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INTRODUCTION 

Neuroinflammation is a pathological process that plays 
an important role in various acute and chronic brain 
disorders, including neurodegenerative disease, 
ischemic stroke, and traumatic brain injury [1–4]. 
Neuroinflammation is characterized by activation of 
inflammatory cascades, excessive accumulation of 
inflammatory cells, and increases in cytokine levels. 
Glial cells, which play an important role in repairing 
damaged brain tissue, are the primary targets of 
neuroinflammation [5]. Extensive neuroinflammation 
causes microglial cell death which in turn further 
augments the inflammatory response [6, 7]. Reducing 
inflammation-mediated microglial cell death and 
promoting microglial cell survival are therefore vital for 
stopping the progression of neuroinflammation.  

Mitochondria play a central role in cell death and 
survival [8]. Normal mitochondria produce ATP to 

support cellular metabolism [9], whereas damaged 
mitochondria release pro-apoptotic factors to initiate 
programmed cell death [10]. Several studies have 
found that inflammation reduces mitochondrial 
membrane potential, promotes the opening of 
mitochondrial permeability transition pores (mPTPs), 
and increases oxidative stress [11–13]. However, the 
primary upstream mediator of these inflammation-
induced pathological alterations in the mitochondria 
has not been identified. Recently, mitochondrial 
fission, in which individual mitochondria are divided 
into several compartments that can differ in membrane 
potential and ROS levels [14], has been identified as 
an early feature of mitochondrial apoptosis [15]. These 
fragmented mitochondria are also a primary source of 
pro-apoptotic proteins such as cyt-c and Smac 
[16, 17], which are released into the nucleus when 
mitochondrial apoptosis is activated. However, the 
effects of mitochondrial fission on neuroinflammation 
are largely unknown.  
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ABSTRACT 

In this study, we explored the upstream regulatory mechanisms underlying inflammation-induced mitochondrial 
dysfunction in microglial BV-2 cells. Our results demonstrate that Sirtuin 3 (Sirt3) expression was downregulated 
in response to LPS-induced neuroinflammation. In addition, overexpression of Sirt3 attenuated LPS-induced BV-2 
cell death. Functional studies illustrated that Sirt3 overexpression promoted normal mitochondrial function and 
inhibited mitochondria-dependent apoptosis in LPS-treated BV-2 cells. At the molecular level, suppressor of ras 
val-2 (SRV2) promoted LPS-mediated mitochondrial damage by inducing mitochondrial fission. Sirt3 
overexpression, which suppressed the transcription of SRV2 and thus suppressed mitochondrial fission, played an 
anti-apoptotic role in LPS-treated BV-2 cells. Furthermore, Sirt3 inhibited SRV2 expression via the Mst1-JNK 
pathway, and re-activation of this pathway abolished the protective effects of Sirt3 on mitochondrial damage and 
apoptosis. Taken together, our results indicate that Sirt3-induced, Mst1-JNK-SRV2 signaling pathway-dependent 
inhibition of mitochondrial fission protected against neuroinflammation-mediated cell damage in BV-2 microglia. 
Sirt3 might therefore be an effective treatment for neuroinflammation. 
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Several molecules capable of inducing mitochondrial 
fission, including Drp1, Mff, Mid49, and Fis1 have 
been identified [18–21]. Once activated by stress 
conditions, these factors work together to form a 
contractile ring around the outer mitochondrial 
membrane. Suppressor of Ras Val-2 (SRV2), which 
alters the balance of skeleton protein F-actin, has also 
recently been identified as a promoter of mitochondrial 
fission [22]. In this study, we examined whether 
inflammation-induced activation of SRV2 contributes to 
mitochondrial fission.  
 
Sirtuin 3 (Sirt3), a member of the nicotinamide adenine 
dinucleotide-dependent histone deacetylase sub-family, 
has been identified as a key regulator of mitochondrial 
fission in several inflammation-related diseases, 
including high fat diet-induced hepatic inflammation 
[23], wound repair [24], atherosclerosis-related 
endothelial cell dysfunction [25], and diabetic 
cardiomyopathy [26]. We also reported in recent studies 
that pharmacological activation of Sirt3 significantly 
reduces the susceptibility of microglial cells to 
inflammation stress [27]. However, the effects of Sirt3 on 
mitochondrial fission in cells under inflammation 
conditions have not yet been experimentally examined. In 
this study, we investigated whether Sirt3 could attenuate 
neuroinflammation by modulating SRV2-induced 
mitochondrial fission. 
 
