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A growing aging population burdened by multiple 
chronic diseases and geriatric syndromes has escalated 
to become a major public health and  medical  challenge  

 

in Western society [1]. Elderly individuals who are frail 
are less able to cope with physiological stressors, and 
not only experience suboptimal health outcomes but 
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ABSTRACT 
 
Therapeutic strategies targeting the hallmarks of aging can be broadly grouped into four categories, namely 
systemic (blood) factors, metabolic manipulation (diet regimens and dietary restriction mimetics), suppression 
of cellular senescence (senolytics), and cellular reprogramming, which likely have common characteristics and 
mechanisms of action. In evaluating the potential synergism of combining such strategies, however, we should 
consider the possibility of constraining trade-off phenotypes such as impairment in wound healing and immune 
response, tissue dysfunction and tumorigenesis. Moreover, we are rapidly learning that the benefit/risk ratio of 
aging-targeted interventions largely depends on intra- and inter-individual variations of susceptibility to the 
healthspan-, resilience-, and/or lifespan-promoting effects of the interventions. Here, we exemplify how 
computationally-generated proxies of the efficacy of a given lifespan/healthspan-promoting approach can 
predict the impact of baseline epigenetic heterogeneity on the positive outcomes of ketogenic diet and mTOR 
inhibition as single or combined anti-aging strategies. We therefore propose that stochastic biomathematical 
modeling and computational simulation platforms should be developed as in silico strategies to accelerate the 
performance of clinical trials targeting human aging, and to provide personalized approaches and robust 
biomarkers of healthy aging at the individual-to-population levels.   
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also contribute to rising healthcare costs [2,3]. Thus, the 
combined effects of increased life expectancy and the 
projected exponential growth of the aging population 
will critically reduce the capacity of our medical care 
systems to improve healthcare quality in the elderly. In 
this scenario, the traditional biomedical focus on single 
diseases, which often reduces mortality without 
preventing or reversing the decline in overall health, 
will result in an inadequate resolution of the societal 
burden of chronic illnesses and frailty [1-4]. 
 
A better understanding of how a limited number of 
fundamental processes drives aging has led to the 
emergence of candidate drugs and non-pharmacological 
strategies specifically targeting the so-called hallmarks 
of aging [5-9]. It is safe to predict that the next 10 to 20 
years will see a range of aging-related treatments 
clinically tested for their ability to lower all-cause 
mortality by targeting complex multimorbidity (i.e., 
healthspan promoters), to boost the capacity of cells 
and tissues to respond or recover from an acute health 
stress (i.e., resilience promoters), or even to reverse 
functional decline via organismal rejuvenation (i.e., 
lifespan promoters). Although some of these drugs are 
already in clinical use for other specific indications 
(e.g., metformin and rapamycin) [10,11], the design of 
bona fide anti-aging clinical trials with the existing (and 
with a yet-to-be funded) pipeline of healthspan-
/resilience-/lifespan-promoting treatments will pose a 
unique set of challenges, namely: a.) the occurrence of 
intra- and inter-individual variability of response to 
aging-targeting strategies with a consequent need for 
personalized treatments; and b.) the need for reasonable 
end points and robust biomarkers of healthy aging to 
assess the response to aging-targeted interventions at 
the individual-to-population levels.   
 
The trade-offs of aging-targeted strategies: the 
epigenetic nature of a convergent concern 
 
The majority of existing therapeutic strategies targeting 
aging can be broadly grouped into four categories: 
systemic (blood) factors (including parabiosis), 
metabolic manipulation (diet regimens [DR] and dietary 
restriction mimetics [DRMs]), suppression of cellular 
senescence (senolytic drugs), and cellular (partial/ 
transient) reprogramming (reviewed in [8]). A 
comparison of their underlying mechanisms of action 
(e.g., inflammation, nutrient-sensing pathways, epi-
genomic remodeling, autophagy, mitochondria) and 
target cells (e.g., stem cells, connective tissue and 
vasculature cells, senescent cells) immediately suggests 
their potential combinatorial value. Accordingly, it is 
tempting to suggest that shared mechanisms or target 
cells could be exploited to induce more direct anti-aging 

effects, while different mechanisms could be targeted in 
combination to enhance the effects.  
 
