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INTRODUCTION 
 
Type 2 diabetes (T2D), which is defined as a group of 
metabolic disorders characterized by both insufficient 
insulin secretion and insulin resistance, is a major 
subtype of diabetes and accounts for more than 90% 
of it [1]. Globally, an estimated 422 million adults are 
living with diabetes and over 1.5 million deaths are 
caused by it every year [2]. T2D is a complex disease 
with numerous systemic complications including heart 
attack, kidney failure, vision loss and peripheral nerve 
damage [3]. Specific cell types and molecular 
pathways involved in majority of these complications 
have been well discussed [4]. Nonetheless, scant 
attention has been paid to the influence of T2D on the 
structure and function of the central nervous system  

 

(CNS), which is the most important system in the 
body. 
 
Recent evidence suggests that T2D doubles the risk of 
vascular dementia and neurodegenerative diseases in 
older age [5–8]. Longitudinal cohort studies have also 
linked T2D with significant decline in processing speed 
[9, 10], executive function [9, 11, 12], memory [9–11] 
and verbal fluency [10]. Imaging studies in diabetic 
brains reported global brain atrophy [13] and 
microstructural lesions in the cerebral gray and white 
matter [14]. Given the above observations, it is of great 
need to understand the mechanism of these disorders 
and to identify molecular targets and pathways 
involved. Several studies reported the potential role of 
inflammation, defective insulin signaling and mito-
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ABSTRACT 
 
Type 2 diabetes (T2D) can result in a number of comorbidities involving various organs including heart, eye, 
kidney and even the brain. However, little is known about the molecular basis of T2D associated brain 
disorders. In this study, we performed a comprehensive transcriptomic analysis in a total of 304 T2D samples 
and 608 matched control samples from thirteen distinct brain regions. We observed prominent difference 
among transcriptomic profiles of diverse brain regions in T2D. The most striking change was found in caudate 
with thousands of T2D-associated genes identified, followed by hippocampus, while nearly no transcriptomic 
change was observed in other brain regions. Functional analysis of T2D-associated genes revealed impaired 
synaptic functions and an association with neurodegenerative diseases. Co-expression analysis of caudate 
transcriptomic profiles unveiled a core regional specific module that was disorganized in T2D. Sub-modules 
consisting of regional markers were enriched in T2D risk single nucleotide polymorphisms (SNPs) and implied a 
causal link with T2D. Hub genes of this module include NSF and ADD2, the former of which has been associated 
with T2D and neurogenerative diseases. Thus, our work provides useful information for further studies in T2D 
associated brain disorders. 
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chondrial dysfunction in T2D-associated CNS disorders 
[15–17]. Nonetheless, few of them were performed on 
human brains with sufficient samples. Moreover, human 
brain is composed of diverse regions which execute 
different functions, whilst majority of these studies 
focused on specific brain regions. To the best of our 
knowledge, the difference between diverse brain 
regions in T2D remains elusive. 
 
Disruption in the normal gene expression profile of 
various tissues is an important link between T2D and its 
complications [18]. With the advent of high-throughput 
sequencing, it is feasible to study the brain trans-
criptomic changes associated with T2D in various brain 
regions. The Genotype-Tissue Expression (GTEx) 
project [19] provides whole transcriptomic profiles of 
13 brain regions derived from T2D subjects and healthy 
controls, thus making it one of the most comprehensive 
datasets for studying region-specific T2D-asssociated 
transcriptomic changes. 
 
In the present study, we first performed differential 
expression analysis in 13 brain regions samples and 
identified regional specific T2D-associated genes 
(DAGs). We found that majority of the brain was 
immune to T2D, while great transcriptomic changes 
were observed in caudate and hippocampus. Next, we 
explored the distributions and functions of these 
regional specific DAGs. Rather than analyzed at 

individual gene level, we also performed co-expression 
analysis on T2D-involved brain regions. Core modules 
and hub genes which might help unravel the underlying 
mechanisms were identified by systemic analysis. 
Hereby, our analysis provides a basis for further 
researches of T2D-associated brain alterations. 
 
RESULTS 
 
Identification of DAGs in 13 brain regions 
 
The major workflow of present study was shown in 
Figure 1. Control samples were matched with T2D 
cases to avoid bias resulting from cofounding factors. A 
total of 304 T2D samples and 608 matched control 
samples from thirteen distinct brain regions were then 
obtained. No significant differences were detected 
between matched samples for most of the covariates 
(Supplementary Figure 1 and Supplementary Table 1). 
Sample distribution after matching was plotted for each 
brain region, as shown in Supplementary Figure 2. 
 