RESULTS 
 
Overexpression of Sirt3 attenuates LPS-mediated 
BV-2 cell death 
 
After exposure to LPS, which was used to induce 
neuroinflammation damage, cell viability as assessed in 
the MTT assay decreased dramatically (Figure 1A). 
Sirt3 expression also decreased rapidly at the 
transcriptional level (Figure 1B). These results indicated 
that Sirt3 downregulation and BV-2 cell damage may be 
linked. Adenovirus-mediated Sirt3 overexpression was 
used to verify the functional role of Sirt3 in 
neuroinflammation. As shown in Figure 1C, compared 
to the control group, LPS promoted release of LDH into 
the medium, which is indicative of cell death. 
Interestingly, Sirt3 adenovirus transfection largely 
reversed LPS-induced decreases in cell viability. In 
addition, ELISA indicated that caspase-3, the key 
promoter of cell death, was activated by LPS (Figure 
1D). However, Sirt3 overexpression reduced caspase-3 
activity in LPS-treated cells (Figure 1D), confirming the 
anti-apoptotic role of Sirt3 after neuroinflammation. 
Finally, the TUNEL assay was used to quantify the 
number of apoptotic cells. Compared to the control 
group, LPS increased the proportion of apoptotic cells 
to ~33%, while Sirt3 adenovirus transfection reduced 

this percentage (Figure 1E, 1F). Taken together, these 
results indicate that LPS-mediated BV-2 cell death 
could be reversed by Sirt3 overexpression.  
 
LPS induces mitochondrial damage in BV-2 cells 
 
At the molecular level, mitochondria have been 
identified as a potential target of neuroinflammation 
[28]. Accordingly, we explored the protective effects of 
Sirt3 on neuroinflammation-induced alterations in 
mitochondrial morphology. Under normal conditions, 
JC-1 probe fluorescence indicated that mitochondrial 
membrane potentials were generally high (Figure 2A, 
2B). Interestingly, mitochondrial membrane potential 
was reduced after exposure to LPS (Figure 2A, 2B), as 
evidenced by increased green fluorescence of JC-1 
probe. Transfection with Sirt3 adenovirus reversed the 
LPS-induced decrease in mitochondrial membrane 
potential (Figure 2A, 2B). ELISA was used to evaluate 
the activity of the mitochondrial respiratory complex, 
which plays a key role in the regulation of 
mitochondrial membrane potential. Compared to the 
control group, mitochondrial respiratory complex 
activity was reduced in response to LPS stress, and Sirt3 
overexpression effectively restored mitochondrial 
respiratory complex function (Figure 2C–2E). By 
restoring mitochondrial respiratory complex activity, 
Sirt3 overexpression also reversed the LPS-induced 
decrease in mitochondrial state-3 and state-4 respiration 
(Figure 2F, 2G). Taken together, these results indicate 
that LPS impairs mitochondrial function by 
downregulating Sirt3. 
 
Mitochondrial apoptosis is inhibited by Sirt3 
overexpression in LPS-treated cells 
 
Irreversible mitochondrial damage induces mitochondria-
related apoptosis, which is characterized by ROS 
overproduction, caspase-9 activation, opening of mPTPs, 
and the release of pro-apoptotic factors [29]. 
Immunofluorescence experiments indicated that levels of 
ROS were significantly increased in response to LPS 
stress (Figure 3A, 3B). Interestingly, Sirt3 overexpression 
reduced ROS levels in BV-2 cells. In addition, ELISA 
assays also demonstrated that LPS treatment rapidly 
downregulated the activity of antioxidants such as SOD, 
GSH, and GPX (Figure 3C–3E). Sirt3 overexpression 
reversed this LPS-induced decrease in antioxidant levels. 
In addition to ROS overproduction, LPS treatment 
increased mPTP opening rate, and Sirt3 overexpression 
largely reversed this effect (Figure 3F). 
 
Translocation of pro-apoptotic proteins, such as Smac, 
released from the mitochondria to the nucleus is the 
most important step in the activation of mitochondrial 
apoptosis [30]. Immunofluorescence experiments 
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Figure 1. LPS promotes BV-2 cell death by downregulating Sirt3. (A) BV-2 cell viability was measured after exposure to different 
doses of LPS. (B) Sirt3 transcript levels were measured using qPCR after exposure to different concentrations of LPS. (C) An LDH release assay 
was used to evaluate cell death in response to LPS treatment. Sirt3 adenovirus was transfected into BV-2 cells to overexpress Sirt3. (D) Cell 
apoptosis was determined by analyzing the activity of caspase-3 using ELISA in BV-2 cells overexpressing Sirt3. (E, F) TUNEL staining was used 
to measure the cell death after exposure to LPS in BV-2 cells overexpressing Sirt3. *P<0.05 vs. control group; #P<0.05 vs. LPS+adenovirus-
control group. N=3 independent experiments. 
 

