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ABSTRACT 
 
Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung 
adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene 
expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen 
prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker 
information was fused using an iCluster plus algorithm, which significantly distinguished patients into high-  
and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional  
DNA methylation–gene expression–overall survival pathways were evaluated by causal mediation analysis. The  
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INTRODUCTION 
 
Lung cancer is the leading cause of cancer-related 
deaths worldwide (18.4% of total cancer deaths), with 
an estimated 1.76 million deaths every year [1]. Lung 
adenocarcinoma (LUAD) is the most common type, 
comprising ~40% of all cases of lung cancer, and its 
incidence is increasing globally [2]. With advancements 
in diagnostic techniques, more LUAD patients can be 
diagnosed at an earlier stage. Early-stage LUAD 
patients have a relatively superior prognosis, but even 
with complete surgical resection, nearly 33%–52% of 
patients still die from cancer within five years [3]. 
Molecular heterogeneity among patients might account 
for individual variation in LUAD survival, although the 
mechanism largely remains unclear [4]. 
 
Recently, great efforts have been put into using gene 
expression or DNA methylation data to predict the 
prognosis of non-small cell lung cancer (NSCLC) [5–7]. 
Several studies have explored prognostic prediction 
models for NSCLC or LUAD using molecular bio-
markers from single omics data, providing opportunities 
to identify patients with heterogeneous prognoses [8, 9]. 
However, a single omics approach is insufficient to 
reveal the overall molecular system [10]. Accumulating 
evidence suggests that an integration of trans-omics 
features will provide comprehensive insights into multi-
layered molecular mechanisms [11, 12]. Teiseira et al. 
[13]. Recently profiled the genomic, transcriptomic, and 
epigenomic landscape of prelesions of lung squamous 
cancer and successfully generated a predictive model to 
identify which lesions will progress with remarkable 
accuracy. However, limited prognostic models have 
focused on early-stage LUAD, especially with trans-
omics predictors. Thus, there may be significant 
possibilities to develop a trans-omics prognostic model 
for early-stage LUAD. 
 
Identification of molecular changes in significant 
oncogenes or tumor suppressor genes associated with 
cancer prognosis might guide early treatment and help 
improve survival [14]. However, most newly found genes 
dysregulated in cancer tissues have no effect on the 
neoplastic process [15]. Thus, it might be better to focus 
on acknowledged cancer-related genes rather than 

examine genes on a genome-wide scale—which is akin 
to looking for a needle in a haystack—to identify LUAD 
prognostic biomarkers. Recently, the Catalogue of 
Somatic Mutations in Cancer (COSMIC) identified 719 
cancer-related genes through the ongoing Cancer Gene 
Census project. Notably, more than half of those genes 
participate in the development and progression of 
multiple tumors [16]. 
 
In this study, we hypothesized that some cancer-related 
genes may possess inherent potential to uncover early-
stage LUAD patients with heterogeneous survival.  
We performed a comprehensive study of early-stage  
LUAD to identify prognostic-associated biomarkers  
from a cancer-related gene set and further accurately  
predicted mortality risk for patients using a trans-omics  
panel of clinical–DNA methylation–gene expression 
biomarkers. 
 
RESULTS 
 
Clinical and demographic characteristics of the study 
population were presented in Table 1. There were 493 
early-stage patients in the discovery phase (Harvard, 
Spain, Norway, and Sweden) and 332 early-stage patients 
in the validation phase (TCGA). The majority (75.2%) of 
LUAD patients had stage I disease. Gene expression data 
was available for 133 patients in Norway and 328 
patients in TCGA. 
 
Prognosis-associated DNA methylation and gene 
expression probes 
 
In total, 719 cancer-related genes from COSMIC and its 
corresponding 12,806 DNA methylation probes were 
used in this study. Ranger screened out 62 DNA 
methylation probes in the discovery phase according to 
variable importance score (VIS) (Figure 1A). Further, 
38 DNA methylation probes were retained in the 
validation phase using the same method (Figure 1B). 
There were 27 overlapping DNA methylation probes 
between the phases, which were further analyzed by 
multi-Cox regression simultaneously. The 12 DNA 
methylation probes were significantly associated with 
prognosis after correction for multiple comparisons 
(Supplementary Table 1). 

effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By 
adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the 
trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, 
respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation 
phases, respectively. Based on systematic review of published literatures, our model was superior to all existing 
models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify 
patients with high mortality risk. 



www.aging-us.com 6314 AGING 

Table 1. Baseline characteristics of the study population. 

Variables 

 Discovery phase  Validation phase  
All samples 
(N = 825) 

 Harvard 
(N = 96) 

Spain  
(N = 183) 

Norway 
(N = 133) 

Sweden  
(N = 81) 

 TCGA  
(N = 332) 

 

Age (years)  67.1 ± 9.9 65.6 ± 10.5 65.5 ± 9.3 66.1 ± 10.4  65.4 ± 9.8  65.7 ± 9.6 
Gender, n (%)          

Female  50 (52.1) 89 (48.6) 62 (46.6) 35 (43.2)  152 (45.8)  388 (47.0) 
Smoking status, n(%)          

Never  17 (17.7) 28 (15.6) 17 (12.8) 17 (21.0)  47 (14.6)  126 (15.5) 
Former  52 (54.2) 97 (53.9) 74 (55.6) 39 (48.1)  194 (60.2)  456 (56.2) 
Current  27 (28.1) 55 (30.6) 42 (31.6) 25 (30.9)  81 (25.2)  230 (28.3) 

