 1 mM and incubated for 60 min at 
room temperature. The solution was frozen at -196°C 
and lyophilized to remove the solvent. Dried peptides 
were resuspended in reaction buffer. Only freshly 
prepared peptide solutions were used for all 
experiments. 
 
In vitro Transcription-Translation-Degradation assay 
 
The TNT T7 Coupled Reticulocyte Lysate System 
(Promega) was used to carry out transcription-
translation-degradation assays as described elsewhere 
[24]. Reaction samples were prepared according to the 
manufacturer’s instruction. Aβ peptides or equivalent 
amount of DMSO (control) were added to the samples. 
Nascent proteins in reticulocyte lysate were pulse-
labeled with L-[35S]-methionine (10.2 mCi/ml, 1000 
Ci/mmol, PerkinElmer) for 30 min at 30 °C, in the total 
volume of 17 μl. The labeling was quenched by the 
addition of 6.2 μl of chase medium (0.8 mg/ml 
cycloheximide, 8.3 mM unlabeled methionine, 4.2 mM 
ATP, 66.7 mM phosphocreatine, 0.3 mg/ml creatine 
kinase, 8.3 mM MgCl2, Aβ peptides or DMSO in 
required concentration). Samples were taken at 
indicated time points of a chase and the reactions were 
terminated by the addition of 80 μl of TSD buffer (1% 
SDS, 5 mM dithiothreitol (DTT), 50 mM Tris-HCl, pH 
7.4) and snap-freezing in liquid nitrogen. Samples were 
then heated at 95°C for 10 min, diluted with 1 ml of 
TNN buffer (0.5 % NP-40, 0.25 M NaCl, 5 mM EDTA, 
50 mM Tris-HCl, pH 7.4), containing the “complete 
protease inhibitor mixture” (Roche), clarified by 
centrifugation at 15000 g for 5 min and 
immunoprecipitated using 5 μl of anti-flag M2 
Magnetic Beads (Sigma). The samples were incubated 
with rocking at 4°C for 3 h, followed by 3 washes in 
TNN buffer, one wash in 10 mM Tris-HCl (pH 8.5), 
and eluted in 20 μl of SDS-sample buffer. Samples were 
then heated at 95°C for 10 min and fractionated by 10% 
SDS-PAGE, followed by autoradiography, using 
Typhoon FLA 9500 (GE Healthcare), and 
quantification, using ImageJ.  
 
Cell culture 
 
Mouse neuroblastoma Neuro-2a cells were cultured at 
37°C in 5% CO2 in DMEM medium supplemented with 
10% fetal bovine serum (FBS, Invitrogen), 100 units/ml 
penicillin (Invitrogen), 0.1 mg/ml streptomycin 
(Invitrogen) and 2 mM glutamine (PanEko). For 
differentiation cells were grown in the medium 

containing 1% FBS for 2 days. The medium was 
replaced with a serum-free medium prior to adding 
amyloid peptides. 
 
Generation of Ate1 knockout Neuro-2a cells 
 
Mouse neuroblastoma Ate1-lacking Neuro-2a cells 
were generated using the CRISPR/Cas9 system and 
were described previously [71].  
 
Flow cytometry 
 
Flow cytometry analysis was performed to determine 
the percent of apoptotic cells and cells with damaged 
membrane by double staining with Pacific Blue 
conjugated Annexin-V (Molecular Probes) and 
propidium iodide (PI; Sigma). The cells were first 
washed with PBS at 4°C and resuspended in 0.1 ml 
(1×106 cells/ml) of buffer-A (10 mM Hepes, 140 mM 
NaCl, 2.5 mM CaCl2, pH 7.4). Then, they were 
incubated with 5 μl of Pacific Blue-conjugated Annexin 
V (Ex/Em 410/455 nm) for 15 min at room temperature 
in darkness. 400 μl of buffer-A was added and cells 
were incubated with 10 μg/ml PI (Ex/Em 493/632 nm) 
for 1–2 min before analysis in a BD LSRFortessa flow 
cytometer (BD Biosciences). Data were analyzed using 
FlowJo software (Tree Star, Inc). The Annexin-V 
positive and PI negative cells were considered early 
apoptotic. Cells in subpopulations were expressed as a 
percentage of the total number of cells. The experiments 
were repeated thrice with triplicates and values were 
expressed as mean ± SD.  
 
