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INTRODUCTION 
 
In 2018, approximately 403,000 new cases of kidney 
cancer were diagnosed worldwide, with >43% patients 
succumbing to the disease [1]. Renal cell carcinoma 
(RCC) is the most common type of kidney cancer [2], 
while the most common histologic subtype of RCC is 
clear cell RCC (ccRCC) [3]. Patients achieved 5-year 
survival >90% only if they were diagnosed with early 
and localized kidney cancer, which is defined as 
patients with pT1/pT2 disease but without regional 
lymph node metastasis nor distant metastasis (stage 
I/II, American Joint Committee on Cancer 8th edition)  

 

[4]. 5-year survival rate drops to 12% for patients with 
distant metastasis [5]. However, only about 65% of 
patients were diagnosed with localized disease [5]. 
Thus, improving early diagnostic rate is beneficial  
for patient survival. Currently, specific prognostic 
biomarkers and classification hallmarks for advanced 
ccRCC is still lack and has largely contributed to the 
poor outcome. The advanced ccRCC is usually 
characterized by highly invasiveness, regional and 
distant metastasis, and postsurgical relapse [6, 7]. 
Therefore, systematic identification of the driving 
regulators in progression of ccRCC is crucial and 
valuable. 
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ABSTRACT 
 
Identification of novel clinical biomarker in clear cell renal carcinoma (ccRCC) is warranted. Integrating 
transcriptome (n=1669), DNA methylation (n=577) and copy number data (n=832), we developed a method to 
identify driver biomarkers by analyzing the omics-level dynamics of Epithelial-Mesenchymal Transition (EMT)-
related genes in ccRCC. We first identified 504 expression dynamic changed genes involved in ccRCC-associated 
key pathways such as EMT, cell cycle, EGFR and PI3K/AKT signaling. Further analysis identified 229 (90 gene 
promoters) aberrant expression quantitative trait methylation (eQTM) and 256 genes with expression 
quantitative trait copy number (eQTCN) alterations. Among them, FOXM1 was affected by both eQTM and 
eQTCN. FOXM1 copy number amplification (115/500, 23% of patients), occurred in an amplified peak in 
chromosome 12q13.3, was enriched in late-stage ccRCC samples and was associated with worse survival. 
FOXM1-overexpressed pT3 patients with distant metastasis showed ~25% shorter overall survival in both 
training (log-rank P=0.006) and validation (log-rank P=0.018) cohorts. The eQTM-gene hybrid signature 
(cg00044170 and FOXM1), superior to either gene expression or DNA methylation alone, showed great potential 
in diagnosing localized ccRCC in training (area under curve = 0.958) and validation datasets. FOXM1 could be a 
novel prognostic biomarker and shed light for early diagnosis at molecular level in ccRCC. 
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Epithelial-mesenchymal transition (EMT), first 
recognized as a crucial process of embryogenesis in the 
1980s, allows polarized epithelial cells lose their 
adhesion and gain migratory and invasive properties of 
highly mobile mesenchymal cells [8]. EMT can be 
activated by many genes (e.g. Zeb1/2, Twist1/2 and 
Snail1/2) through inhibiting CDH1 and/or activating the 
hallmarks (N-cadherin, vimentin [VIM] and fibronectin) 
of mesenchymal-epithelial transition [9]. Loss of E-
cadherin (CDH1) is considered as the basic event of 
EMT activation [9]. It has been revealed that EMT plays 
important roles in invasion, drug resistance, recurrence 
and initiation of cancer metastasis [9, 10]. Thus, 
systematic analysis of EMT-related genes may contribute 
to identification of prognostic marker for advanced 
ccRCC. 
 
Cancer driver genes are the crucial nodes of signaling 
pathways and regulatory networks. Identification of 
driver genes in cancer may contribute to personalized 
therapy, subtype classification, clinical diagnosis and 
prognosis [11]. Integrating transcriptome, DNA 
methylation and copy number alteration data of same 
subjects is especially useful for identifying driver genes 
that perturbed by diverse factors, but remains challenge 
[12]. In this study, from the perspective of multi-omics, 
we identified driver genes in ccRCC by investigation of 
the information underlies the dynamic changes of EMT-
related genes (Figure 1). 
 