Clinical stage, n(%)          
I  72 (75.0) 151 (82.5) 93 (69.9) 74 (91.4)  230 (69.3)  620 (75.2) 
II  24 (25.0) 32 (17.5) 40 (30.1) 7 (8.6)  102 (30.7)  205 (24.8) 

Chemotherapy, n(%)          
Yes  4 (4.2) 14 (7.7) 31 (23.3) 4 (4.9)  20 (6.0)  73 (8.8) 
No  92 (95.8) 142 (77.6) 102 (76.7) 50 (61.7)  109 (32.8)  495 (60.0) 
Unknown  0  27 0 27  203  257 

Radiotherapy, n(%)          
Yes  12 (12.5) 8 (8.9) 1 (0.8) 0 (0.0)  6 (4.7)  27 (4.8) 
No  84 (87.5) 148 (91.1) 132 (99.2) 54 (100.0)  123 (95.3)  541 (95.2) 
Unknown  0 27 0 27  203  257 

Adjuvant therapy, n(%)          
Yes  14 (14.5) 21 (13.4) 32 (24.0) 4 (7.4)  25 (19.3)  96 (16.9) 
No  82 (85.5) 135 (86.6) 101 (76.0) 50 (92.6)  104 (80.7)  472 (83.1) 
Unknown  0 27 0 27  203  257 

Survival year          
Median survival year  7.1 9.6 7.2 7.1  4.4  7.4 
Censored ratea, %  0.3 58.5 68.4 40.7  80.7  63.4% 

a Censored rate is proportion of samples lost to follow-up or alive at end of the study. 
TCGA: The Cancer Genome Atlas 
 

For transcriptomic analysis, the same procedure was 
applied to screen gene expression probes. Ranger 
identified 9 gene expression probes in the discovery 
phase (Figure 1C) and 13 gene expression probes in the 
validation phase (Figure 1D). Seven overlapping genes—
BLM, CASC5, FHIT, GMPS, MSH2, SLC34A2, and 
ZNF429—were significantly associated with early-stage 
LUAD survival (Supplementary Table 2). 
 
Causal mediation analysis 
 
To detect the potential mechanism by which DNA 
methylation affects overall survival (OS), all pairwise 
DNA methylation–gene expression–LUAD survival 
pathways were evaluated, with a consideration of trans- 
and cis- regulation patterns between DNA methylation 
and gene expression. We observed six potential causal 

pathways that were significant in both phases 
(Supplementary Table 3). Further, we calculated DNA 
methylation risk score (MRS) and gene expression risk 
score (GRS) by weighted linear combination of 
biomarkers using ln(HRadjusted) as weights. As a result, the 
effect of MRS on survival was significantly mediated 
through GRS in both phases (discovery: HRindirect = 1.17, 
95% CI = 1.01–1.37, P = 0.04, proportion mediated: 
32.2%; validation: HRindirect = 1.32, 95% CI = 1.17–1.50, 
P = 3.89×10−4, proportion mediated: 47.1%) (Figure 2). 
 
Patient discrimination performance of trans-omics 
biomarkers panel 
 
We used the iCluster plus machine learning approach 
using a joint latent variable model for fusing clinical 
variables (age, gender, smoking status, and clinical stage) 
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Figure 1. Out of bag (OOB) error rate derived from weighted random forest analysis. Top 62 and 38 DNA methylation probes in 
the discovery (A) and validation phases (B) reached a minimum OOB error rate. Top 9 and 13 mRNAs in the discovery (C) and validation 
phases (D) reached a minimum OOB error rate. 
 

 
 

Figure 2. Direct and indirect effects of DNA methylation on lung adenocarcinoma survival mediated through gene expression 
in casual mediation analysis. DNA methylation risk score (MRS) and gene expression risk score (GRS) were calculated by linear 
combination with a weighted ln(HRadjusted) of identified probes. 
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and trans-omics biomarkers (12 DNA methylation and 7 
gene expression probes) to explore the classification 
ability of these predictors. We compared (i) clinical 
classifiers with (ii) clinical and trans-omics classifiers. 
Clinical information only was insufficient to discriminate 
patients into high- and low-mortality groups in both 
discovery and validation phases (HRdiscovery = 1.32, 95% 
CI = 0.78–2.81, Pdiscovery = 0.363; HRvalidation = 1.52, 95% 
CI = 0.86–2.53, Pvalidation = 0.136) (Figure 3A, 3B). 
However, adding DNA methylation and gene expression 
biomarkers resulted in significantly different survival 
curves between the two groups in both phases (HRdiscovery 
= 2.67, 95% CI = 1.26–5.53, Pdiscovery = 0.011; HRvalidation 
= 2.32, 95% CI = 1.32–4.31, Pvalidation = 2.71×10−3) 

(Figure 3C, 3D), indicating good discrimination 
performance of the trans-omics biomarkers panel. 
 
Survival prediction performance of trans-omics 
biomarkers panel 
 
Besides discrimination, we used two prediction models (i) 
a clinical model, and (ii) a trans-omics model (clinical + 
MRS + GRS) to predict 3- and 5-year survival, which are 
the two important clinical prognostic outcomes. A risk 
score model was constructed with a linear combination of 
predictable factors weighted by the multi-Cox coefficient. 
Compared to the model including clinical information 
only, the trans-omics model significantly improved 

 

 
 

Figure 3. Kaplan-Meier (KM) survial curves of high- and low-mortality risk groups divided by iCluster. Classification ability of 
clinical information for discovery (A) and validation phases (B). Distinction ability of clinical information adding trans-omics biomarkers of 
DNA methylation and gene expression for the discovery (C) and validation phases (D). 
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prediction accuracy in the discovery phase, with AUCs up 
to 86.1% for 3-year (AUC3-year: 17.9% increase, P = 
0.008) (Figure 4A) and 87.2% for 5-year survival 
prediction (AUC5-year: 18.3% increase, P = 0.009) (Figure 
4C). The validation phase further confirmed a significant 
improvement in prediction with the trans-omics model, 
with AUCs up to 84.1% for 3-year (AUC3-year: 13.1% 
increase, P = 0.039) (Figure 4B) and 85.3% for 5-year 
survival prediction (AUC5-year: 16.4% increase, P = 0.041) 
(Figure 4D). 
 