The attractive possibility of achieving supra-additive 
outcomes when therapeutically addressing human aging 
with combinatorial strategies should consider the 
parallel existence of constraining trade-off phenotypes 
(Figure 1). For example, because senescent cells are 
known to have beneficial effects including facilitating 
tissue repair after injury and preventing tissue fibrosis, 
an unrestricted inhibition of senescence and/or 
inflammation with the use of senolytics could 
significantly impair the ability of the organism to 
undergo normal tissue repair and remodeling while 
promoting tissue-specific fibrosis [12-16]. Also, 
DR/DRM strategies can suppress senescence and pro-
inflammatory cytokine levels, potentially interfering 
with normal wound healing processes [17,18]. Chronic 
suppression of senescence, a primary mechanism of 
tumor suppression [19,20], and unrestricted cellular 
reprogramming, might similarly lead to excessive 
distortion of the epigenome landscape, loss of cell 
identity and tumorigenesis [21,22]. It therefore appears 
that the disruption of entry-exit mechanisms and 
kinetics of endogenous injury-repair mechanisms is the 
convergent trade-off of all the emerging anti-aging 
strategies. Accordingly, whereas transient epigenomic 
remodeling in response to partial cellular reprogram-
ming phenomena is a rejuvenation strategy for erasing 
the hallmarks of aging at the molecular and cellular 
level [23-26], tissue repair impairment and tumori-
genesis could also occur as the trade-off if the 
unrestricted epigenetic remodeling in response to aging-
targeted strategies is not accompanied by self-repair of 
injury or disease [27]. 
 
Endogenous heterogeneity and individual-to-
individual variability: two key regulators of the 
benefit/risk ratio of anti-aging strategies 
 
Beyond genetic factors, non-genetic stimuli such as 
inflammation and metabolic disturbances can promote 
an overly restrictive epigenetic landscape capable of 
blocking normal differentiation processes or preventing 
the induction of tumor suppression programs. 
Conversely, these cues can induce overly plastic 
epigenetic states capable of stochastically promoting 
inadequate cell fate transitions or activating oncogenic 
programs [28-31]. This may allow for tissue-specific 
responses to changing environmental conditions and, 
perhaps more importantly, it implies that systemic 
signals can be interpreted by local injury-repair 
mechanisms. For example, whereas defective insulin 
signaling at the systemic level associates with aging, 
tissue dysfunction, and impaired wound healing, a local 
potentiation of insulin sensitivity in the liver suffices to 
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switch the hepatic injury response from a stromal repair 
process to a more beneficial epithelial repair process 
[32]. The ability of the microenvironment, including the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