RESULTS 
 
EMT-related genes play critical roles in ccRCC 
 
We first identified EMT-related genes and pathways by 
text mining from literatures across cancer types (Figure 
2A). A total of 20 miRNAs and 736 protein-coding 
genes were identified (Supplementary Table 1), and they 
were enriched in 46 signaling pathways (FDR <0.05). 
Nine pathways were widely known as EMT-inducer 
pathways, namely PI3K-AKT, Ras, MAPK, NF-kappaB, 
Hippo, TGF-beta, JAK-STAT, Wnt and Notch. Among 
the 756 EMT-related genes, 474 genes involved in 42 
KEGG pathways (FDR <0.05, Figure 2B) were 
dysregulated in ccRCC (FDR <0.05), suggesting the 
important roles of EMT and EMT-related genes in 
ccRCC. Gene Set Enrichment Analysis [13] based on 
Molecular Signatures Database Hs.c2 curated gene sets 
showed that 180 genes were closely associated with 
EMT signatures (FDR < 0.05, Figure 2C), such as 
‘HOLLERN_EMT_BREAST_TUMOR_DN’ and 
‘ONDER_CDH1_TARGETS_2_DN’. Taken together, 
identified 756 genes were widely involved in EMT-
associated pathways and their dysregulation may 
contribute to the progression of tumors through 
downstream pathways. 

Gene expression patterns reveal pathway dynamics 
associated with progression of ccRCC 
 
Unsupervised hierarchical clustering of ccRCC samples 
based on Log2 transformed count per million expression 
levels of 704 genes detected from GDC RNA-Seq dataset 
showed four clusters (sC1 to sC4) (Figure 3A). The delta 
area under cumulative distribution functions was 
remarkably increased when the number of clusters was 
set at k=4 compared to k<4, however it did not show 
significant increase with the continue increase of k value 
(Supplementary Figure 1A and 1B). Most tumor samples 
were clustered together (Figure 3A). Among the tumor 
samples, two clusters sC2 (n=244) and sC4 (n=220) 
dominated the directions of dysregulation of genes in the 
whole panel, which including >98% patients with high-
grade (G3/G4) or high-stage (stage III/IV) disease. 
Furthermore, the number of patients with stage III/IV (χ2 
test, P = 2.70e-06), G3/G4 (χ2 test, P = 8.74e-07), higher 
pathological primary tumor stage (T3/T4, χ2 test, P = 
3.06e-05), invasive regional lymph nodes (N1, χ2 test, P 
= 0.002) and distant metastasis (M1, χ2 test, P = 0.002) in 
sC4 were significantly larger than those in sC2 (Figure 
3A). In addition, the overall survival (OS) and 
progression-free survival (PFS) of patients in sC2 were 
better than those in sC4 (Figure 3B and 3C). The middle 
cluster sC3 (n=68, 12.8% of tumors) was composed of 
23.5% (16/68) tumors of stage III /IV and 76.5% (52/68) 
tumors of stage I/II, which were the tumors with greatest 
expression differences. Cluster sC3 showed a closer 
relationship with cluster sC4 rather than cluster sC2, 
suggesting that sC3 might be a small sub-population of 
tumors that are on the verge of tumor progression. Taken 
together, the expression pattern of EMT-related genes 
implied that most of EMT-related genes may undergo 
second-time dysregulation, and contribute to ccRCC 
progression. 
 
Seven gene clusters (Supplementary Figure 1C and 1D) 
were determined using the same methods. It was 
observed that 644 of 704 EMT-related genes (85.2%) 
were dysregulated in at least one grouping method (see 
Materials and Methods) in ccRCC, and the majority of 
them were up-regulated (gC3 to gC7, Figure 3A). 
Moreover, by using 11 grouping methods, a great number 
of genes such as those in gC3 and gC4 were up-
regulated, and many genes in gC1 were down-regulated. 
Interestingly, the gene expression levels in early ccRCC 
were significantly changed (BH-adjusted P <0.05 in at 
least two datasets) compared to normal tissues. However, 
the expression levels of these genes were completely 
reversed in advanced tumors compared to early ones, 
such as genes in gC2, gC5 and gC6 (Figure 3A). These 
results highlight the importance of focusing on the 
dynamic changes of EMT-related genes in ccRCC 
tumors progression. 
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Furthermore, we encoded the expression status (S) of 
genes and defined their genes expression changes using 
Delta values (Figure 3D). The genes with Delta value not 
equal to 0 were defined as expression dynamic changed 
genes (EDCGs). A total of 504 EDCGs were identified, 
the expression levels of 145 EDCGs (|Delta| = 3) were 
reversed in both tumorigenesis and progression of 
ccRCC. Clustering of Delta values of EDCGs using 
Euclidean as distance metric with Ward linkage resulted 
five gene clusters (Figure 3E). The pathways of EDCGs 

involved may be affected and underwent dynamic 
changes, such as JAK-STAT, NF-kappaB and PI3K-
AKT, Ras, MAPK and cell cycle (Figure 3E). However, 
the dynamic change analysis of EMT markers showed 
that expression of CDH1 was sustained downregulated 
during ccRCC progression, while the expressions of N-
cadherin, VIM and fibronectin were upregulated 
consistently (Figure 3F), suggesting that the EMT was 
activated during both tumorigenesis and ccRCC 
progression. 