To identify DAGs, we performed generalized linear 
regression for genes against T2D status in each brain 
region using DESeq2 [20], with known and surrogate 
variables adjusted. At a 5% false discovery rate (FDR), 
less than 10 or even no DAGs were identified in most 
regions, indicating that T2D had no notable effect  
on transcriptome of the majority of human brain.

 

 
 

Figure 1. Workflow diagram of the study design. First, transcriptomic profiles of 13 human brain regions were derived from GTEx 
dataset. Second, differential analysis was performed to investigate regional specific changes. Distributions and functional annotations of 
DAGs were analyzed subsequently. Finally, Co-expression analysis was performed in caudate and hippocampus to study core modules and 
hub genes. The volcano plot and heatmap were generated using random sampling data of caudate transcriptome. 
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Table 1. Numbers of DAGs in 13 brain regions. 

Regions 
FDR < 10% FDR < 5% FDR < 1% 

total up down total up down total up down 
Amygdala 59 7 52 6 0 6 1 0 1 
Anterior Cingulate Cortex 3 0 3 1 0 1 1 0 1 
Caudate 4548 1910 2638 2939 1186 1753 1049 448 601 
Cerebellar Hemisphere 12 4 8 2 0 2 0 0 0 
Cerebellum 1 0 1 0 0 0 0 0 0 
Cortex 0 0 0 0 0 0 0 0 0 
Frontal Cortex 0 0 0 0 0 0 0 0 0 
Hippocampus 1143 527 616 486 223 263 82 31 51 
Hypothalamus 1 0 1 0 0 0 0 0 0 
Nucleus Accumbens 66 26 40 0 0 0 0 0 0 
Putamen 0 0 0 0 0 0 0 0 0 
Spinal Cord 3 1 2 1 0 1 0 0 0 
Substantia Nigra 0 0 0 0 0 0 0 0 0 

Note: Columns “total”, “up” and “down” list the number of total, up- and down-regulated DAGs respectively. Results derived 
from using three different FDR cutoffs (10%, 5% and 1%) are shown. 
 

Nevertheless, regulation of a considerable number of 
genes were disturbed in two regions, namely caudate 
(2939 DAGs) and hippocampus (486 DAGs) (Table 1). 
Among all the DAGs, only 178 genes were dysregulated 
in more than one tissue, and expression of all the ‘multi-
hit’ DAGs responded to T2D status in the same direction 
except for 3 of them. This result indicated that different 
brain regions might associate with T2D in a region-
specific manner. The details of DAGs in each brain region 
are provided in Supplementary Table 2. Control cases and 
T2D samples can be distinguished roughly in un-
supervised clustering heatmap (P-value: 2.19eE-03 for 
caudate and 7.78E-07 for hippocampus, Fisher’s exact 
test) using identified DAGs (Figure 2A and 2B).  
 
In view of the fact that caudate had the maximum sample 
size among all the 13 brain regions and the marked 
influence of sample size on differential analysis, we 
cannot evaluate the impact of T2D on diverse brain 
regions according to the number of DAGs directly. 
Therefore, we randomly selected samples with size 
ranging from 10 T2D samples versus 20 matched controls 
(the minimal size in 13 brain regions) to maximal number 
of each brain regions, with five T2D samples and ten 
matched controls added each time, and then bootstrapped 
100 times. As expected, caudate got the largest number of 
DAGs at a 5% FDR level, followed by hippocampus, 
regardless of the sample size (Supplementary Figure 3). 
This result indicated that diverse brain regions were 
altered differentially in T2D. Furthermore, caudate and 

hippocampus might be the brain regions with the most 
significant transcriptomic changes in T2D. 
 
Distributions and functional annotations of DAGs in 
various brain regions 
 
To study the distributions of DAGs in various brain 
regions, we first categorized the DAGs according to 
gene biotypes in GENCODE [21]. Protein coding genes 
account for majority of DAGs (83.9% of caudate DAGs 
and 83.5% of hippocampus DAGs, Figure 2C). Whilst 
there was also a small subset of DAGs comprised of 
non-coding genes, including antisense RNA, pseudo-
gene, lincRNA and others, implying the function of 
these non-coding genes in pathological process of 
diabetic brain. 
 
Next, we investigated the chromosomal distribution 
patterns of DAGs, which showed that they were 
widespread across chromosomes (Figure 2D). More 
than 95% of DAGs located on autosomes and the 
overall distribution of caudate and hippocampus DAGs 
were similar. However, the proportion of DAGs located 
on small, gene-rich chromosomes (chr16-22) was 
slightly higher in hippocampus than in caudate. 
 