Nomogram development and validation 
 
To easily apply our model in clinical practice, we 
combined clinical information and trans-omics features 

of patients from Norway to develop a nomogram and 
further test it in patients from TCGA. The nomogram 
was developed based on results of the multivariable Cox 
proportional hazards model. A weighted score calculated 
using all predictors was used to estimate 3- and 5-year 
OS (Figure 5). Discrimination and calibration methods 
were applied in both discovery and validation phases.  
c-index was calculated as 0.81 for the discovery phase 
(95% CI = 0.63–0.98, P = 6.42×10−12) and 0.77 for the 
validation phase (95% CI = 0.58–0.96, P = 6.80×10−6), 
indicating relatively good prediction of the nomogram. 
Calibration plots showed good accordance between 
observed OS and predicted OS for both 3- and  
5-year survival in discovery and validation phases 
(Supplementary Figure 1). 

 

 
 

Figure 4. Time-dependent receiver operating characteristic (ROC). ROC was used to evaluate the performance of prognostic models 
for 3-year (A) and 5-year (B) overall survival prediction in the discovery phase. ROC also was used to evaluate the performance of prognostic 
models for 3-year (C) and 5-year (D) overall survival prediction in the validation phase. C: clinical model; C+M+G: clinical, DNA methylation, 
and gene expression model. 
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Sensitivity analysis 
 
Given the potential clinical value of chemotherapy on 
early-stage LUAD prognosis, we further performed a 
sensitivity analysis to test the prediction ability of trans-
omics panel using patients with available chemotherapy 
information. Compared to the model including clinical 
information only, the trans-omics model significantly 
improved prediction accuracy in the discovery phase, with 

AUCs up to 89.6% for 3-year (AUC3-year: 19.1% increase, 
P = 0.003) (Supplementary Figure 3A) and 90.9% for  
5-year survival prediction (AUC5-year: 19.6% increase,  
P = 0.004) (Supplementary Figure 3C). The validation 
phase further confirmed a significant improvement, with 
AUCs up to 85.6% for 3-year (AUC3-year: 20.4% increase, 
P = 0.016) (Supplementary Figure 3B) and 87.2% for  
5-year survival prediction (AUC5-year: 22.8% increase,  
P = 0.032) (Supplementary Figure 3D). 

 

 
 

Figure 5. Nomogram constructed with clinical (red font) and trans-omics biomarkers (blue and green font) for overall 
survival. The probability of each predictor can be converted into the points axis in the top of the nomogram. The summary of these points of 
each predictor corresponded the total points at the bottom of the nomogram. After adding the points of each predictor in the total points 
axis, a patient’s probability of survival (3- and 5-year) can be found at the bottom of the nomogram. For example, if a patient got a score (e.g. 
500), the 3-year survival probability will be corresponding to 0.80. 
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Further, we categorized all patients into two groups (age < 
65 and age ≥ 65) based on the definition of elderly using 
UN standard [17], and evaluated whether prognostic 
model incorporating trans-omics biomarkers has different 
prediction ability between two age groups. The risk score 
of trans-omics biomarkers showed diverse effect on early-
stage LUAD prognosis, Supplementary Figure 4 (HR＜65 
= 2.18, 95%CI = 1.67-2.85, P = 5.11×10−8; HR≥65 = 3.16, 
95%CI = 2.59-3.85, P = 3.52×10−12), which indicated an 
significant heterogeneity between the two groups  
(I2 = 79%, P = 0.03). As shown in Supplementary Figure 
5, our model achieved a superior prediction performance 
in elderly group: AUC≥65 = 87.6% v.s. AUC<65 = 80.3%  
(P = 1.21×10−3) for 3-year survival prediction; AUC≥65 = 
91.0% v.s. AUC<65 = 79.9% (P = 0.021) for 5-year 
survival prediction. 
 
DISCUSSION 
 
Because the mechanisms underlying cancer prognosis 
form a complex regulatory network, integration of 
trans-omics data could improve prognostic value [18]. 
In this study, we identified 7 cancer-related genes and 
12 DNA methylation probes as potentially associated 
with early-stage LUAD survival. By integrating clinical 
information and trans-omics biomarkers, we effectively 
classified early-stage LUAD patients into high- and 
low-mortality risk groups. Further, our model with a 
trans-omics panel of biomarkers showed preferable 
prediction performance for 3- and 5-year mortality. 
 
Age is a significant risk factor of prognosis for early-
stage LUAD patients, with adjustment of other covariates 
(HRdiscovery = 1.02, 95% CI = 1.01-1.03, Pdiscovery = 0.038; 
HRvalidation = 1.04, 95% CI = 1.01-1.08, Pvalidation = 
7.35×10−3). Also, age was incorporated into lung cancer 
prognostic index in previous studies, and elderly lung 
cancer patients tended to have worse prognostic 
condition [19]. Thus, we applied our proposed model in 
elderly and young groups, and revealed a preferable 
prediction performance in elderly group for both 3- and 
5-year survival, which provided insights into the 
exclusive benefit of clinical application for elderly early-
stage LUAD patients. 
 