 

 
 

Figure 1. The flowchart of strategy to identify EMT-related biomarkers in ccRCC. Firstly, text-mining of abstract of literatures 
associated with EMT from PubMed database identified 756 EMT-related genes and 42 ccRCC-related key pathways. Secondly, expression 
pattern analysis of EMT-related gene identified two main tumor clusters differ in tumor malignancy and survival. A total of 504 dynamic 
expression changed genes among normal controls and the two tumor clusters were identified as key genes, which may be critical in ccRCC. 
Further analysis identified 229 eQTMs located in 90 gene promoters and 256 gene with eQTCNs by integrating transcriptome, DNA 
methylation and copy number alteration (CNA) data. Finally, ccRCC-related CNAs calling analysis and survival analysis revealed FOXM1 was a 
driver gene, which could be a biomarker for early diagnosis and overall prognosis in ccRCC. 
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DNA methylation mediated deregulation of EDCGs 
in early ccRCC 
 
To investigate the potential factors of the phased 
behaviors of the EDCGs, we analyzed the DNA 
methylation levels and CNAs. Firstly, 13629 CpGs of 
504 EDCGs were extracted for differential methylation 
analysis and 6745 differentially methylated CpGs and 
1020 DMRs were identified (FDR <0.05) between tumor 
and normal. The eQTMs analysis identified 229 CpG-
gene pairs with negative correlations (FDR<0.05) and 
they were located in promoter regions of 90 genes 
(Figure 4A). The expression of 44 genes were associated 
with multiple CpGs, such as the EMT marker CDH1 
(hypermethylation) and ZEB1 (hypomethylation), while 
others (46 genes) were affected by single CpG, such as 
FOXM1 (cg00044170, hypomethylation, Figure 4A) and 
VIM (hypomethylation). Given that the abnormal 
methylation of eQTMs is associated with the expression 
change of EDCGs, we investigated their DNA 
methylation patterns in ccRCC based on eleven grouping 
methods (see Materials and Methods). Interestingly, 
significant differential methylation events of the 229 

CpGs were only observed between early tumors and 
normal tissue (FDR <0.05), but not in advanced tumors 
compared to early ones after adjustment for multiple tests 
(FDR >0.05, Figure 4A). Same results were obtained 
even if all CpGs of EDCGs were included for another 
independent testing (FDR >0.05). These results 
suggested that the differential methylation of EDCGs 
were more likely to associate with tumorigenesis of 
ccRCC, rather than its progression. 
 
Gene set enrichment analysis results showed that 
hypermethylated eQTMs involved (e.g., CDH1 and 
CLDN7) in cell junction organization and tight junction 
were downregulated (FDR < 0.25, Figure 4B). 
Hypomethylated eQTMs involved (e.g., CCND1, BUB1 
and FOXM1) in G1 phase, G1/S phase, cell cycle mitotic 
and DNA replication were upregulated. The 
hypermethylation of CDH1 and hypomethylation of its 
transcriptional repressors (such as ZEB1 and TCF3) were 
consistent with EMT activation (FDR < 0.25, Figure 4B). 
GO analysis also showed that the EDCGs affected by 
hypomethylated eQTMs were mainly involved in cell 
cycle (10 genes, FDR < 0.05, Supplementary Figure 2A).

 

 
 