 

 

Figure 2. Sirt3 overexpression attenuates LPS-mediated mitochondrial damage in BV-2 cells. (A, B) Mitochondrial membrane 
potential was measured by analyzing red-to-green fluorescence intensity ratios for the JC-1 probe. (C, E) An ELISA assay was used to evaluate 
alterations in the mitochondrial respiratory complex of BV-2 cells after exposure to LPS stress. (F, G) Mitochondrial state-3 and state-4 
respiration were measured by ELISA. BV-2 cells were treated with LPS and/or transfected with Sirt3 adenovirus. *P<0.05 vs. control group; 
#P<0.05 vs. LPS+adenovirus-control group. N=3 independent experiments. 
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demonstrated that nuclear Smac levels increased rapidly 
in response to LPS (Figure 3G, 3H). Interestingly, Sirt3 
overexpression significantly reduced Smac levels in the 
nucleus. Due to the diffusion of Smac into the nucleus, 
caspase-9 activity was also apparently upregulated in 
LPS-treated cells (Figure 3I). However, Sirt3 
overexpression attenuated LPS-mediated caspase-9 
activation (Figure 3I). Taken together, these results 
indicate that Sirt3 overexpression can block the 
activation of LPS-mediated mitochondrial apoptosis in 
BV-2 cells.   
 
Sirt3 overexpression reduces SRV2-associated 
mitochondrial fission 
 
Mitochondrial fission has been identified as a novel 
mechanism by which mitochondrial apoptosis is initiated, 

and Sirt3 has been reported to inhibit mitochondrial 
apoptosis [31, 32]. In this study, we examined whether 
Sirt3 overexpression reduced mitochondrial apoptosis by 
repressing mitochondrial fission. First, mitochondrial 
fission was evaluated using immunofluorescence. As 
shown in Figure 4A, 4B, compared to the control group, 
mitochondria fragmentation was rapidly upregulated in 
response to LPS stress, indicating an activation of 
mitochondrial fission. Interestingly, Sirt3 overexpression 
reduced the amount of mitochondrial debris (Figure 4A, 
4B). Subsequently, parameters related to mitochondrial 
fission were measured via qPCR. As shown in Figure 
4C–4H, compared to the control group, the levels of the 
pro-fission factors Drp1, Fis1, and Mff were significantly 
elevated after exposure to LPS stress. In addition, Sirt3 
adenovirus transfection significantly reduced levels of 
these pro-fission factors (Figure 4C–4H). In contrast, 

 

 
 

Figure 3. Sirt3 inhibits LPS-induced mitochondrial apoptosis. (A, B) ROS production was measured via immunofluorescence. BV-2 cells 
were treated with LPS and/or transfected with Sirt3 adenovirus. (C, E) Levels of cellular antioxidants were determined via ELISA. (F) mPTP 
opening rate was measured in response to LPS treatment and Sirt3 overexpression. (G, H) Immunofluorescence assay for Smac. Levels of 
nuclear Smac expression were determined in BV-2 cells treated with LPS and/or transfected with Sirt3 adenovirus. (I) Caspase-9 activity was 
detected via ELISA. BV-2 cells were treated with LPS and/or transfected with Sirt3 adenovirus. *P<0.05 vs. control group; #P<0.05 vs. 
LPS+adenovirus-control group. N=3 independent experiments. 
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anti-fission factor levels decreased when BV-2 cells were 
incubated with LPS. Sirt3 adenovirus transfection rapidly 
increased transcription of these anti-fission factors (Figure 
4C–4H). These results indicate that mitochondrial fission 
is activated by LPS and blocked by Sirt3. 
 
Recently, SRV2 has been identified as a regulator of 
mitochondrial fission [33]. qPCR revealed that SRV2 
expression was significantly elevated in LPS-treated cells 
and was reduced to near-normal levels after transfection 
with Sirt3 adenovirus (Figure 4I). To determine whether 
SRV2 is required for Sirt3-mediated mitochondrial 
fission, BV-2 cells were transfected with SRV2 
adenovirus. As shown in Figure 4J, compared to the 
control group, LPS-induced mitochondrial fragmentation 
was reversed by Sirt3 overexpression. However, SRV2 
adenovirus transfection abolished the inhibitory effects of 
Sirt3 on mitochondrial fission (Figure 4J). Taken 
together, these results confirm that SRV2 is essential for 
Sirt3-induced reduction of mitochondrial fission in LPS-
treated BV-2 cells. 
 