As genes involved with the same disease process tend to 
locate adjacently [22], we then calculated the genomic 
distance of each pair of DAGs on the same chromosome 
(Figure 2E). Results showed that distances of DAGs 
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Figure 2. Distributions of DAGs. (A and B) Heat maps of DAGs (row) on samples (column) were shown for caudate (A) and hippocampus 
(B). (C) Gene biotype categories of DAGs according to GENCODE. X-axis shows the proportion to the total DAGs in each brain region. (D) 
Chromosomal distribution of DAGs. Y-axis shows the proportion to the total DAGs in each brain region. (E) The violin plot comparing the 
intra-chromosomal distances between DAGs in different brain regions. ***P < 0.001; ****P < 0.0001, Wilcoxon’s test. CCs, distance of DAGs 
within caudate group; HHs, distance of DAGs within hippocampus group; CHs, distance of DAGs between caudate and hippocampus group. 
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within hippocampus group were the smallest compared 
with distances of DAGs within caudate group  
(P-value=8.95E-14) and between groups (P-
value=1.11E-4). Surprisingly, distances of DAGs 
between groups were also smaller than distances of 
DAGs within caudate group (P-value = 1.82E-27). In 
general, above results suggested regional specific 
distribution of DAGs in various brain regions. 
 
To obtain a functional overview of DAGs in different 
brain regions, we dissected functional annotations of the 
up- and down-regulated DAGs respectively. As a result, 
top Gene Ontology (GO) biological process terms 
enriched with down-regulated DAGs in caudate and 
hippocampus both related to synaptic functions 
(Supplementary Table 3), which have been reported to 
impaired in diabetic brain [23]. Nonetheless, functions 
of up-regulated DAGs tend to be more regional specific. 
In caudate, up-regulated DAGs enriched in terms like 
cilium movement and cilium organization, implying the 
hidden association of T2D and ciliopathy [24]. 
However, for up-regulated DAGs in hippocampus, 
terms related to muscle function and muscle tissue 
morphogenesis were enriched. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analysis revealed that DAGs in caudate also enriched in 
neurodegenerative diseases pathways such as Alzheimer 
disease, Huntington’s disease and Parkinson’s disease. 
In consideration of aforementioned association between 
T2D and neurodegenerative diseases [6–8], the caudate 
nucleus and related DAGs might play a vital role in 
these processes. 
 
Co-expression analysis of caudate and hippocampus 
 
Although numerous DAGs were identified in caudate 
and hippocampus, limited information could be 
provided by individual genes. Moreover, DAGs 
determined by differential expression analysis 
methods were biased to genes with large change in 
expression, while overlooking the coordination of 
gene expression. To integrate the expression 
difference into a systems-level context, we performed 
weighted gene co-expression network analysis 
(WGCNA) on caudate and hippocampus. We detected 
14 modules in caudate (Supplementary Figure 4 and 
Supplementary Table 4) and 40 modules in 
hippocampus (Supplementary Figure 5 and Sup-
plementary Table 5). The average size of caudate 
modules was larger than hippocampus (P-value: 
9.43E-03, Wilcoxon test), which implied a stronger 
co-expression of transcriptomic profiles in caudate. 
 
Among the 14 co-expression modules in caudate, 
eigengenes of 4 modules (cyan, green, blue and 
purple) were positively correlated (up-regulated) with 

T2D, while black and turquoise module were 
negatively correlated (down-regulated) with T2D 
(Figure 3A, P-value < 0.05, Student t test). No 
modules correlated with any of the potential con-
founding variables which have been regressed out. 
Gene significance (GS) varied dramatically across 
modules, which also indicated the different levels of 
correlation between co-expression modules and T2D 
(Figure 3B). To examine gene constitution of 
particular modules, we plotted GS against module 
membership (MM) for T2D-associated modules 
(Figure 3C). Significant correlations were detected in 
black, turquoise and blue modules, illustrating that 
genes significantly associated with T2D status are 
often also the important elements of these modules. 
This result confirmed the crucial role of these 
modules in type 2 diabetes process. 
 
In hippocampus, five of the 40 co-expression modules 
positively associated with T2D and another five 
modules negatively associated (Supplementary Figure 
6A, P-value < 0.05, Student t test). The mean GS values 
across modules were shown in Supplementary Figure 
6C. Among the 10 T2D-associated modules, significant 
correlations of GS and MM were detected in 7 modules 
(Supplementary Figure 6B). 
 