stem cell niche, to locally integrate systemic signals and 
alter the type and intensity of repair mechanisms 
strongly suggests that anti-aging strategies should   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Combinatorial anti-aging strategies: Good and bad directions. (A) Chronic inflammation (or inflamm-aging) is 
commonly viewed as a central feature in aging and aging-related diseases [6,7,43]. Accordingly, the benefits arising from the anti-
inflammatory effects of either dietary interventions/DRM strategies or senolytics might be directly enhanced in combination with well-
characterized anti-inflammatory drugs (e.g., aspirin, non-steroidal anti-inflammatory drugs [NSAIDs] or nordihydroguaiaretic acid) [44-
49], which may even operate at the hypothalamus level to impede systemic inflammation-driven aging [50]. However, a new paradigm 
for the role of inflamm-aging and immunosenescence (an aging-related decline in immune parameters that often leads to subclinical 
accumulation of pro-inflammatory factors and inflamm-aging) in the aging process begins to suggest that successful aging and longevity 
can only occur when changes in inflamm-aging are balanced by compensatory anti-inflamm-aging mechanisms [51]. In such a scenario, in 
which the immune/inflammatory system is adapted/remodeled to provide the best possible anti-pathogen protection when the adaptive 
immune systems fails in the elderly/aged organisms, the preservation of such apparently detrimental changes may be needed for optimal 
healthspan/longevity. Therefore, the aforementioned combinations (generating exacerbated decreases of the two components of the 
immunosenescence/inflamm-aging duo) might cause potential harm in terms of immune response impairment to infections in aged 
individuals. (B) Because many of the aging-associated features that are reverted by partial cell reprogramming are related to senescence 
[25], and given that cellular reprogramming on its own has been shown to rejuvenate senescent cells [52], a combination of senolytic and 
reprogramming strategies might provide synergistic anti-aging effects. However, it should be noted that the presence of inflammatory 
factors such as interleukin-6 (IL-6) in response to injury-induced senescence promotes cellular plasticity and responsiveness of 
neighboring cells to in vivo reprogramming-like phenomena [23,24]. Indeed, specific pharmacological and genetic removal of senescent 
cells has been shown to impair in vivo reprogramming efficiency [53]. The routes, kinetics, and intensities that would distinguish between 
the beneficial and the harmful effects of senescence in terms of the inherent susceptibility of different cell and tissue types to cellular 
reprogramming remains an important direction for future studies. (C) The cellular epigenome landscape directs cell fate and reflects its 
health and biological age. Certain dietary interventions (e.g., ketogenic diets), by altering the availability of key regulators for chromatin-
modifying enzymes (e.g., the histone deacetylases inhibitor β-hydroxybutyrate), may provide a direct link between metabolism and 
epigenomic remodeling to extend healthspan and longevity [54,55]. Given the ability of dietary interventions and DRMs to affect the 
epigenome [31,56-58] and to suppress the development of senescence [59-62], an intriguing possibility is that dietary, pharmacological, 
and behavioral strategies targeting nutrient-sensing pathways might synergistically interact with cellular reprogramming strategies to 
provide better anti-aging outcomes. Nonetheless, certain dietary interventions could promote enhanced stemness and tumorigenicity in 
specific stem cell compartments and differentiated cell types [63,64]. Interference with normal wound healing processes and 
potentiation of tumorigenesis and cancer progression might therefore occur after excessive perturbation of the epigenome plasticity, as a 
maladaptive response to a combination of metabolic manipulations and partial reprogramming.  
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restore a homeostatic balance of sub-cellular trans-
ducers (e.g., epigenome, mitochondria), cellular 
functions (e.g., stem cells, senescent cells, vascular and 
connective tissue cells –the latter present throughout the 
entire organism), and systemic features (e.g., inflam-
mation, nutrient sensing), in order to dynamically 
maintain organismal function.  
 
Endogenous heterogeneity and individual variability 
might operate as the fundamental epigenetic dimensions 
determining the tissue and organismal potential to 
benefit from anti-aging strategies (Figure 2). The 
benefit/risk ratio of anti-aging strategies targeting 
inflammation (e.g., senolytics) or nutrient/metabolism-
sensing pathways (e.g., DR/DRMs modulating the 
communication between metabolism and epigenetics) 
might be dictated by the pre-existing degree of 
epigenetic plasticity and phenotypic malleability of the 
different cell populations in aging tissues. Accordingly, 
the occurrence of intra- and inter-individual variability 
driven by sub-cellular/cellular (e.g., local availability of 
epigenetic substrates/cofactors and/or metabolic cues) 
and more systemic features (e.g., inflammation driven 
by senescent cells, activated fibroblasts or endothelial 
cells) begins to be understood as a consequence of 
different aging trajectories occurring in different tissue 
cell subpopulations [33]. This likely reflects changes in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the short-range/paracrine communication between 
distinct cell types within a tissue, as well as between 
different individuals. Unfortunately, we are lacking 
robust and standardized approaches to capture such 
fundamental stochastic aspects of aging biology. 
 