Activation of mitochondrial fission abolishes the 
protective effects of Sirt3 overexpression in 
mitochondria 
 
Next, we examined whether mitochondrial fission was 
critical for LPS-induced apoptosis in BV-2 cells. First, 
cell viability and apoptosis were assessed in Sirt3-
overexpressing BV-2 cells after administration of an 
activator of mitochondrial fission. As shown in Figure 
5A, compared to the control group, LPS-induced 
reductions in cell viability were reversed by Sirt3 
overexpression, while activation of mitochondrial 
fission reversed this effect. In addition, cell damage as 
assessed in an LDH release assay was increased by LPS 
and reduced by Sirt3 (Figure 5B). Interestingly, the 
protective effects of Sirt3 were blocked by the 
mitochondrial fission activator. TUNEL staining was 
used to quantify the number of apoptotic cells. As 
shown in Figure 5C, 5D, Sirt3 inhibited LPS-induced 
cell apoptosis, and mitochondrial fission activation 
reversed this effect. In addition, caspase-3, the key 

 
 

Figure 4. SRV2-associated mitochondrial fission is activated by LPS and inhibited by Sirt3. (A, B) Mitochondrial fission was 
measured via immunofluorescence. Numbers of fragmented mitochondria were recorded in BV-2 cells treated with LPS and/or transfected 
with Sirt3 adenovirus. (C–H) Transcription of mitochondrial fission-related factors. RNA was isolated from BV-2 cells treated with LPS and/or 
transfected with Sirt3 adenovirus. qPCR was used to measure changes in levels of mitochondrial fission-related proteins. (I) SRV2 expression 
was measured via qPCR. (J) Mitochondrial fission was measured in BV-2 cells transfected with SRV2 adenovirus via immunofluorescence. 
Numbers of fragmented mitochondria were recorded in BV-2 cells treated with LPS and/or transfected with Sirt3 adenovirus. *P<0.05 vs. 
control group; #P<0.05 vs. LPS+adenovirus-control group. N=3 independent experiments. 
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promoter of apoptotic signaling, was activated after 
exposure to LPS stress. Although Sirt3 adenovirus 
repressed LPS-mediated caspase-3 activation, this effect 
was abolished after re-activation of mitochondrial 
fission (Figure 5E). In sum, these data suggest that Sirt3 
protects BV-2 cells against LPS-mediated apoptosis by 
repressing mitochondrial fission.  
 
Sirt3 affects SRV2 via the Mst1-JNK pathway 
 
The above data illustrated the mechanism by which 
Sirt3 preserves mitochondrial function and BV-2 cell 
viability in the presence of LPS. However, how Sirt3 
affected SRV2 in LPS-treated BV-2 cells remained 
unclear. Our previous studies and other recent 
experiments have identified the Mst1-JNK axis as an 
important signaling pathway for neuroinflammation and 
inflammation-induced neuron death [34]. We therefore 
examined whether this pathway was activated by Sirt3 
and contributed to SRV2 modification under LPS stress. 
Firstly, immunofluorescence was used to verify that 
Mst1 and JNK expression were altered in the presence 
of LPS. As shown in Figure 6A–6C, little Mst1 and 
JNK expression was observed in normal BV-2 cells. 
Interestingly, Mst1 and JNK levels increased rapidly 

after exposure to LPS and were reduced to near-normal 
levels after transfection with Sirt3 (Figure 6A–6C), 
indicating that the Mst1-JNK pathway was activated by 
LPS and inactivated by Sirt3 overexpression. To 
understand the role of the Mst1-JNK pathway in the 
pathogenesis of neuroinflammation, SRV2 transcription 
was measured in Sirt3-overexpressed cells treated with 
an Mst1-JNK pathway agonist. As shown in Figure 6D, 
compared to the control group, SRV2 transcription was 
upregulated by LPS stress. Although Sirt3 adenovirus 
repressed LPS-mediated SRV2 activation, reactivation 
of the Mst1-JNK pathway counteracted this effect. As 
shown in Figure 6E, 6F, immunofluorescence indicated 
that, compared to the control group, Sirt3 adenovirus 
transfection attenuated LPS-induced mitochondrial 
fragmentation; this inhibitory effect of Sirt3 was 
eliminated upon re-activation of Mst1-JNK pathway. 
Together, these results indicated that Sirt3 affects SRV2 
expression via the Mst1-JNK pathway. 
 