Ate1 expression and purification 
 
Mouse Ate1 isoforms (Ate11B7A and Ate11A7A) were 
expressed and purified as described previously [72] 
with modifications. An overnight culture of transformed 
RosettaTM(DE3)pLysS E. coli cells was split 1:100 into 
400 ml of LB medium supplemented with standard 
concentrations of ampicillin and chloramphenicol, 
followed by growth at 37°C for 1-2 hours until A600 of 
∼0.7. Expression was induced with 0.5 mM IPTG 
(isopropyl b-D-thiogalactoside), the culture was cold 
shocked on ice for 30 min, and then growth at 22°C for 
15 h. For Ate1 purification, cells were collected by 
centrifuging at 4000 rpm for 20 min, resuspended in 
lysis buffer (10% glycerol, 0.05% Nonidet P-40, 500 
mM NaCl, 20 mM imidazole, 5 mM β-mercaptoethanol, 
50 mM Na2HPO4/NaH2PO4, pH 8.0) containing 1 
mg/ml of lysozyme and “complete protease inhibitor 
mixture” (Roche), followed by brief sonication. The 
lysate was centrifuge at 12000 g for 20 min, 4°C and 
incubated for 1 h at 4°C with Ni-NTA agarose (GE 
Healthcare) equilibrated with the lysis buffer. The resin 
was washed three times with the lysis buffer containing 
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50 mM imidazole. Proteins were eluted with lysis buffer 
containing 250 mM imidazole, followed by overnight 
dialysis at 4°C against 50 mM Na2HPO4/NaH2PO4, pH 
7.5 containing 10% glycerol, 0.05% Nonidet P-40, 300 
mM NaCl, 5 mM β-mercaptoethanol. The tagged Ub 
moiety was cleaved off during dialysis by incubation 
with Usp2-cc (1:100), a deubiquitylating enzyme that 
has been expressed and purified as previously described 
[73]. To eliminate His-tagged Ub and Usp2-cc proteins 
were incubated with Ni-NTA agarose equilibrated with 
the dialysis buffer, followed by washing in dialysis 
buffer containing 500 mM NaCl. Untagged Ate1 
isoforms were eluted with dialysis buffer containing 
500 mM NaCl, 50 mM imidazole and then dialyzed 
against 50 mM Na2HPO4/NaH2PO4, pH 7.5 containing 
150 mM NaCl, 5 mM MgCl2, 2 mM DTT, 20% glycerol 
for 2 h at 4°C. Glycerol was added to the dialyzed 
samples to a final concentration of 50%. Purified Ate1 
isoforms were kept at -80°C. The estimated purity of 
each protein was >90%. 
 
Enzyme kinetic activity 
 
The enzymatic kinetics was measured using a MicroCal 
PEAQ-ITC (Malvern). Experiments were carry out at 
37°C in 50 mM Hepes, pH 7.5, 30 mM KCl, 5 mM 
MgCl2, 1 mM DTT and 200 µM L-arginine. Single 
aliquot (8 µl, 16s) of the 5 mM BSA or 1.25 mM Aβ 
peptides was injected from the syringe into the 0.2 ml 
cell containing 1 µM of Ate1, 50 µM ATP, 100 µM 
total E. coli tRNA (Sigma), 1 µM total E. coli 
aminoacyl-tRNA synthetases (RS). To evaluate 
inhibition effect of Aβ peptides on the RS enzymatic 
activity 8 µl of 10 mM ATP was injected into mixture 
of 1 µM RS and 1 mM tRNA in the presence and 

absence of inhibitor (100 µM Aβ). The resulting kinetic 
curves were fitted using MicroCal PEAQ-ITC Analysis 
Software (Malvern). Michaelis constants (KM), catalytic 
rate constants for substrate conversion (kcat) and 
inhibition constants (KI) were determined by non-linear 
least squares. To calculate the KI values, the kinetic 
parameters for RS obtained in the absence of amyloid 
peptides were used.  
 
ELISA 
 
All antibodies used in ELISA assays are listed in Table 
3. 96-well plate (Thermo Scientific Nunc MaxiSorp 
Surface) was coated overnight with 50 μl of capture 
antibody (2 µg/ml) followed by washing with 
phosphate-buffered saline containing 0.05% Tween 
(PBST) and incubation with 100 μl of blocking buffer 
for 2 h. One hundred microliters of 1 µM Aβ was added 
to the wells for 90 min at 37°C. After washing, the 
wells were additionally incubated with buffer (30 mM 
KCl, 5 mM MgCl2, 15 µM Arg, 1mM ATP, 50 mM 
Hepes, pH 7.5), Arg-tRNA or Ate1 for 90 min at 37°C. 
To synthetize Arg-tRNA total tRNA was first incubated 
with RS (1000 u/ml) and 50 mM Hepes, pH 7.5 
containing 50 µM Arg, 2.5 mM ATP, 2 mM DTT, 5mM 
MgCl2 and 30mM KCl at 37°C for 60 min, then purified 
away from the proteins using phenol/chlorophorm 
extraction. All wells were washed three times with 200 
μl of PBST. 100 μl of detection antibody (0.7 µg/ml) 
was added to each well and incubated for 2 h. After 
washing, 100 μl of horseradish peroxidase (HRP)-
conjugated antibody diluted at the optimal concentration 
in blocking buffer was incubated with samples for 1 h. 
For detection OPD (o-phenylenediamine dihydrochlo-
ride, Thermo Scientific) was used according to 

Table 3. Antibodies used in ELISA assays. 