Cell-type and regional specificity of co-expression 
modules 
 
Disorder of regional specific gene networks usually 
results in impairment of regional specific functions. 
Hence, it is of great value to determine whether brain 
regional specific modules were disturbed in T2D, 
which might help unravel the underlying mechanisms 
of T2D-associated brain disorders. By testing the 
enrichment of distinct regional and cell-type specific 
expression markers [25], several modules in caudate 
were found to be significant at pSI 0.0001 (Figure 4). 
For instance, the green module, positively correlated 
with T2D, was significantly enriched in cortical 
astrocytes markers. The red module was significantly 
enriched in expression markers of oligodendrocyte of 
cortex and cerebellum, whilst eigengene of this 
module did not show prominent correlation with the 
T2D status. The most surprising result is the turquoise 
module, which was found to be striatum specific at 
every pSI (Supplementary Table 6). Cell-type markers 
of two major neuronal populations in striatum: Drd1-
expressing and Drd2-expressing medium spiny 
neurons (D1- and D2-MSNs) were also enriched in 
turquoise module at every pSI. In consideration of the 
transcriptional association between turquoise module 
and T2D, this module could be determined as a 
striatum-specific module which was disturbed in T2D 
status. 
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Figure 3. Co-expression modules in caudate. (A) Each row corresponds to a module eigengene and column indicate T2D status. The 
table were colored by correlation according to the legend. Each cell contains the corresponding correlation and P-value. (B) Each bar 
indicates the average of gene significance measure for all genes in a given module. (C) GS vs. MM plot for modules significantly correlated 
with T2D status. Each point corresponds to an individual gene within a given module, which was plotted by GS on the y-axis and MM on the 
x-axis. The regression line, correlation value and P-value were shown for each module. 



www.aging-us.com 6404 AGING 

However, in hippocampus, there were no T2D-
associated modules enriched in any regional or cell-type 
markers at pSI 0.0001 (Supplementary Figure 7 and 
Supplementary Table 7). The darkolivegreen module 
was the only module enriched in hippocampus markers. 
Nevertheless, eigengene of this module had a weak 
correlation with T2D. Therefore, the darkolivegreen 
module may not account for the alteration of hippo-
campus in T2D. Next, we focused only on caudate to 
further study the correlation between T2D and these 
putative core modules. 

Identification of modules genetically associated with 
T2D in caudate 
 
Though genes in modules specific to caudate were 
dysregulated in T2D, it was unclear whether these 
impairments were only consequences of T2D or 
genetically associated with T2D. To identify the causal 
link of modules to T2D, we tested for their enrichment 
in T2D and height (as a negative control) associated 
single nucleotide polymorphisms (SNPs) from large 
genome-wide association study (GWAS) data sets. 

 

 
 

Figure 4. Enrichment of brain regional and cell-type markers in caudate modules. (Top) Enrichment of caudate modules in markers 
of various neuronal and glial cell types. (Bottom) Same as above, but using markers for different brain regions. Asterisks indicate significant 
enrichment after Bonferroni adjustment. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, Fisher’s Exact test. Cholin., cholinergic; seroton., 
serotonergic; cereb., cerebellum; UPBCs, unipolar brush cells; oligod., oligodendrocyte; MSNs, medium spiny neurons; hypocret., 
hypocretinergic. 
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In caudate, the turquoise module exhibited highly 
significant enrichment in T2D risk SNPs, while no 
such significant result was found in height-associated 
SNPs (Figure 5A, 5B and Supplementary Table 8). As 
the turquoise module was also highly enriched in 
striatum and MSNs markers, it was of great interest 
whether the T2D risk SNPs signal of this module was 
in connection with these specific markers. To explore 
this, we extract sub-modules of the turquoise module 
which only contain striatum, D1-MSNs or D2-MSNs 
specific markers at pSI 0.01 (sub-module derived at 
pSI 0.001 and 0.0001 was too small), respectively, 

and then performed the same enrichment method. All 
the three sub-modules were significantly enriched in 
T2D risk SNPs compared with height, especially for 
D2-MSNs. It can be inferred that the genetic risk for 
T2D associated with the turquoise module might 
distribute mainly across striatum and MSNs specific 
genes. Another 4 modules (red, magenta, green and 
tan module) were also relatively significant compared 
to negative control. However, only eigengene of green 
module was correlated with T2D and this module  
was enriched in cell-type markers of astrocytes of 
cortex. 