To the best of our knowledge, previous studies have 
focused on NSCLC survival prediction, but few have 
examined early-stage LUAD survival prediction. 
However, most current prediction models are derived 
from clinical trials with small sample sizes [20] or single 
omics data [21–23]. To compare the value of our 
proposed model, we performed a systematic review of 
published literature by querying PubMed using the 
following search terms: “((early stage) OR (stage I) OR 
(stage II)) AND (lung adenocarcinoma) AND (prognosis) 
AND ((prediction) OR (AUC) OR (c-index))” through 

April 29, 2019. The complete search strategy is provided 
in Supplementary Figure 2. 
 
In total, we retrieved 110 articles. After filtering by 
briefly screening titles and abstracts and excluding 
articles with irrelevant objectives or animal studies, we 
critically reviewed 6 potentially relevant papers. This 
analysis of published literature revealed that our model is 
more accurate than all existing models, Supplementary 
Table 4. Among these models, the best AUC (0.79) came 
from a study with only 59 patients without validation, 
while a study with the largest sample size (N = 830) and 
validation produced a model with low AUC (0.65). Our 
study sample size (N = 825) was comparable to the 
largest previous study, and we observed acceptacble 
AUCs (≥0.84) in both discovery and validation phases 
that were superior to any previous models.  
 
Further, we calculated two indexes (AUC and c-index) to 
evaluate our model. Those indexes differed in numerical 
representation because of discrepant calculation patterns 
[24, 25]. For binary outcomes, the values of AUC and c-
index are theoretically equivalent. However, the latter is 
lower for survival outcomes due to mean calculations 
made throughout the follow-up period. Nonetheless, the 
c-index calculated from our model was superior to that of 
previous studies. 
 
We identified 7 genes with documented activity relevant 
to cancer development or prognosis or evidence of 
mutations in cancer that change activity of the gene 
product in a way that promotes oncogenic transformation. 
All genes discovered in this study were confirmed to 
participate in cancer development or prognosis. For 
example, SLC34A2 produces NaPi2b, a type II sodium-
phosphate cotransporter that is highly expressed on tumor 
surfaces of NSCLC [26]. CASC5 interacts with high 
expression of ZWINT to lead to poor OS and disease-free 
survival in NSCLC [27]. Further, small cell lung tumors 
(80%) and NSCLC (40%) show abnormalities in RNA 
transcripts of FHIT, and 76% of the tumors exhibit loss 
of FHIT alleles [28]. GMPs indicate an aggressive 
angiogenic phenotype associated with poor prognosis in 
NSCLC [29]. In addition, MSH2 is a key DNA mismatch 
repair protein with an important role in genomic stability, 
which has been confirmed to affect the risk of death in 
early-stage NSCLC. To our knowledge, however, there is 
a dearth of evidence on the role of ZNF429 and BLM on 
the prognosis of early-stage NSCLC. 
 
Our study identified 12 DNA methylation probes, with 
detailed information displayed in Supplementary Table 5. 
Few of their corresponding gene expression levels 
significantly affected OS in both discovery and validation 
phases. In transcript analysis, we identified 7 genes with 
expression robustly associated with OS. Accumulative 
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studies indicate that an effect transmission mechanism 
might exist between DNA methylation probes and gene 
expression by trans-regulation patterns [30, 31]. Thus, 
we assumed that these 12 DNA methylation probes might 
affect OS partly and potentially through the 7 prognostic 
genes. In this way, causal mediation analysis was used to 
explore DNA methylation–gene expression–OS path-
ways. The effects of DNA methylation probes were 
decomposed as direct effects (affects OS independently) 
and indirect effects (affects OS through gene expression), 
and the significant indirect effects confirmed our 
speculation. 
 
Our study had several advantages. (i) To our knowledge, 
our model is the only one with a trans-omics panel of 
biomarkers and achieves the best performance for early-
stage LUAD survival prediction. (ii) The sample size of 
our study is considerably large and is comparable to the 
largest existing published prognostic study of early-stage 
LUAD. Moreover, our model also performed well in an 
independent population. (iii) We used two advanced 
statistical methods (ranger and iCluster plus) to filter out 
noisy biomarkers and integratively cluster patients. Ranger 
which can pick up molecular predictors with either main 
effects or interactions, is a fast implementation of random 
forests adjusted for covariates, and is particularly suited 
for signal-noise ratio enrichment in high-dimensional data 
analysis [32]. iCluster plus is a significant enhancement of 
the iCluster method, which integrates diverse data types 
and performs well in recognition of high- and low-
mortality risk patterns [33]. (iv) Besides correction of 
multiple comparisons using FDR, we also used two 
independent phases to control false positives in biomarker 
testing, guaranteeing the robustness of our results. 
 
However, we also acknowledge several limitations of 
our study. (i) The relationship among DNA methylation, 
gene expression, and OS lacks biological evidence. 
Thus, the association should be interpreted with caution 
and warrants further functional experiments. (ii) The 
censoring rate is high in TCGA, which may lead to low 
power in statistical analysis. Thus, the successfully 
validated biomarkers were very conservative. However, 
our model still achieves preferable performance, 
indicating its robustness. (iii) We had very limited 
clinical information, since several cohorts were initiated 
decades ago. At that time, there were few electronic 
records for patients. However, molecular information 
has significantly improved prediction performance. 
Adding information for laboratory tests, medical 
histories, and imaging examinations will improve 
accuracy but will also bring inconvenience for clinical 
application of a prediction model. Based on our results, a 
few easily available clinical predictors plus dozens of 
molecular predictors can present a balance between 
convenience of application and accuracy of prediction. 