Re-activation of the Mst1-JNK pathway impairs 
Sirt3-mediated mitochondrial protection 
 
A final set of experiments was conducted to verify 
whether Sirt3-mediated mitochondrial protection was 

 

 
 

Figure 5. Re-activation of mitochondrial fission abolished the protective effects of Sirt3 on BV-2 cell survival in the presence 
of LPS. (A) Cellular viability was measured via MTT assay. FCCP was administered to re-activate mitochondrial fission in Sirt3-overexpressing 
cells. (B) An LDH release assay was used to evaluate cell damage in BV-2 cells treated with LPS and/or transfected with Sirt3 adenovirus; FCCP 
was used to re-activate mitochondrial fission in Sirt3-overexpressing cells. (C, D) TUNEL staining was used to measure cell death after 
exposure to LPS. FCCP was used to reactivate mitochondrial fission. (E) Cell apoptosis was examined by measuring caspase-3 activity via 
ELISA. *P<0.05 vs. control group; #P<0.05 vs. LPS+adenovirus-control group; @P<0.05 vs. LPS+adenovirus-Sirt3 group. N=3 independent 
experiments. 
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controlled by the Mst1-JNK pathway. Total ATP 
production, for which mitochondria are solely 
responsible, was reduced by LPS and restored to near-
normal levels by Sirt3 overexpression. Interestingly, an 
Mst1-JNK pathway agonist caused a dramatic decline in 
ATP production in Sirt3-overexpression cells (Figure 
7A). LPS-mediated inactivation of the mitochondrial 
respiratory complex was reversed by Sirt3 adenovirus, 
and this effect was blocked upon re-activation of the 
Mst1-JNK pathway (Figure 7B, 7C).  
 
Mitochondrial apoptosis was also measured in these 
experiments. LPS induced oxidative stress as 
indicated by high ROS levels in BV-2 cells (Figure 

7D, 7E). Although Sirt3 overexpression reduced 
generation of ROS, this anti-oxidative effect was 
abolished in cells treated with an Mst1-JNK pathway 
agonist (Figure 7D, 7E). Similarly, antioxidant 
activity was sustained by Sirt3 in the presence of LPS 
and decreased upon re-activation of Mst1-JNK 
pathway (Figure 7F–7H). Finally, caspase-9, a marker 
of mitochondrial apoptosis, was activated by LPS and 
reduced in Sirt3-overexpression cells (Figure 7I). 
Interestingly, the Mst1-JNk pathway agonist 
abolished the anti-apoptotic effects of Sirt3 on 
mitochondria. Taken together, our results demonstrate 
that Sirt3 protected mitochondria against LPS stress 
by inhibiting the Mst1-JNK axis. 

 

 
 

Figure 6. Sirt3 modulates SRV2-associated mitochondrial fission via the Mst1-JNK pathway. (A–C) Immunofluorescence assay for 
Mst1 and p-JNK. BV-2 cells were treated with LPS and/or transfected with Sirt3 adenovirus. (D) RNA was isolated from BV-2 cells treated with 
LPS and/or transfected with Sirt3 adenovirus. qPCR was then used to measure changes in SRV2 levels. Ani, an agonist of the Mst1-JNK 
pathway, was used to re-activate its activity. (E, F) Mitochondrial fission was measured via immunofluorescence. Numbers of fragmented 
mitochondria in BV-2 cells treated with LPS and/or transfected with Sirt3 adenovirus were recorded. Ani was used to activate the Mst1-JNK 
pathway. *P<0.05 vs. control group; #P<0.05 vs. LPS+adenovirus-control group; @P<0.05 vs. LPS+adenovirus-Sirt3 group. N=3 independent 
experiments. 
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DISCUSSION 
 
From an epidemiological point of view, 
neuroinflammation is increasingly considered an 
important component of many neurodegenerative 
disorders, including acute ischemic stroke and chronic 
Parkinson’s disease. At the cellular level, microglia, the 
primary defender cells of the central nervous system, 
play an indispensable role in attenuating inflammation-
initiated injury signals under physiological and 
pathological conditions [35]. Mechanistically, microglia 
release cytokines to reduce inflammation response and 
migrate to damaged tissue to participate in regenerative 
processes. However, chronic neuroinflammation 
reduces the viability of and promotes apoptosis in 
microglia, which in turn promotes the progression of 
neuroinflammation. Thus, inhibition of microglia death 
might be an effective treatment for neuroinflammation. 
In this study, we identified Sirt3 as a key upstream 
promoter of cell survival in microglia exposed to 
inflammation. Sirt3 expression was downregulated 
under inflammatory conditions, and restoration of Sirt3 
levels significantly reduced the apoptotic rate in 

microglia by promoting mitochondrial functions and 
repressing mitochondrial apoptosis. Mechanistically, 
LPS triggered mitochondrial fission by increasing 
SRV2 expression; excessive fission then triggered 
caspase-9-assocaited mitochondrial apoptosis. In 
contrast, Sirt3 overexpression repressed SRV2-related 
mitochondrial fission and promoted survival in 
microglia under inflammation conditions by blocking 
the Mst1-JNK pathway. To our knowledge, this is the 
first study to describe the protective role of Sirt3 in 
neuroinflammation and the molecular mechanism 
responsible for its effects. Treatments that increase Sirt3 
expression to inhibit the Mst1-JNK-SRV2-
mitochondrial fission cascade might be highly effective 
in preventing neuroinflammation-induced microglia cell 
death.  
 