Biomathematics to capture the stochasticity of aging 
biology 
 
Biomathematical and computational systems biology 
are expected to deconstruct, model, and simulate the 
power that epigenetic landscapes have on the 
susceptibility of cells and tissues to retain or lose their 
normal identity and function. We recently presented a 
theoretical framework in which the acquisition of 
phenotypic plasticity (via transient disruption of the 
homeostatic resilience of the chromatin structure and 
functioning) followed by reparative differentiation 
phenomena (replacement or dilution of damaged/  
diseased cells) might constitute a common route 
through which aging-targeted therapies could enhance 
the organismal self-repair capacity after damage, stress, 
and disease [27]. This conceptualization of aging as a 
senescence-inflammation regulatory phenomenon of 
phenotypic plasticity and reparative reprogramming 
actually incorporates the concept of frailty, which can 
be viewed not only as a deficit accumulation, but also  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Biomathematical approaches to accelerate the performance and personalize the use of aging-targeted 
strategies. The benefit/risk ratio of aging-targeted interventions largely depends on intra- and inter-individual variations of susceptibility 
to the healthspan-, resilience-, and/or lifespan-promoting effects of the interventions. Stochastic biomathematical modeling and 
computational simulation platforms should be developed as in silico strategies to accelerate the performance of clinical trials targeting 
human aging, and to provide personalized approaches and robust biomarkers of healthy aging at the individual-to-population levels.   
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as a reduction in the molecular/cellular/physiological 
reserves of the aged organs/organism, leading to less 
efficient responses to stress. A predictive computational 
model of cell fate reprogramming revealed that 
pathological cell states, and their suppression, might 
result from the sole stochastic translation of metabolic 
cues (e.g., DR and DRMs) into resilient/plastic cell 
states [34]. A more advanced stochastic, multiscale 
reduction method of combined epigenetic regulation-
gene regulatory network has mathematically captured 
how epigenetic heterogeneity can operate as the driving 
force governing the routes and kinetics to entry and exit 
from unrestrained epigenetic plastic states [35]. 
Moreover, we were able to computationally validate the 
likelihood of unlocking aberrant cell states disabled for 
reparative differentiation and prone to malignant 
transformation (and drive their function to their correct 
repair function) solely by manipulating the intensity and 
direction of a few epigenetic control switches [35]. 
Altogether, these findings provided support to the 
notion that predictive mathematical modeling and 
computational simulation platforms might be 
incorporated as new tools to optimize the clinical 
success of aging-targeting therapeutics while providing 
individualized ways to target human aging. By 
analyzing computationally-generated proxies of the 
impact of aging-targeted strategies on the behavior of 
epigenetic-regulatory (ER) systems controlling cell fate 
reprogramming, we here exemplify how baseline 
epigenetic heterogeneity might dictate not only the 
efficacy of single anti-aging therapies such as ketogenic 
diet (as an archetypal lifespan/healthspan-promoting 
dietary approach leading to inhibition of histone 
deacetylases [36-38]) and mTOR inhibition (as an 
archetypal lifespan/healthspan-promoting metabolic 
approach that couples nutrient sensing to epigenetic 
regulation by promoting a decrease in histone 
acetylation [39,40]) but also the degree of an in silico 
predicted anti-aging synergistic response to a ketogenic-
like dietary regimen concurrent with mTOR blockade 
(Figure 3). 
 
Stochastic biomathematical platforms to strengthen 
the efficacy and personalization of healthspan/ 
resilience/lifespan-promoting therapies 
 
The aforementioned computational models are 
consistent with a scenario in which cell/tissue plasticity 
and resilience are fundamental epigenetic phenomena 
associated with phenotypic variation that drives 
successful repair, degeneration or transformation. 
Because such models predict that the fine-tuning of 
certain signals might re-direct plastic epi-states into 
phenotypic resilience or vulnerability, they seem to be 
idoneous to in silico test the ability of a given aging-
targeted intervention to promote tissue repair impair-

ment, tissue-specific fibrosis or dysfunction (including 
tumorigenesis) because of loss of cellular identity. Such 
stochastic biomathematical platforms would comprise a 
machine-learning/computational component to uncover 
the phenotypic behavior of cell populations mimicking 
the intra- and inter-individual heterogeneity and 
variability when challenged with aging-targeting 
strategies (Figure 2). Computational tools suited for 
complex stochastic dynamical systems could be 
employed to in silico construct and comparatively 
integrate the shape and evolution of epigenome 
remodeling upon such imposition of aging-targeted 
approaches. Quantitative probabilistic simulations could 
be then incorporated to functionally infer the propor-
tions and interconversion rates of the existing com-
munities of epi-states. Ideally, a multi-scale theoretical 
integration of epi-phenotype dynamics prospectively 
coupled to confirmatory laboratory-based testing of the 
in vivo amelioration of aging hallmarks, would allow an 
iterative improvement process capable not only of 
predicting the effectiveness but also of personalizing 
aging-targeting interventions. Indeed, by computa-
tionally determining the key regulatory nodes and 
kinetic routes of phenotypic plasticity in an unbiased 
and systematic manner, stochastic biomathematical 
platforms would provide end-points and biomarkers of 
healthy aging when assessing the individual-to-
population levels of response to aging-targeted inter-
ventions.  
 