In conclusion, using a machine learning method and two-
stage design, we built a prediction model incorporating 
12 DNA methylation probes and 7 gene expression 
probes. These 19 molecular predictors provide 
perspective to design a cost-effective chip that can detect 
biomarkers exclusively for early-stage LAUD prognosis 
prediction, which will benefit both physicians and 
patients in clinical applications. 
 
METHODS 
 
Study population 
 
Early-stage (stage I and II) LUAD patients (n = 825) 
were enrolled from the following five independent study 
centers. (1) Harvard [34]. Newly diagnosed patients with 
histologically confirmed primary LUAD (n = 96) were 
recruited at Massachusetts General Hospital (MGH) 
since 1992. Each specimen was evaluated by an MGH 
pathologist for amount (tumor cellularity > 70%) and 
quality of tumor cells and histologically classified using 
World Health Organization criteria. The study protocol 
was approved by the Institutional Review Boards at 
Harvard School of Public Health and MGH. (2) Spain 
[35]. Patients (n = 183) were recruited at eight sub-
centers, including the Bellvitge Biomedical Research 
Institute (Spain), Center for Applied Medical Research 
(Spain), Catalan Institute of Oncology (Spain), IRCCS 
Foundation National Cancer Institute (Italy), University 
of Turin (Italy), University of Liverpool Cancer Research 
Centre (UK), Centre Hospitalier Universitaire A 
Michallon (France), and University of Michigan Medical 
School (USA), and the median clinical follow-up was 7.2 
years. The study was approved by the Bellvitge 
Biomedical Research Institute Institutional Review 
Board. (3) Norway [36]. Patients (n = 133) were recruited 
at Oslo University Hospital-Rikshospitalet from 2006–
2011. The project was approved by the Oslo University 
Institutional Review Board and Regional Ethics 
Committee (S-05307). (4) Sweden [37]. Patients (n = 81) 
were recruited at Skåne University Hospital (Lund, 
Sweden) from 2004–2008. Tumor DNA was collected 
from early-stage lung cancer patients who underwent 
operation at the hospital. The study was approved by the 
Regional Ethical Review Board in Lund, Sweden 
(registration no. 2004/762 and 2008/702). (5) TCGA. We 
also included patients (n = 332) from The Cancer 
Genome Atlas (TCGA), for which the TCGA workgroup 
generated level-1 HumanMethylation450 DNA 
methylation data (image data) and performed mRNA 
sequencing data processing and quality control. Datasets 
were downloaded on October 1, 2015. 
 
All patients provided written informed consent under the 
approval of the institutional review boards of each center. 
Data from the international study centers were 
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harmonized as previously described [38–41]. Quality 
control procedures of DNA methylation and mRNA 
expression data are presented in Supplementary Material. 
 
Statistical analysis 
 
In this study, all significant results in the discovery phase 
were further independently confirmed in the validation 
phase. Patients (n = 493) from Harvard, Spain, Norway, 

and Sweden were assigned to the discovery phase. 
Patients (n = 332) from TCGA were assigned to the 
validation phase. The work flow chart is shown in Figure 
6. First, ranger, an improved version of random forest 
incorporating adjustment of covariates, was used to 
evaluate importance of each DNA methylation probe 
based on VIS [32]. All DNA methylation probes were 
ranked by VIS in descending order. The sliding windows 
sequential forward feature selection method was applied 

 

 
 

Figure 6. Flow chart of the study. 
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to identify top important probes, which means probes 
were sequentially included in the model as predictors 
until the model reached the minimum out of bag (OOB) 
error rate [42]. We screened out important probes in the 
discovery and validation phases. Overlapping probes in 
both phases were retained for subsequent analysis. The 
same pipeline was also used to screen out important gene 
expression variables. Second, a multivariate Cox 
regression model was further used to confirm the 
association between each biomarker and survival with 
adjustment for age, gender, clinical stage, smoking status, 
and study center. Hazard ratio (HR) and 95% confidence 
interval (CI) were described per 1% methylation 
increment. Multiple comparison correction was per-
formed using the false discovery rate (FDR) method by 
Benjamini-Hochberg procedure. Biomarkers with FDR-q 
≤ 0.05 in the discovery phase and P ≤ 0.05 in the 
validation phase, as well as consistent effect directions 
across both phases, remained for further analysis. Third, 
we performed a causal mediation analysis to explore 
possible “DNA methylation → gene expression → 
LUAD survival” pathways [43]. Adjusting for the same 
covariates as above, the total effect of methylation on 
survival (HRtotal) was separated into indirect effects 
(HRindirect), representing the effect of methylation on 
survival mediated through gene expression, and direct 
effects (HRdirect), representing the effect of methylation 
on survival directly. Fourth, we used an iCluster plus 
algorithm that integrated clinical and trans-omics 
biomarkers to distinguish patients with high- and low-
mortality risk groups [33, 44]. Kaplan-Meier curves and 
log-rank test were used to assess survival differences 
between groups. Fifth, we integrated clinical and trans-
omics biomarkers into a Cox regression model, and time-
dependent receiver operating characteristic (ROC) curves 
were used to measure prediction performance for 3- and 
5-year survival [45]. Area under ROC (AUC) of the 
prediction model with or without trans-omics biomarkers 
was compared using bootstrap with 1000 times re-
sampling. Finally, nomogram plots were generated,  
and the validation was tested by discrimination and 
calibration in both phases. Discrimination was estimated 
by concordance index (c-index), which ranges from 0.5 
(completely random) to 1.0 (perfect discrimination). 
Calibration assesses how close the nomogram-estimated 
risk is to observed risk, which was depicted by a 
calibration plot. Bootstrap analyses with 1000 resamples 
were used for these analyses. All data were analyzed 
using R version 3.4.4 statistical software (The R 
Foundation). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Methods  
 