Antibody Host Manufacturer Dilution 
Capture Antibody 
anti-Aβ1-17 (DE2B2) Mouse monoclonal Thermo Fisher Scientific, 

USA     cat. #MA1-24966 
1:500 

anti-Aβ36-42 Rabbit polyclonal Thermo Fisher Scientific, 
USA     cat. #44-344 

1:500 

Detection Antibody 
anti-Aβ36-42 Rabbit polyclonal Thermo Fisher Scientific, 

USA     cat. #44-344 
1:1500 

anti-Aβ1-17 (DE2B2) Mouse monoclonal Thermo Fisher Scientific, 
USA     cat. #MA1-24966 

1:1500 

Secondary HRP-conjugated Antibody 
anti-rabbit Donkey polyclonal Novex, USA 

cat. #A16035 
1:10000 

anti-mouse Rabbit polyclonal Imtek, RF 
cat. #RAM Iss 

1:10000 
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manufacturer’s instruction. Absorbance values were 
measured at 450 nm by a Multiskan™ GO Microplate 
Spectrophotometer (Thermo Scientific).  
 
Statistical analysis 
 
The data are shown as the mean ± standard deviation at 
least of three independent experiments. The differences 
among the groups were analyzed using One Way 
ANOVA with post-hoc Tukey HSD (Honestly 
Significant Difference) test. 
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SUPPLEMENTARY MATERIAL 
 
 
 
 
 
 
 

 
Supplementary Figure 1. Specificity of the anti-Aβ1-17 (A), anti-Aβ36-42 (B), anti-mouse (C) and anti-rabbit (D) antibodies to Aβ42, Ate1 
isoforms and tRNA. Specificity of antibodies was probed using the indirect ELISA method. 96-well plate (Thermo Scientific Nunc MaxiSorp 
Surface) was coated overnight with 50 μl of Aβ42, 3 µM Ate1 or 15 µM tRNA followed by washing with phosphate-buffered saline 
containing 0.05% Tween (PBST) and incubation with 200 μl of blocking buffer for 2 h. 100 μl of antibodies diluted at the optimal 
concentration (Table 3) was added to each well and incubated for 2 h. For detection OPD (o-phenylenediamine dihydrochloride, Thermo 
Scientific) was used according to manufacturer’s instruction. OD450 – optical density measured at 450 nm. Each value is the mean ± SD of at 
least three independent experiments. 
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Supplementary Figure 2. Effect of Aβ on the ATP hydrolysis mediated by RS. (A) Raw thermal power obtained in the single 
injection ITC assay by injecting ATP (to 200 µM) into 1 µM RS and 1 mM tRNA at 37°C. (B) To determine RS kinetic parameters thermal 
power was converted to enzyme turnover and fitted by non-linear least squares. (C) and (E) same as (A) but in the presence of Aβ42 and 
H6R-Aβ42 in the calorimetric cell, respectively. Inhibition effect of Aβ42 (D) and H6R-Aβ42 (F) on ATP hydrolysis was evaluated using 
parameters of RS kinetic from (B) and non-linear least squares fitting.  
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Supplementary Figure 3. Enzymatic kinetics of Ate1-1 with different substrates. Raw thermal power was obtained in the single 
injection ITC assay, performed at 37°C with injections of BSA (A), Aβ42 (C) or H6R-Aβ42 (E) into a mixture of Ate1-1, RS, and tRNA in the 
calorimetric cell. Kinetic curves for BSA (B), Aβ42 (D), and H6R-Aβ42 (F) were fitted to the Michaelis–Menten equation to determine the 
kinetic parameters of Ate1-1. 
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Supplementary Figure 4. Enzymatic kinetics of Ate1-3 with different substrates. Raw thermal power was obtained in the single 
injection ITC assay, performed at 37°C with injections of BSA (A), Aβ42 (C) or H6R-Aβ42 (E) into a mixture of Ate1-3, RS, and tRNA in the 
calorimetric cell. Kinetic curves for BSA (B), Aβ42 (D), and H6R-Aβ42 (F) were fitted to the Michaelis–Menten equation to determine the 
kinetic parameters of Ate1-3.  
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Supplementary Figure 5. Toxic effects of Aβ peptides (10 µM, 20 h) on differentiated Neuro-2a (A, C) cells and Ate1 knockout Neuro-2a 
cells (B, D). Cells stained by Annexin-V and propidium iodide (PI) are late apoptotic. The Annexin-V negative and PI positive cells were 
considered necrotic. Each value is expressed as a percentage of the total number of cells ± SD. The experiments were performed three 
times in triplicates; *p < 0.05, **p < 0.01.  
 

 