The unique features of clinical trials targeting 
human aging 
 
The ultimate goal of aging-targeted strategies extends 
beyond an isolated impact in each separate age-related 
disease. Measuring the global impact of such 
healthspan-/resilience-/lifespan-promoting interventions 
on “hard” composite outcomes such as burden of 
chronic diseases, functional dependence, and/or 
mortality, will require a major effort in the design of 
controlled clinical trials in large, heterogeneous, elderly 
populations. Before committing to complex, long-term 
studies, a series of intermediate, smaller clinical trials of 
a given aging-targeted intervention should provide 
experimental evidence for the concept that basic aging-
driving mechanisms can be therapeutically targeted. 
Moreover, because aging is not an indication currently 
recognized by the reference regulatory agencies (FDA, 
EMA), a key goal for forthcoming clinical trials will be 
to define outcomes representative of fundamental aging 
features that might be acceptable as potential 
indications. Such in human amelioration of aging 
hallmarks might include multi-morbidity, frailty and 
functional decline. In this regard, two broad strategies 
involving short-duration or pilot studies have been 
proposed to solidify the rationale and  better  inform the  
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Figure 3. Baseline epigenetic heterogeneity and efficacy of anti-aging strategies: A proof-of-concept in silico trial. We have 
recently presented a stochastic biomathematical modeling and computational simulation strategy that might be incorporated as a 
valuable tool for assessing the benefit/risk ratio of therapeutic approaches aimed to target the aging/cancer-related perturbations of the 
epigenome [35]. Briefly, we quantified the heterogeneity and robustness of differentiation epigenetic and pluripotency regulatory 
systems (DERS and PERS, respectively) in terms of the average reprogramming time associated with differentiation-primed (benefit) and 
pluripotency-locked (risk) states. Such calculation can therefore be employed as a proxy of the expected efficacy of a given anti-aging 
strategy (i.e., longer reprogramming times associate with more efficient anti-aging outcomes). Regarding DERS heterogeneity, we 
observed three different clusters associated with a differentiated-primed behavior (DERS1), a differentiation-refractory (stem-like) 
behavior (DERS2), and an indecision behavior (DERS3). Several kinetic parameters associated with histone deacetylase (HDAC, c11) and 
histone acetylase (HAC, c15 and c16) activities sufficed to account for the distinction between DERS clusters [35]. Regarding PERS 
heterogeneity, we observed three different clusters defined by the large (PERS1), intermediate (PERS2), and small (PERS3) values of the 
average waiting time needed for transitioning from closed to open ER states [35]. As a proof of concept, here we considered nine 
combinatorial scenarios corresponding to all the possible combinations between three different differentiation DERS and PERS 
challenged with three different anti-aging strategies (A), namely ketogenic diet (mimicked by reducing by 50% the kinetic parameter 
associated with HDAC activity [i.e., c11]), NAD+ boosters (mimicked by increasing by 50% the kinetic parameter associated with HDAC 
activity [i.e., c11]), and mTOR inhibition (mimicked by reducing by 25% the two parameters associated with HAC activity [i.e., c15 and c16]). 
Whereas ketogenic diet- and mTOR inhibition-like strategies were notably found to be more efficient than NAD+ boosting-like approaches 
across all the baseline epigenetic scenarios, it was noteworthy that the most sensitive one was that defined by the combination of PERS3 
with DERS1 (A). Based on these results, we decided to assess the direction and intensity of the average reprogramming time when 
combining ketogenic diet- and mTOR inhibition-like strategies (B). With the exception of baseline scenarios where the strong single-agent 
positive outcome left little room for additional gains, we observed that strong, synergistic interactions tend to be more specific to 
particular epigenetic states than were single strategies (B). Our in silico approach exemplifies how baseline epigenetic heterogeneity might 
dictate not only the positive outcomes of single aging-targeted therapies such as ketogenic diet and mTOR inhibition but also the degree of 
positive synergistic effects that were predicted to occur upon concurrent targeting of an apparently existing HDAC-mTOR cross-link.  
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design and scale of larger and longer trials [2]. The so-
called “extending healthspan” study design is based on 
the notion that, if aging is associated with a gradual 
accumulation of multiple chronic diseases, geriatric 
syndromes, and functional decline, those interventions 
directly targeting the aging machinery should have a 
significant effect on multi-morbidity. Conversely, the 
so-called “enhancing resilience” study design is based 
on the notion that, if the ability of response to or 
recovery from an acute health stress back to the 
functional/healthy baseline declines with age, those 
interventions directly targeting the aging machinery 
should be able to enhance the capacity of an individual to 
recover functional independence. The question remains 
as to whether rejuvenation interventions contributing to 
“lifespan extension” such as transient reprogramming, 
which has been observed exclusively in the context of 
premature aging [25, 26], may also prove beneficial for 
whole-organism rejuvenation in the absence of injury or 
disease and/or in a naturally aged context.  
 