Quality control procedures of DNA methylation data 
 
DNA methylation was profiled using Infinium 
HumanMethylation450 BeadChips (Illumina Inc., San 
Diego, CA, USA) for all patients. All centers followed the 
same quality control procedures before the association 
study. Raw image data were transformed into beta values 
to perform background subtraction and control 
normalization. Unqualified probes were excluded if they 
met any of the following criteria: (i) detection P > 0.05 in 
more than 5% of patients; (ii) coefficient of variance < 
5%; (iii) common single nucleotide polymorphisms 
located in probe sequence or in 10-bp flanking regions; 
(iv) cross-reactive probes or cross-hybridizing probes; or 
(v) probes not passing quality control in all centers. 
Samples with >5% undetectable probes were excluded. 
Methylation signals were further processed for quantile 
normalization, design bias correction for type I and II 
probes, and batch effects adjustment. 
 
Quality control procedures of mRNA expression 
data 
 
mRNA expression was assessed using SurePrint G3 
human GE, 8 × 60 K gene expression microarrays 
(Agilent Technologies, Santa Clara, CA, USA) in 
discovery phase. TCGA mRNA sequencing data 
processing and quality control was done by the TCGA 
workgroup. Raw counts were normalized using RNA 
sequencing by expectation maximization. Level-3 gene 
quantification data were downloaded from the TCGA 
data portal and were further checked for quality. 
 
Sample processing 
 
Harvard [1]: Genomic DNA was extracted from fresh-
frozen tissues using QIAmp tissue kit according to the 
manufacturer’s instruction. DNA concentration was 
measured by DyNA Quant 200 fluorometer (Hoefer). 
Spain [2]: DNA was extracted from frozen specimens 
using a standard phenol chloroform extraction method. 
Sweden [3]: DNA was extracted from the biopsies using 
QIAamp DNA Mini Kit (Qiagen). Norway [4]: DNA was 
extracted from the snap-frozen lung adenocarcinoma 
tissue using Maxwell 16 DNA Purification kit 
(http://www.promega.com) and the Maxwell 16 
instrument after standard procedure. Standard TRIZOL 
methods (Invitrogen, Carlsbad, CA, USA) were used to 
extract total RNA and the procedure was done according 
to manufacturer`s instruction. RNA quantity and quality 
(yield, 260/280 ratio and 260/230 ratio) were determined 
using the NanoDrop ND-1000 spectrometer (NanoDrop 

technologies) and RNA integrity numbers (RIN) were 
measured using the 2100 Bioanalyzer (Agilent 
technologies, Santa Clara, CA). TCGA [5]: TCGA 
Research Network utilized the Genome Characterization 
Pipeline to transform tissue samples into rich,  
publicly available data (https://www.cancer.gov/about-
nci/organization/ccg). 
 
Given the potential batch effect across different study 
centers, we applied the sample quality control pipeline, 
including batch effect correction, for samples with RNA 
expression and DNA methylation probes in each of 
center. Statistical simulation studies revealed that 
quantile normalization plus batch adjustment, which 
used in our study, was the best pipeline for correction of 
batch effect [6]. It well controls the both inter and intra 
variations, avoiding false positives caused by data bias. 
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Supplementary Figures 
  
 

 
 

Supplementary Figure 1. Nomogram model calibration curves: (A) 3-year calibration curve in the discovery phase; (B) 5-year 
calibration curve in the discovery phase; (C) 3-year calibration curve in the validation phase; and (D) 5-year calibration curve in the validation 
phase. The x-axis shows nomogram-predicted probability of survival, and the y-axis shows actual survival as estimated by Kaplan-Meier. Gray 
line represents a perfect estimated outcome in an ideal model and perfect association with the actual outcome. Black line represents 
estimated outcome of the model, and closer alignment with the gray line represents better performance. 
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Supplementary Figure 2. Flowchart of systematic review. 
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Supplementary Figure 3. The ROC curves of the prognostic model with chemotherapy information in sensitivity analysis. 
Time-dependent receiver operating characteristic (ROC). ROC was used to evaluate the performance of prognostic models for 3-year (A) and 
5-year (B) overall survival prediction in the discovery phase. ROC also was used to evaluate the performance of prognostic models for 3-year 
(C) and 5-year (D) overall survival prediction in the validation phase. C: clinical model; C+M+G: clinical, DNA methylation, and gene expression 
model. 
 

 
 

Supplementary Figure 4. Hazard ratio of trans-omics biomarker risk score in elderly and young groups. 
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Supplementary Figure 5. Time-dependent ROC curves in elderly and young groups. ROC curve was used to evaluate the 
performance of prognostic models for 3-year (A) and 5-year (B) overall survival prediction. 
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Supplementary Tables  
 
Supplementary Table 1. Early-stage LUAD prognosis-associated DNA methylation probes in discovery and validation 
phases. 