Figure 2. The workflow of identification of EMT-related genes and pathways in cancers. (A) Text-mining of literatures associated 
with EMT from PubMed database. (B) KEGG pathway enrichment of identified EMT-related genes. (C) Gene set enrichment analysis for EMT-
related genes not included in KEGG pathway using Molecular Signature Database Hs.c2 gene sets. 
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Figure 3. Analysis of expression dynamic changed genes (EDCGs). (A) Unsupervised hierarchical clustering for patients with ccRCC  
(n = 603) based on 756 EMT-related genes. The log2 count per million were used. The samples (x-axis) and genes (y-axis) were clustered into 
four clusters (sC1 to sC4) and seven clusters (gC1 to gC7), respectively. (B) Overall survival analysis for sample clusters. (C) Progression-free 
survival analysis for sample clusters. (D) Definition of EDCGs and calculation of the degree of expression change (Delta [δ]) for specific gene. 
(E) Clustering of Delta values of EDCGs for stage, grade, lymph node metastasis, distant metastasis and recurrence. (F) The expression of 
EMT/MET markers in ccRCC. Only differentially expressed in at least two out of three datasets were considered statistical significance. * P 
<0.05, ** P <0.01, *** P <0.001. 
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Furthermore, three hypomethylated EDCGs (FOXM1, 
TP73, MYBL2) affected by eQTMs also played roles in 
regulating gene transcription through RNA polymerase II 
regulatory regions sequence-specific DNA binding (FDR 
< 0.05, Supplementary Figure 2A). 

FOXM1 CNAs may be critical events in advanced 
ccRCC and associated with survival 
 
CNA was a potential driving factor in ccRCC 
progression. To investigate whether and how CNAs play 

 

 
 

Figure 4. Aberrant DNA methylation of EDCGs affected their expression in ccRCC. (A) The landscape of differentially methylated 
regions (DMRs) and expression quantitative trait methylations (eQTMs) in human genome (hg19). 186 DMRs not in promoter were shown 
using gray dots. The red symbols (both circle and square) represent the higher status (either a higher status of DNA methylation or a higher 
status of expression), while the blue symbols represent the lower/opposite status. (B) Gene set enrichment analysis between localized ccRCC 
and controls. 
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roles in the dynamic changes of EDCGs expression, 
gene-level CNAs were analyzed by GISTIC2.0 software 
(n = 832). The results showed that a total of 256 EDCGs 
were significantly affected. FOXM1 was located in an 
amplified peak in chromosome 12q13.3 (Figure 5A), 
whereas FOS, FOXO1 and LATS1 were located in 
deletion peaks (Supplementary Figure 3A). Among 
them, FOXM1 was a critical transcriptional factor that 
played a role in cell cycle progression. CN amplification 
of FOXM1 (115/500, 23%) was affected by CN 
amplifications (FDR = 2.83e-09, Figure 5B), and 
associated with high stage (OR = 2.701, 95% CI: 1.766–
4.162, FDR = 5.36e-06, Figure 5C). When divided 
samples into regional/distant metastasis and localized 
tumors, Gene set enrichment analysis results revealed 
that the deleted genes (e.g. LATS1, TJP1 and TJP2) 
were enriched in Hippo signaling pathway and cell-cell 
junction organization (FDR <0.25, Figure 5D), and 
involved GO functions included protein kinase activity, 
cell adhesion and transcriptional regulation (FDR <0.05, 
Supplementary Figure 3B). In contrast, the amplified 
genes were involved in cell cycle, DNA replication and 
chromosome maintenance pathways (FDR <0.25, Figure 
5D), and related GO functions (FDR <0.05) included 
cell cycle, DNA damage/repair and intracellular primary 
metabolic process (Supplementary Figure 3C). 
Furthermore, the OS (log-rank P = 0.0002) and PFS 
(log-rank P = 0.0029) of ccRCC patients with FOXM1 
CN amplification were worse than those with FOXM1 
wild type (WT, Figure 5E). In addition, upregulation of 
FOXM1 affected by CN amplifications (t-test, P < 0.05) 
was observed both in patients with regional and distant 
metastasis as well (Figure 5F). 
 
FOXM1 could be a prognostic marker in pT3 
tumors with distant metastasis 
 
We further investigated the clinical value of EDCGs 
affected by eQTMs or eQTCNs. We found that FOXM1 
was associated with overall survival of patients with 
ccRCC (log-rank P = 1.23e-05, hazard ratio [HR] = 
2.007, 95% CI = 1.46–2.742, Figure 6A). Patients with 
FOXM1 overexpression showed worse survival. 
Multivariate Cox analysis showed that FOXM1 
(P=0.003, HR=1.693, 95% CI = 1.202–2.383) was also 
associated with pT3, stage III/IV and age (P<0.05, 
Supplementary Table 2). FOXM1 could be an 
independent prognostic factor for pT3 ccRCC patients 
with distant metastasis (P=0.006, HR=1.719, 95% CI = 
1.164–2.538, Supplementary Table 2). The 5-year OS of 
pT3 patients with distant metastasis in high-group was 
approximately 30% shorter than that in low-group 
(Figure 6B). The prognostic value of FOXM1 in pT3 
ccRCC with distant metastasis was further validated 
using International Cancer Genome Consortium cohort 
(Figure 6C, Supplementary Table 2). 