Mitochondrial dysfunction has been associated with the 
progression of neuroinflammation [36]. For example, 
Aβ-mediated mitochondrial dysfunction contributes to 
the pathology of Alzheimer’s disease [37, 38]. 
Damaged mitochondria fail to produce sufficient ATP 
to maintain brain function and metabolism [39]. 

 

 
 

Figure 7. Activation of the Mst1-JNK pathway attenuates Sirt3-meidated mitochondrial protection. (A) ATP production was 
measured via ELISA. BV-2 cells were treated with LPS and/or transfected with Sirt3 adenovirus. Ani was used to activate the Mst1-JNK 
pathway. (B, C) ELISA was used to evaluate alterations in the mitochondrial respiratory complex in BV-2 cells after exposure to LPS stress. (D, 
E) ROS production was measured via immunofluorescence. BV-2 cells were treated with LPS and/or transfected with Sirt3 adenovirus. (F–H) 
Cellular antioxidant levels were determined via ELISA. I. Caspase-9 activity was detected via ELISA. *P<0.05 vs. control group; #P<0.05 vs. 
LPS+adenovirus-control group; @P<0.05 vs. LPS+adenovirus-Sirt3 group. N=3 independent experiments. 
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Additionally, mitochondrial dysfunction is always 
accompanied by overproduction of ROS, an early 
feature of oxidative stress. Uncontrolled oxidative 
stress induces cell senescence and promotes 
inflammation response [40]. Preservation of 
mitochondrial function via mitophagy [41] or pro-
mitochondria drugs can be an effective treatment for 
neuroinflammation [42]. In this study, we also 
observed a reduction in mitochondrial function as a 
result of LPS stress. As was the case in previous 
studies, mitochondrial bioenergetics, redox balance, 
and survival were negatively affected by 
inflammation injury. Furthermore, our data illustrated 
that inflammation-related mitochondrial damage and 
mitochondrial apoptosis were largely the result of 
mitochondrial fission, which normally occurs in 
response to increases in metabolic rate. Abnormal 
mitochondrial fission, which results in the formation 
of non-functional mitochondrial debris, has been 
observed in response to stress-induced injury. This 
non-functional mitochondrial debris also acts as a 
source of pro-apoptotic proteins which eventually 
cause cell death. Our present results therefore suggest 
that inhibiting neuroinflammation-induced 
mitochondrial fission may help sustain mitochondrial 
homeostasis under LPS. 
 
We also found that mitochondrial fission was inhibited by 
Sirt3, which agrees with previous studies. At the 
molecular level, Sirt3 inactivated the Mst1-JNK pathway 
and thus suppressed the expression of SRV2, a novel 
mediator of mitochondrial fission. The Mst1-JNK axis is 
known to control mitochondrial fission in liver cancer 
[43], hyperglycemia-induced vascular dysfunction [44], 
thyroid carcinoma [45], breast cancer [46], acute cardiac 
stress [47], and colorectal cancer [48]. In addition, SRV2 
induces mitochondrial fission by promoting F-actin 
polymerization [49, 50]. Our data demonstrate that SRV2 
is regulated by the Mst1-JNK pathway in LPS-treated 
BV-2 cells. We have thus identified a novel downstream 
effector of the Mst1-JNK pathway as well as a new 
molecular mechanism underlying neuroinflammation-
induced mitochondrial fission. 
 
In order to confirm the clinical relevance of these cell 
line experiment results, they should be replicated in 
studies using animal models and human samples [51]. 
Additional studies are also necessary to determine 
whether Sirt3 regulates other mitochondrial fission 
factors such as Drp1 and Mff in the context of 
neuroinflammation [52, 53]. Taken together, our results 
indicate that neuroinflammation-associated pathology is 
due at least in part to Sirt3 downregulation, which in 
turn activates the Mst1-JNK pathway and subsequent 
SRV2-related mitochondrial fission [54]. Moreover, 
overexpression of Sirt3 blocked the Mst1-JNK pathway 

and thus suppressed SRV2-induced mitochondrial 
fission, reducing inflammation-mediated mitochondrial 
dysfunction and microglia cell apoptosis. This suggests 
that Sirt3 might be an effective treatment for 
neuroinflammation.  
 