Probe 
Discovery phase Validation phase 

HR 95% CI P FDR-q HR 95% CI P 
cg06835509 0.2 0.1 0.5 1.27E-04 1.54E-03 0.1 0.0 0.6 1.03E-02 
cg25702780 8.7 2.8 27.6 2.20E-04 1.54E-03 5.5 1.6 18.8 6.59E-03 
cg11123595 4.1 1.9 9.1 4.47E-04 1.68E-03 3.1 1.1 8.7 3.58E-02 
cg09916234 7.4 2.3 23.8 7.74E-04 2.32E-03 14.0 1.4 138.0 2.38E-02 
cg04101194 5.4 1.8 16.2 2.91E-03 7.28E-03 6.5 2.2 19.2 7.64E-04 
cg01431482 3.1 1.3 7.4 9.73E-03 1.37E-02 6.8 1.3 36.1 2.55E-02 
cg05944877 0.4 0.2 0.8 7.69E-03 1.37E-02 0.2 0.1 0.8 2.37E-02 
cg19196826 7.1 1.7 30.6 8.22E-03 1.37E-02 9.5 2.0 45.6 4.74E-03 
cg20149022 4.7 1.5 14.2 6.49E-03 1.37E-02 16.8 1.4 197.0 2.46E-02 
cg22122862 3.4 1.3 8.5 1.00E-02 1.37E-02 5.4 1.0 29.9 5.13E-02 
cg25947773 2.7 1.1 6.4 2.44E-02 3.05E-02 18.1 2.5 129.0 3.87E-03 
cg23780635 2.6 1.1 6.5 3.66E-02 4.53E-02 16.6 1.7 168.0 1.70E-02 

Hazard ratios (HR), 95% confidence intervals (95% CI), and P-values were derived from Cox regression model adjusted for age, 
gender, clinical stage, and smoking status. 
LUAD, lung adenocarcinoma; FDR, false discovery rate 
 
 

Supplementary Table 2. Early-stage LUAD prognosis-associated gene expression probes in discovery and validation 
phases. 

Gene 
Discovery phase Validation phase 

HR 95% CI P  FDR-q HR 95% CI P 
BLM 2.6 1.4 5.1 4.11E-03 7.19E-03 1.4 1.1 1.9 1.02E-02 
CASC5 2.7 1.5 4.9 1.43E-03 6.14E-03 1.3 1.1 1.6 3.21E-03 
FHIT 0.2 0.1 0.8 2.01E-02 2.01E-02 0.6 0.4 0.7 5.17E-05 
GMPS 4.1 1.7 10.0 1.75E-03 6.14E-03 1.9 1.3 3.0 3.08E-03 
MSH2 4.3 1.6 11.4 4.04E-03 7.19E-03 1.5 1.0 2.2 3.13E-02 
SLC34A2 0.5 0.2 0.8 1.23E-02 1.44E-02 0.8 0.7 0.9 1.58E-03 
ZNF429 0.1 0.0 0.6 1.08E-02 1.44E-02 0.7 0.5 0.9 1.53E-02 

Hazard ratios (HR), 95% confidence intervals (95% CI), and P-values were derived from Cox regression model adjusted for age, 
gender, clinical stage, and smoking status. 
LUAD, lung adenocarcinoma; FDR, false discovery rate 
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Supplementary Table 3. Potential DNA methylation–gene expression pathways associated with early-stage LUAD 
prognosis in causal mediation analysis. 

DNA 
methylation–
gene 
expression 

Discovery phase Validation phase 

HRDE 95% 
CIDE 

PDE HRIDE 95% 
CIIDE 

PIDE HRDE 95% CIDE PDE HRIDE 95% 
CIIDE 

PIDE 

cg25947773-
GMPS 

1.9 0.2–19.6 6.03E-01 3.3 1.3–8.6 1.52E-02 18.1 2.5–129 3.87E-03 2.9 1.4–6.0 5.77E-03 

cg25947773-
BLM 

1.9 0.2–19.6 6.03E-01 2.7 1.2–6.2 2.08E-02 18.1 2.5–129 3.87E-03 2.2 1.2–4.3 1.57E-02 

cg05944877-
MSH2 

0.6 0.1–5.2 6.76E-01 0.3 0.1–0.9 2.91E-02 0.2 0.1–0.8 2.37E-02 0.7 0.5–1.0 4.92E-02 

cg23780635-
BLM 

3.6 0.3–44.2 3.23E-01 2.5 1.1–6.0 3.65E-02 16.6 1.7–167.6 1.70E-02 2.3 1.2–4.4 1.77E-02 

cg23780635-
GMPS 

3.6 0.3–44.2 3.23E-01 2.6 1.0–6.7 4.73E-02 16.6 1.7–167.6 1.70E-02 2.8 1.3–5.8 7.43E-03 

cg23780635-
MSH2 

3.6 0.3–44.2 3.23E-01 2.7 1.0–7.5 4.83E-02 16.6 1.7–167.6 1.70E-02 1.7 1.0–2.8 4.78E-02 

Sobel method was used for calculations, with adjustment for age, gender, clinical stage, and smoking status. 
HRDE, 95% CIDE, and PDE evaluated direct effects of DNA methylation on lung adenocarcinoma (LUAD) survival. 
HRIDE, 95% CIIDE, and PIDE evaluated indirect effects of DNA methylation on LUAD survival, mediated through corresponding 
gene expression. 
 
Supplementary Table 4. Systematic review of accuracy of early-stage LUAD prognostic model. 