FOXM1-cg00044170 signature showed high 
sensitivity and specificity in early diagnosis of ccRCC 
 
We further evaluated the potential of FOXM1 in early 
diagnosis of ccRCC. Here, we used the logistic 
regression to classify localized (stage I/II) tumors and 
normal samples, based on the methylation levels of 
eQTM cg00044170, expression levels of FOXM1, or 
epsilon values of FOXM1-cg00044170 signature. A 
logistic model of the methylation levels of eQTM 
(cg00044170 of FOXM1) showed high sensitivity and 
specificity for identifying tumors (area under curve 
[AUC] = 0.778) and localized tumors (AUC = 0.778) in 
the training dataset and validation dataset (GEO 
methylation dataset, AUC = 0.684 and 0.665 
respectively, Figure 7A). The diagnostic performance of 
another model fitted by FOXM1 gene expression might 
be better than the eQTM model in training set (GDC HT-
Seq dataset, AUC = 0.822 and 0.801, respectively, Figure 
7B). However, the results in another dataset (TCGA-
GTEX dataset) was also dropped (AUC = 0.718 and 
0.711, respectively, Figure 7B). We used 10-fold cross-
validation and applied the regularization parameter to 
avoid overfitting in Figure7B. In the present study, an 
improved method was applied to improve the sensitivity 
and specificity of early diagnosis by using the genes 
expression levels and the methylation levels of the 
corresponding eQTM (Figure 7C). The GDC Expression-
Methylation dataset was randomly divided into two 
datasets and were used for training and validation. 
Results showed that both the sensitivity and specificity 
for ccRCC diagnosis were conspicuously improved 
(AUC = 0.973 in the training set, AUC = 0.909 in the 
validation set, Figure 7D). This FOXM1-cg00044170 
model (the epsilon values of samples as independent 
variable) also showed high sensitivity and specificity for 
ccRCC tumors diagnosis in validation dataset 2 (GEO 
Expression-Methylation paired dataset, GSE105288, 
AUC = 0.898). Especially for diagnosing localized 
tumors, the epsilon value has superior performance 
(AUC = 0.958 in the training set, AUC = 0.921 in the 
validation set, Figure 7D). The epsilon values of patients 
in the training set were divided into high- and low-group 
using median as cut-off (Figure 7E). 
 
DISCUSSION 
 
EMT-mediated tumor progression was widely observed 
in various cancer types [9, 10]. Increasing evidences 
suggested that comprehensive study of genome instability 
and chromatin modifications dynamics is crucial for 
identifying cancer biomarkers [14, 15] and remains 
challenging as well. Our study, for the first time, 
systematically analyzed the expression and DNA 
methylation patterns by leveraging the quantified degree 
of changes to analyze the omics-level dynamics of 
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Figure 5. Copy number (CN) alterations of EDCGs affected their expression in advanced ccRCC. (A) The EDCGs located in the focal 
CN amplification peaks. False-discovery rates (q values) and scores generated by GISTIC 2.0 for amplifications (x-axis) are plotted against 
chromosome locations (y-axis). Dotted lines indicate the centromeres. The green line represents cut-off (q = 0.25) that determines statistical 
significance. (B) The expression of FOXM1 affected by expression quantitative trait CN (eQTCNs). (C) Clustering of CNAs of genes affected by 
eQTCNs. The deletion of genes with odds ratio (OR) <1 and FDR <0.05 was associated with advanced tumors. The amplification of genes with 
OR >1 and FDR <0.05 was related to advanced tumors. (D) Gene set enrichment analysis between ccRCC with regional/distant metastasis and 
localized tumors. (E) Overall survival and progression-free survival of ccRCC patients with FOXM1 amplifications versus those with FOXM1 
wild type (WT). (F) The expression changes of FOXM1 between samples with FOXM1 amplification and FOXM1 deletion/WT. 
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Figure 6. Overall survival analysis of FOXM1. (A) Overall survival of all ccRCC patient in TCGA cohort. (B) and (C) Overall survival for pT3 
patients with distant metastasis in TCGA (training) and International Cancer Genome Consortium (ICGC, validation) cohorts. 
 