Even in the context of broad strategies such as the 
proof-of-concept studies described above, the sole 
testing of existing drug pipelines (e.g., sirtuin agonists, 
senolytic agents, DRMs including metformin, 
mitochondrial function and autophagy regulators, anti-
hypertensive agents, etc) and non-pharmacological 
strategies (e.g., blood factors, DRs, partial cellular 
reprograming, inducible telomerase, exercise, fecal 
microbiota transplantation, etc) might generate 
significant challenges for clinical trial design regarding 
population selection, study length and type of 
intervention, and measurement of the various outcomes 
for each candidate. Accordingly, a recent study has 
raised concerns about broad recommendations for the 
use of metformin as a potential healthspan extending 
treatment [10,41] in healthy individuals [42]. The 
influence of metformin on aerobic exercise training-
induced improvements in physiological functions in 
older adults was highly variable, with the occurrence of 
positive and negative responders being associated with 
the heterogenous effect of metformin on the mito-
chondria [42]. These data strongly support the notion 
that prior to prescribing any aging-targeted intervention, 
additional studies are needed to understand the 
mechanisms that elicit positive and negative responses 
before assuming synergism of combining such 
strategies. In this scenario, we propose that the 
development of predictive mathematical models and 
computational simulation platforms to operatively 
integrate the multi-scale epi-phenotypes from single 
cells to individuals and populations might enhance the 
clinical performance of aging-targeting therapeutics by 
helping to circumvent the trade-offs of aging-targeted 
interventions while providing individualized ways to 
target human aging (Figure 3). 

Aging-targeted interventions: challenging an old 
paradigm 
 
The conventional paradigm “one disease, one drug” 
should be updated to achieve the vision of targeting 
aging as a common component of human diseases. The 
current deterministic genetic paradigm of diagnosing 
and treating each separate age-related disease fails to fit 
with the broader anti-aging strategies aimed to address 
the closely related concepts of healthspan, resilience, 
and lifespan, which should be therapeutically managed 
in the absence of discrete, targetable genetic drivers of 
aging progression. Perhaps more importantly, current 
frameworks cannot capture the stochastic aspects that 
drive the shared trade-offs of the emerging strategies for 
organismal healthspan and rejuvenation, namely tissue-
repair/wound-healing impairment and tumorigenesis.  
 
Successful clinical trials with new families of candidate 
interventions targeting the biologic machinery of aging 
per se would be groundbreaking; delaying, preventing 
(or even reversing) the aging process would result in 
tremendous cost savings for healthcare systems while 
increasing the productive contributions that could be 
made by the older members of our societies. By 
modeling and predicting the behavior of interventions 
that target the aging hallmarks in both long-term and 
acute settings, defined by extension of healthspan/  
lifespan and enhanced resilience to acute stressors (i.e., 
reduced frailty), respectively, robust and standardized 
approaches such as stochastic biomathematical 
platforms would have the ability to sidestep most of the 
current challenges in aging-targeting clinical trials, to 
accelerate the achievement of optimum health and life 
quality in aging populations.  
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