PMID Author Year Stage N Validation Outcome Statistical 
model 

Predictor AUC/c-
index 

28122330 Chen M 2017 I, II 830 Yes 5-year 
survival 

Cox 
proportional 

hazards 
model 

7 lnc-RNA 0.65 

28922552 Qi L 2017 I 542 Yes 5-year 
recurrence 

Cox 
proportional 

hazards 
model 

9 mRNA 0.55 

29756233 Martínez-
Terroba E 

2018 I, II 353 Yes 5-year 
survival 

Cox 
proportional 

hazards 
model 

12 protein 0.65 

24046125 Kim DH 2014 I 102 No Recurrence 
after 

Curative 
surgical 

Resection 

Cox 
proportional 

hazards 
model 

F-18 fluoro-2-
deoxyglucose 

Positron 
emission 

tomography 

0.69 

27524912 Sun Y 2016 I 92 No First 7.5-
year 

survival 

Cox 
proportional 

hazards 
model 

2 mRNA 0.75 

26947549 Okayama A 2016 I 59 No 5-year 
recurrence 

Multiple 
reaction 

monitoring 

phospho-
SSFA2 

0.79 

LUAD, lung adenocarcinoma 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chen%20M%5BAuthor%5D&cauthor=true&cauthor_uid=28122330
https://www.ncbi.nlm.nih.gov/pubmed/?term=Qi%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28922552
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mart%C3%ADnez-Terroba%20E%5BAuthor%5D&cauthor=true&cauthor_uid=29756233
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mart%C3%ADnez-Terroba%20E%5BAuthor%5D&cauthor=true&cauthor_uid=29756233
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kim%20DH%5BAuthor%5D&cauthor=true&cauthor_uid=24046125
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sun%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=27524912
https://www.ncbi.nlm.nih.gov/pubmed/?term=Okayama%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26947549


www.aging-us.com 6334 AGING 

Supplementary Table 5. DNA methylation information: 450K bead array from ENCODE/HAIB. 

DNA 
methylation 
probes 

Chromosome Band Base position Gene Name Region 

cg01431482 1 1p36.32 2989086 PRDM16 PR domain 
containing 16 

1-intron 

cg22122862 1 1p36.32 2987915 PRDM16 PR domain 
containing 16 

1-intron 

cg25947773 2 2q36.1 223771011 ACSL3 Acyl-CoA 
synthetase 
long-chain 

family member 
3 

3-intron 

cg25702780 3 3q26.2 169376299 MECOM MDS1 and 
EVI1 complex 

locus 

1-intron 

cg11123595 3 3q26.2 169376619 MECOM MDS1 and 
EVI1 complex 

locus 

1-intron 

cg09916234 4 4p16.3 1976220 WHSC1 Wolf-
Hirschhorn 
syndrome 

candidate 1 

18-intron 

cg04101194 4 4p15.2 25656866 SLC34A2 Solute carrier 
family 34 
(sodium 

phosphate), 
member 2 

5'-UTR 

cg19196826 7 7p22.2 3018392 CARD11 Caspase 
recruitment 

domain family, 
member 11 

1-intron 

cg23780635 8 8p23.3 1880114 ARHGEF10 Rho guanine 
nucleotide 

exchange factor 
(GEF) 10 

15-intron 

cg20149022 8 8p23.3 1863072 ARHGEF10 Rho guanine 
nucleotide 

exchange factor 
(GEF) 10 

9-intron 

cg06835509 16 16p12.2 23939098 PRKCB Protein kinase 
C, beta 

2-intron 

cg05944877 16 16p12.2 24197864 PRKCB Protein kinase 
C, beta 

15-intron 
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Supplementary Table 6. Interaction analysis (biomarkers vs. age) for overall survival. 

Interaction term with age 
Discovery phase  Validation phase 

HR CL CU P value  HR CL CU P value 
cg01431482 0.93 0.73 1.19 5.89E-01  1.05 0.87 1.27 5.84E-01 
cg22122862 1.01 0.77 1.33 9.46E-01  1.14 0.96 1.36 1.44E-01 
cg25947773 1.15 0.91 1.46 2.45E-01  1.05 0.87 1.27 6.19E-01 
cg11123595 0.86 0.65 1.16 3.28E-01  1.03 0.90 1.18 6.57E-01 
cg25702780 0.95 0.66 1.35 7.58E-01  0.96 0.80 1.15 6.35E-01 
cg04101194 0.90 0.58 1.39 6.42E-01  1.03 0.90 1.19 6.37E-01 
cg09916234 1.04 0.64 1.68 8.77E-01  1.00 0.77 1.30 9.91E-01 
cg19196826 0.99 0.77 1.29 9.60E-01  0.89 0.71 1.10 2.79E-01 
cg20149022 0.90 0.57 1.41 6.40E-01  1.00 0.76 1.33 9.75E-01 
cg23780635 1.07 0.81 1.41 6.43E-01  1.24 1.00 1.54 5.12E-02 
cg05944877 0.95 0.72 1.26 7.26E-01  0.95 0.84 1.08 4.63E-01 
cg06835509 0.89 0.68 1.16 3.79E-01  0.86 0.72 1.03 1.11E-01 
SLC34A2 1.01 0.94 1.08 7.62E-01  1.00 0.97 1.02 7.43E-01 
ACSL3 1.17 1.01 1.35 3.62E-02  0.99 0.97 1.02 5.76E-01 
ARHGEF10 0.85 0.76 0.96 6.48E-03  1.00 0.98 1.01 4.71E-01 
WHSC1 1.16 1.01 1.33 3.95E-02  1.03 0.99 1.07 1.56E-01 
MECOM 1.01 0.94 1.09 7.55E-01  1.00 0.97 1.04 9.16E-01 
PRKCB 0.98 0.90 1.06 5.62E-01  1.00 0.97 1.04 8.22E-01 

 