 

 
 

Figure 5. Caudate modules enriched in T2D genetic signals. (A) For each module (or sub-module), the null distribution of T2D SNPs 
enrichment scores generated by 20,000 random permutations is shown. Real enrichment scores were depicted by red vertical lines. Modules 
were considered significant if FDR < 0.05. (B) For each module in (A), enrichment FDR for T2D SNPs are shown by histogram compared to 
height SNPs. Y-axis was log10 transformed and broken axis was used to show zero value. The red horizontal line marks the FDR threshold for 
significance, which is 0.05. FDR, false discovery rate. 
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Functional annotations and hub genes of caudate 
modules 
 
Previous studies have shown that co-expressed genes 
tend to be functional related [26], we therefore studied 
the functional annotations of interested modules. 
Actually, although more than half of input genes were 
unassigned to specific co-expression modules, there were 
still large overlaps between DAGs and several modules. 
For instance, the blue module accounted for nearly 40% 
of up-regulated DAGs in caudate and a half of down-
regulated DAGs were assigned to turquoise module 
(Supplementary Table 9). Nonetheless, the co-expression 
modules also harbored non-T2D-associated genes and 
had a greater power to delineate T2D-relevant trans-
criptional changes compared with DAGs. As an 
illustration, similar but more significant pathways were 
enriched for the blue module than up-regulated DAGs 
(Supplementary Table 10). The turquoise was also 
enriched in terms related to synaptic functions more 
significantly (Figure 6A), compared with down-regulated 
DAGs. In terms of other aforementioned T2D-associated 
modules, the cyan module associated with ribosome and 
the purple module is an immune module, revealing 
corresponding dysfunction in T2D brain. It was worth 
mentioning that the green module enriched in many 
metabolic processes and axonogenesis, in accordance 
with its enrichment in cortical astrocytes marker. 
 
Other than taking the turquoise module as a whole, we 
further investigated enriched pathways of striatum and 
MSNs sub-modules. All of these were enriched in 
pathways related to learning, memory and cognition 
(Supplementary Table 10). Taken together, the 
turquoise module was considered as a core functional 
module of caudate and its related synaptic impairments 
may contribute to the cognition decline in T2D. 
 
Finally, we tried to identify highly connected hub genes 
for the turquoise module (Figure 6B). The top two hub 
genes were NSF (N-ethylmaleimide-sensitive factor, 
Entrez ID 4905) and ADD2 (adducin 2, Entrez ID 119), 
both of which were highly expressed in brain. NSF is 
essential for neurotransmitter release, together with 
other key factors of synaptic fusion machinery, such as 
SNAREs (soluble NSF attachment protein receptors) 
and SNAP (soluble NSF adaptor protein). They have 
been reported to play an important role in both diabetes 
and neurodegenerative disorders [27]. ADD2 encodes 
the beta subunit of adducins, which are a family of 
cytoskeletal proteins. Polymorphism of ADD1 gene 
(encoding the alpha subunit, Entrez ID 118) has been 
reported to associated with T2D [28], while little is 
known about the relationship between ADD2 and T2D. 
Thus, further studies are needed to explore the roles of 
these hub genes in T2D brain. 

DISCUSSION 
 
Identification of genes and pathways altered in diabetic 
brains may provide insights into the mechanism and 
prognosis of T2D-associated CNS disorders. In the 
present study, we delineated transcriptomic changes of 13 
brain regions in T2D and observed prominent difference 
among diverse brain regions. Although transcriptome of 
majority of the human brain was stable in T2D, a 
considerable number of DAGs were identified in caudate 
and hippocampus. Even anatomically adjacent regions 
might also show dramatic difference in T2D. A notable 
example was caudate and putamen, the former of which 
has the most abundant number of DAGs, while none are 
identified in the latter. Functional annotations indicate 
that the down-regulated DAGs in caudate and 
hippocampus are both enriched in synaptic pathways, 
whilst the up-regulated DAGs have regional specific 
functions. 
 
We also performed co-expression analysis on these two 
regions and observed different co-expression patterns. 
We identified a turquoise module that harbors a half of 
down-regulated DAGs in caudate while performed better 
in delineating transcriptomic changes of caudate. This 
module is enriched in regional markers of striatum and 
cell-type markers of its two major neuronal populations, 
consistent with previous evidence that GABAergic 
neurons in striatum is negatively affected in T2D rats 
[29]. Of particular interest, the turquoise module is 
enriched in T2D risk SNPs, implying their potential role 
in etiology of diabetes. Dissection of functions of 
turquoise modules and its sub-modules has revealed their 
core role in synaptic transmission and cognition. 
Moreover, the identified hub genes of the turquoise 
modules might play a vital role in coordination of 
involved genes. For instance, the top hub gene NSF can 
link T2D with neurodegenerative diseases together with 
SNAREs. It is of note that although no T2D-associated 
CNS complications were observed in GTEx donors, 
remarkable alterations have been existed in diabetic 
brain. Hence, early interventions to prevent diabetes-
related CNS complication were recommended. There is 
no such global gene expression profiling of multiple 
brain regions in T2D has been reported. As type 2 
diabetes and CNS disorders getting prevailing, our study 
provides a broader horizon for further research. 
 