MATERIALS AND METHODS 
 
Cell culture 
 
BV-2 cells obtained from ATCC (Rockefeller, USA) 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) (Gibco, C11995500CP) supplemented with 
10% (v/v) fetal bovine serum (FBS) (BI, 04-001-1ACS) 
and 1% penicillin/streptomycin (Genom, GNM15140). 
All cells were maintained in a humidified incubator 
with 95% air and 5% CO2 at 37°C. For the 
inflammation injury model, BV-2 cells were incubated 
with LPS as previously described [55]. Additionally, 
anisomycin (Ani, 10 μM, Selleck Chemicals, Houston, 
TX, USA), an Mst1-JNK pathway agonist, was added to 
the BV-2 cell medium for 2 hours in order to activate 
the JNK pathway.  
 
Measurement of cell survival 
 
Cell viability was determined using TUNEL, LDH 
release, and MTT assays. For the TUNEL assay, 
sections were deparaffinized and then incubated with 
proteinase K for 15 min at room temperature. Sections 
were then covered with TUNEL test solution containing 
fluorescein-conjugated dUTP and TdT enzyme at a ratio 
of 9:1 (v/v) in a humidified box at 37°C for 60 min. 
After washing, 4,6-diamidino-2-phenylindole (DAPI) 
was added to stain the cell nuclei. Images were taken 
using a fluorescent microscope (Olympus Corporation, 
Tokyo, Japan) [56, 57]. For LDH measurement, cellular 
medium samples were combined with 25 μL matrix 
buffer and 5 μL coenzyme I. After incubating for 15 
min at 37°C, 25 μL 2,4-dinitrophenylhydrazine was 
added and incubated for another 15 min at 37°C. 
Finally, 250 μL 0.4mol/L NaOH was added to the 
mixture and incubated for 5 min, and optical density 
(OD) was measured using a microplate reader at 450 
nm. For the MTT assay, 20 µL of MTT (5 mg/mL) in 
PBS solution was added to the medium after treatment 
and incubated for 4 h. The medium was then carefully 
removed and 150 µL of DMSO was added to each well 
to solubilize the crystals. Finally, OD was measured 
using a microplate reader at 490 nm [58]. 
 
Measurement of MDA, GSH, and SOD levels 
 
GPx, GSH, and SOD were quantified using commercial 
kits according to the manufacturer's protocol [59]. For 
GPx and SOD measurement, samples were rinsed with 
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PBS and then homogenized and sonicated in lysis buffer 
on ice. After sonication, the lysed tissues were 
centrifuged at 10,000 g for 10 min to remove debris. For 
GSH measurement, samples were homogenized through 
three freeze-thaw cycles, and the tissue suspension was 
then centrifuged at 12,000 rpm for 5 min at 4°C. 
Supernatant GPx, GSH, and SOD levels were then 
measured. The protein concentration of each sample 
was determined using a BCA protein assay kit. In 
addition, GPx, GSH, and SOD levels were normalized 
to total protein concentrations [60]. 
 
Cell fractionation and mitochondria isolation 
 
BV-2 cells were plated in 10 cm dishes. Cytosolic and 
mitochondrial proteins were separated using a Cell 
Mitochondria Isolation Kit (Beyotime) according to the 
manufacturer’s instructions [61]. Briefly, cells were 
washed with pre-cooled PBS and lysed with Cell 
Mitochondria Isolation buffer on ice. Mitochondria and 
cytoplasm were separated by grinding followed by 
centrifugation at 600 g for 10 minutes at 4 °C. The 
supernatant was then further centrifuged at 11,000 g for 
10 minutes at 4°C. The pellet was collected as the 
mitochondria-enriched fraction and resuspended in 
mitochondrial lysis buffer. The remaining supernatant 
was centrifuged 12,000 g for 10 minutes at 4°C to collect 
cytosolic proteins. Protein concentrations were detected 
using a Multimode Plate Reader (PerkinElmer). Equal 
amounts of protein (20 μg) from each fraction were 
measured by western blotting [62]. 
 
Immunofluorescence microscopy 
 
Following treatment, BV-2 cells on coverslips were 
fixed in 4% paraformaldehyde. The cells were then 
permeabilized and blocked with 2% goat serum 
containing 0.5% Triton X-100 and 3% BSA for 1 h at 
room temperature. The cells were probed with the 
following primary antibodies: Smac (1:1000, Cell 
Signaling Technology, #15108), Mst1 (1:1000, Cell 
Signaling Technology, #3682), and p-JNK (1:1,000; 
Cell Signaling Technology, #9251). After three PBS 
washes, cells were stained with secondary antibody. All 
fluorescent images were acquired on a confocal 
microscope (Olympus). 
 