Given the association between T2D and its related brain 
alterations, much attention has been directed to the 
hippocampus and cognitive decline [30]. However, 
pooled analysis showed that the hippocampus was not 
more severely affected than the rest of the brain [13]. In 
our study, large transcriptomic changes of hippocampus 
were observed, whilst the changes seemed weaker than 
caudate and we were not able to identify convergent core
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Figure 6. Functional annotations and hub genes of caudate modules. (A) (Left) Top 20 GO biological processes significantly enriched 
in turquoise module. (Right) Top 20 KEGG pathways significantly enriched in turquoise module. Numbers in the parenthesis indicate the 
numbers of genes associated with the respective terms. (B) Network plots showing top 500 connections in turquoise module; genes with 
most connections (hub genes) are shown in center. The size of each dot is proportional to log2 (number of connections for each gene). 
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modules for it. Further researches were still required for 
better understanding the role of hippocampus in T2D 
related brain alterations. 
 
On the other hand, the caudate has also been associated 
with cognitive impairment [31, 32]. The caudate and 
putamen together constitute the striatum, which is a part 
of basal ganglia. Various nuclei of basal ganglia are 
functionally delineated along corticostriatal lines. The 
caudate is associated with selection of appropriate sub-
goals based on an evaluation of action-outcomes, 
whereas its nearest neighbor, the putamen, appears to be 
involved in simpler motor control [33]. This might help 
explain the striking difference in transcriptomic changes 
of caudate and putamen in T2D. The cognitive function 
of caudate, along with caudate abnormality observed in 
T2D [34, 35], also provides support for the potential 
role of caudate in T2D associated brain alterations.  
 
Nevertheless, there are also limitations of the present 
study. First, due to the rarity of T2D postmortem 
brain samples, the sample size of GTEx database is 
still relatively small. Further investigation with larger 
sample size is recommended to reduce noise and draw 
more reliable conclusions. Second, gene expression is 
a complex trait influenced by various factors. 
Although we have tried our best to match samples as 
well as control known and hidden factors in our 
pipeline, bias might still exist. Sample pairing in the 
experiment design stage can further reduce possible 
bias. Third, there are no quantitative indicators of 
hyperglycemia, such as glycated hemoglobin 
(HbA1c), in GTEx dataset. Hence, transcriptomic 
changes associated with blood glucose level could not 
be determined, which may provide useful information 
for explanation of etiology of T2D complications. 
Ultimately, more comprehensive studies are expected 
in the future to deepen our understanding on this 
topic. 
 
MATERIALS AND METHODS 
 
GTEx tissues and subjects 
 
The GTEx project (v7, released in June 2017) provides 
expression data of 13 human brain regions from 752 post-
mortem donors. Two of the brain regions were initially 
sampled from cerebellum and cortex preserved using the 
PAXgene tissue preservation system, and another 11 
regions were subsequently sampled from frozen brains, 
including amygdala, anterior cingulate cortex, caudate, 
cerebellar hemisphere, frontal cortex, hippocampus, 
hypothalamus, nucleus accumbens, putamen, spinal cord 
and substantia nigra. Details regarding the sample 
collection, RNA sequencing and data processing are 
available at GTEx consortium paper [36]. 

To draw reliable conclusion, we only keep high-quality 
sequencing samples with RINs > 6.0. Cases with type 1 
diabetes or unknown T2D status, and races other than 
black or white were excluded from this study. 
 
Confounding factors including age [37], gender [38], race, 
BMI [39] and RIN [40] have been reported to be 
correlated with gene expression. To avoid bias, we used 
an optimal matching algorithm in R package MatchIt [41] 
to balance them between control and T2D groups, with 
optimal ratio of 2:1. The number of remaining matched 
samples of 13 brain regions ranged from 30 to 108. 
 
Identification of regional specific DAGs 
 
DESeq2 [20] (v1.22.2) was employed on all of the 13 
brain regions to identify regional specific DAGs using 
raw read counts. Independent filtering of genes with 
low read counts was performed automatically by 
DESeq2 with alpha=0.05, and genes remained were 
referred to as ‘detectable genes’. To correct the known 
covariates as well as remove inferred hidden con-
founders in GTEx expression data, we employed 
“svaseq” function in sva R package [42] to identify 3 
surrogate variables. The known confounding factors and 
surrogate variables were then added to the DESeq2 
design, and negative binomial (NB) generalized linear 
regression model (GLM) was performed. Benjamini-
Hochberg (BH) algorithm was used to adjust the Wald 
test P-values for multiple testing. Raw counts data were 
transformed to continuous, homoscedastic regularized 
logarithm transformed (r-log) values for further 
analysis. 
 
Genomic distance and functional annotations 
 
Genomic distance of each pair of DAGs on the same 
chromosome was calculated according to their genome 
coordinate positions. Wilcoxon rank-sum test was used 
to compare the distributions of intra- and inter-groups. 
 
Functional enrichment analysis was performed using R 
package clusterProfiler [43] to identify significant GO 
biological process terms and KEGG terms. The FDR 
adjustment for P-value was made using Benjamin-
Hochberg procedure and an FDR cutoff of 0.05 was 
used. 
 
Weighted gene co-expression network analysis 
 
To regress out uninterested sources of large variation, 
linear models containing age, gender, race, BMI, RIN 
and surrogate variables were fitted on the r-log data for 
all of the ‘detectable genes’ in each brain region, 
respectively. Then co-expression analysis was performed 
on residuals using WGCNA R package [44]. The soft-
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thresholding power were picked according to the scale-
free topology criterion, and a singed gene network was 
constructed using blockwiseModules function in a single 
block with parameters mergeCutHeight = 0.15, 
minModSize = 40 and minKMEtostay = 0.7. 
 
The module eigengene (ME) is defined as the first 
principal component of a given module, which can be 
considered as a representative of the gene expression 
profiles in a module. Module membership (MM) is a 
measure of gene-to-module membership by correlating 
its gene expression profile with the module eigengene 
of a given module. Gene significance (GS) was defined 
as the correlation between the gene and the T2D status. 
 
Module graphs showing the top 500 connections were 
plotted using the iGraph [45] R package. Hub genes 
were defined as top 5% in number of connections. 
 
Cell-type and regional specificity analysis 
 
R package pSI [46], which provides lists of expression 
markers for diverse brain regions and cell types, was 
used to perform Fisher’s Exact test for regional or cell-
type marker enrichment in co-expression modules at 
different specificity index thresholds (pSI 0.01, 0.001 
and 0.0001; pSI 0.05 was deprecated for increased false 
positives). Regional markers were derived from Atlas of 
the developing Human Brain (www.brainspan.org), 
while cell-type markers were originally identified using 
translational profiling of genetically tagged cell lines 
purified from mouse brain [25]. 
 
GWAS set enrichment analysis 
 
Enrichment for GWAS signal was conducted as 
previously described [47]. SNPs and their associated P-
values were from large GWAS data sets of T2D [48] 
and height [49]. SNPs were assigned to genes if located 
within gene boundaries with additional 20kb on 5’ end 
and 10kb on 3’ end. The most significant SNP of each 
gene was selected, and then all of the genes were ranked 
with associated scores (-log10 P-value) to calculate gene 
set enrichment score (ES) based on the Kolmogorov-
Smirnov running-sum statistic using GSEA-P [50]. The 
null distribution of ES was generated by 20,000 random 
permutations of gene labels and associated scores. 
Enrichment scores were scaled by subtracting the mean 
and dividing by the standard deviation of permutation 
scores to correct for the gene set size, and empirical P-
values were determined by the resulting z-scores. 
 
Data and resource availability 
 
The GTEx gene expression data and phenotype data 
were downloaded from dbGaP (http://www.ncbi.nlm. 

nih.gov/gap.nih.gov/gap) under accession number 
phs000424.v7.p2. Statistical analysis was performed on 
R (v3.5.0). Scripts are available at https://github.com/ 
ZedekiahZhou/T2D_Brain. All data generated or 
analyzed during this study are included in the published 
article (and its online supplementary files). 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures  

 

 
 