Mitochondrial morphology assessment 
 
Mitochondrial morphology was evaluated using 
MitoTracker Red (Invitrogen, USA) according to the 
manufacturer's instructions [63]. Briefly, the cells were 
incubated with 100 nM MitoTracker Red in RPMI 1640 
medium for 30 min. Fluorescence was detected (490 nm 
excitation/525 nm emission) at 1000× magnification 
under a confocal laser scanning microscope (Olympus 

FV1200, Tokyo, Japan), and the images were analyzed 
using ImageJ (Bethesda, MD, USA). Mitochondrial 
fission evaluation was evaluated as described in 
previous studies [64, 65].  
 
Quantitative real-time PCR 
 
mRNA was purified from cell pellets using the RNeasy 
Mini Kit (Qiagen #74104). mRNA was purified from 
EVs using the ExoRNeasy kit (Qiagen #77023). Up to 5 
μg of total RNA were reverse-transcribed to obtain 
cDNA using SuperScript III (Invitrogen #18080-051). 
Quantitative PCR was performed using SYBR Green 
supermix (Bio-Rad #1725120). The manufacturers’ 
protocols were followed for all of these procedures [66]. 
GAPDH was used as the housekeeping gene. The 
following primers were used in the present study: Sirt3 
(Forward: 5′-GGTGCCTAGTGAGAGTGAGTCCCC-
3′ and Reverse: 5′-TCGGGGCTGAAGAGGGAGAA 
GTC-3′); GAPDH (Forward: 5′-ACGGCAAATTCAA 
CGGCACAGTCA-3′ and Reverse: 5′-TGGGGGCATC 
GGCAGAAGG-3′); Mff (Forward: 5′-AAGTGGCTCT 
CACCCTAGCA-3′ and Reverse: 5′-TGCCCCACTCA 
CCAAATGT-3′); Fis1 (Forward: 5′-CAAGGAACTGG 
AGCGGCTCATTA-3′ and Reverse: 5′- GGACACAG 
CAAGTCCGATGAGT-3′); Mfn1 (Forward: 5′-TGTG 
GTGGACTTCCTCTTGGC-3′ and Reverse: 5′-GAGA 
ATGAATGGGCGTGGG-3′); Mfn2, (Forward: 5′-AGG 
ATGACAATGGCATTGGC-3′ and Reverse: 5′-
CCGATCGTACATCCGCTTAAC-3′). 
 
Measurement of mitochondrial ROS, mitochondrial 
membrane potential, and ATP production 
 
Mitochondrial superoxide generation and membrane 
potential were measured as described previously [67]. 
ATP measurement kit (Beyotime, China) was used to 
measure ATP concentration as described previously [68]. 
Mitochondrial membrane potential was determined using 
the JC-1 probe (Beyotime, China). Red fluorescence 
from the JC-1 probe indicates normal mitochondrial 
membrane potential, whereas green fluorescence 
indicates abnormal mitochondrial membrane potential. 
 
Adenovirus transfection 
 
BV-2 cells were transfected with Sirt3 and SRV2 
adenovirus (Shanghai Gene-Pharma Co., Shanghai, 
China) according to the HiPerFect Transfection Reagent 
Handbook (QIAGEN). Briefly, BV-2 cells were washed 
with PBS after treatment and then infected with Sirt3 
and/or SRV2 adenovirus for 48h using Lipofectamine 
2000 (Invitrogen, 11668027) according to the 
manufacturer's specifications [69]. Subsequently, cells 
were isolated and overexpression efficiency was 
confirmed via qPCR.  
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Protein extraction and western blot analysis 
 
RIPA buffer was used to lyse the cells. Lysates were then 
centrifuged for 10 min at 12,000 rpm at 4°C. After 
quantification of protein concentration using BCA assay, 
equal amounts of protein were loaded on 10-12% gels for 
SDS-PAGE separation and then transferred onto PVDF 
membranes. After a 5% dry milk/TBST solution was used 
to block the membranes, primary antibodies, including 
rabbit IgG anti-LC3 (1:1000 dilution), and anti-GAPDH 
(1:5000 dilution) were added. After washing extensively 
with TBST, the goat anti-rabbit secondary antibody 
labeled with Alexa Fluor 680 (1:2000 dilution) was 
added. Membranes were scanned for far red signals using 
an Odyssey Imaging System (LI-COR, NE, USA). 
Quantity One Software (Bio-Rad, CA, USA) was used to 
quantify protein and expression levels by relative 
densitometry using beta-actin as the loading control. 
 
Statistical analysis 
 
Student’s unpaired t-tests (two-group comparisons) and 
one-way ANOVAs (multigroup comparisons) were 
completed using GraphPad Prism. All data were 
analyzed to identify statistical significance between 
groups. P-values less than 0.05 were considered 
statistically significant, and the values are expressed as 
means ± SD. 
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