Supplementary Figure 1. Distribution of propensity scores. Jitter plot showing the distribution of propensity scores in T2D samples 
and matched controls for each brain regions respectively. 
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Supplementary Figure 2. Sample distribution of 13 brain regions after matching. Histograms denote the distribution of matched 
samples in each brain regions respectively. 
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Supplementary Figure 3. Effect of sample size on detected DAGs in 13 brain regions. The x-axis indicates the sample size of T2D 
and matched control groups. The y-axis indicates the average number of DAGs in 100 repetitions of bootstrapping at a 5% FDR level. The 
error bar indicates 95% confidence interval of group means. 
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Supplementary Figure 4. Dendrogram for module assignment in caudate. The branches correspond to modules of highly 
interconnected groups of genes. Colors in the horizontal bar represent the modules and grey indicates unassigned genes. 
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Supplementary Figure 5. Dendrogram for module assignment in hippocampus. The branches correspond to modules of highly 
interconnected groups of genes. Colors in the horizontal bar represent the modules and grey indicates unassigned genes. 
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Supplementary Figure 6. Co-expression modules in hippocampus. (A) Each row corresponds to a module eigengene and column 
indicate T2D status. The table were colored by correlation according to the legend. Each cell contains the corresponding correlation and P-
value. (B) GS vs MM plot for modules significantly correlated with T2D status. Each point corresponds to an individual gene within a given 
module, which was plotted by GS on the y-axis and MM on the x-axis. The regression line, correlation value and P-value were shown for each 
module. (C) Each bar indicates the average of gene significance measure for all genes in a given module. 
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Supplementary Figure 7. Enrichment of brain regional and cell-type markers in hippocampus modules. (Top) Enrichment of 
hippocampus modules in markers of various neuronal and glial cell types. (Bottom) Same as above, but using markers for different brain 
regions. Asterisks indicate significant enrichment after Bonferroni adjustment. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001, Fisher’s Exact 
test. Cholin., cholinergic; seroton., serotonergic; cereb., cerebellum; UPBCs, unipolar brush cells; oligod., oligodendrocyte; MSNs, medium 
spiny neurons; hypocret., hypocretinergic.  
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Supplementary Tables  
 
Please browse Full Text version to see the data of Supplementary Tables 1–7. 
 
Supplementary Table 1. Statistics of known covariates after sample matching. 

Supplementary Table 2. Details of DAGs in each brain region. 

Supplementary Table 3. Functional annotations of DAGs. 

Supplementary Table 4. Membership information for all assigned genes in caudate. 

Supplementary Table 5. Membership information for all assigned genes in hippocampus. 

Supplementary Table 6. Enrichment of regional and cell-type markers in caudate modules at various specificity 
indices. 

Supplementary Table 7. Enrichment of regional and cell-type markers in hippocampus modules at various specificity 
indices. 
 
 
Supplementary Table 8. SNP-based enrichment analysis for caudate modules and sub-modules. 

Module 
T2D SNPs Height SNPs 

Size ES P-value FDR Size ES P-value FDR 
turquoise 1576 0.415712 0 0 1576 0.4111951 0.0497 0.13916 
red 260 0.425652 0.00815 0.03325 260 0.42124715 0.2414 0.289756 
magenta 156 0.444919 0.0091 0.03325 156 0.45935112 0.12445 0.2489 
green 373 0.435294 0.0095 0.03325 374 0.4505773 0.04135 0.13916 
tan 61 0.504785 0.01205 0.03374 61 0.46593708 0.248362 0.289756 
yellow 481 0.368788 0.03835 0.089483 481 0.49281818 3.00E-04 0.0042 
purple 118 0.400124 0.09525 0.1905 118 0.38965136 0.56555 0.56555 
salmon 39 0.439662 0.163975 0.286956 39 0.56709814 0.069181 0.161423 
greenyellow 95 0.384014 0.20735 0.306483 95 0.57951885 0.00415 0.019367 
black 228 0.351542 0.24705 0.306483 228 0.42270425 0.24785 0.289756 
blue 468 0.337558 0.25135 0.306483 468 0.40408793 0.2989 0.321892 
brown 503 0.335818 0.2627 0.306483 503 0.47241223 0.00295 0.019367 
pink 215 0.345973 0.30135 0.324531 215 0.42818555 0.22605 0.289756 
cyan 37 0.315055 0.746361 0.746361 37 0.49608 0.228706 0.289756 

Sub-module 
T2D SNPs Height SNPs 

Size ES P-value FDR Size ES P-value FDR 
D2-MSN 71 0.485125 0.0144 0.0432 71 0.4155968 0.45245 0.49075 
D1-MSN 75 0.453621 0.0355 0.04715 75 0.47593623 0.1792 0.49075 
striatum 83 0.4398 0.04715 0.04715 83 0.40625075 0.49075 0.49075 
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Supplementary Table 9. Modules enriched in DAGs. 

Up-regulated DAGs Down-regulated DAGs 
Module GeneRatio P-value FDR Count Module GeneRatio P-value FDR Count 
blue 460/1186 0 0 460 turquoise 887/1753 0 0 887 
green 57/1186 5.81E-12 1.60E-11 57 black 54/1753 6.01E-13 1.35E-12 54 
purple 26/1186 5.44E-09 1.20E-08 26      

Note: GeneRatio refers to Number of intersection genes / Size of Up- or Down-regulated DAG set. 
 

Please browse Full Text version to see the data of Supplementary Table 10. 
 
Supplementary Table 10. Functional annotations of caudate modules (sub-modules). 

 