 
 

Figure 7. cg00044170, FOXM1 and the hybrid signature for diagnosis of ccRCC. (A) Receiver operating characteristic (ROC) curves of 
eQTM (cg00044170 of FOXM1) in classifying all/localized tumors and normal. (B) ROC curves of FOXM1 (C) The calculation of epsilon value to 
simultaneously consider expression of genes and methylation of eQTMs. (D) ROC curves of eQTM-gene hybrid signature (cg00044170 and 
FOXM1) in classifying all/localized tumors and normal. (E) The distribution of epsilon values of patients in the training set. The median epsilon 
value was used as cut-off point to divide ccRCC patients into high- and low-group. The datasets named “tumors” (the whole dataset) are 
stage I/II tumors and stage III/IV tumors, while the datasets named “localized tumors” (the subset) are stage I/II tumors. 
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EMT-related genes and signaling pathways. We found 
that cell cycle-related gene FOXM1 was affected by both 
eQTM and eQTCN. FOXM1 copy number amplification 
(115/500, 23% of patients), occurred in an amplified peak 
in chromosome 12q13.3, was enriched in late-stage 
ccRCC samples and associated with worse overall 
survival and progression-free survival. FOXM1 may be 
an independent prognostic marker for overall prognosis 
of pT3 patients with distant metastasis. Our eQTM-gene 
signature (FOXM1 and cg00044170) showed high 
sensitivity and specificity in diagnosis of ccRCC, 
especially for localized tumors. 
 
Text mining technology has been broadly applied to a 
wide variety of biological and biomedical sciences, 
including computational approaches to assist researchers 
with studies in protein-disease associations, which 
provides us an opportunity to systematically investigate 
complex diseases, such as cancer [16]. Here, we 
identified 756 EMT-related genes by text mining of 
24,832 literatures and found that EMT was constantly 
activated. However, EMT is a complex process affected 
by genomic and epigenetic alterations [17, 18] via 
complex signaling networks [19]. FOXM1, a key 
regulator of cell cycle, proliferation, invasion/migration 
that involved in tumorigenesis and progression [20–22], 
has reported to be upregulated in ccRCC [23, 24]. 
Knockdown of FOXM1 expression levels in ccRCC 
induced cell cycle arrest with reduced expression of 
CCNB1, CCND1 and CDK2, and increased expression 
of p21 and p27 [23]. However, our work have made more 
progress. First, we validated the prognostic value of 
FOXM1 in bigger, independent cohorts of ccRCC and 
also found that FOXM1 has great potential in overall 
prognosis of metastatic ccRCC. The prognosis of patients 
with metastatic ccRCC is very poor and currently lack of 
independent prognostic marker in molecular level. 
Second, we revealed that FOXM1 was not only a cell 
cycle-associated gene but also play critical roles in EMT 
process. Third, our data showed that upregulation of 
FOXM1 may be affected by both eQTM and eQTCN in 
progression of ccRCC. Importantly, we revealed that 
FOXM1 expression was dynamically changed in ccRCC 
progression. We also revealed and validated the early 
diagnostic potential of FOXM1-cg00044170 signature 
(AUC>0.9). Thus, FOXM1 may be a clinical biomarker 
for independent prognosis and early diagnosis in ccRCC. 
RCC is characterized by a reprogramming of energetic 
metabolism. In particular the metabolic flux through 
glycolysis is partitioned [7], and mitochondrial 
bioenergetics and OxPhox are impaired [25]. It has been 
shown that FOXM1 promotes reprogramming of glucose 
metabolism [22, 26]. Pathways may also undergo 
dynamic changes following genes expression changes. 
We showed that EMT, cell cycle and DNA replication 
were continuously activated, while cell-cell junction was 

continuously inhibited. Therefore, investigation of the 
dynamic patterns of EDCGs contributes to deeper 
understanding of tumor progression and may be helpful 
for further investigation of cancer driver genes in the 
future. 
 
Multi-omics data containing transcriptome, genome and 
epigenome that from the same subjects was valuable and 
may be critical for dissecting the potential factors of 
dynamic behaviors of EDCGs in cancer [12, 25], and 
identifying the association between gene expression and 
DNA methylation or copy number alterations [27]. We 
performed rigorous association analysis to identify 
eQTMs and eQTCNs by integrating expression, DNA 
methylation and CNA data. About the statistical power, 
for each analysis with multiple tests, the P values were 
BH-adjusted for reducing potential false-positive 
discoveries. In fact, we were surprised that the DNA 
methylations of 229 eQTMs were not significantly 
changed between advanced tumors and early ones after 
BH-adjustment when initial observation. The same 
phenomenon was observed in all CpGs of EDCGs, 
which implied the close relevance between aberrant 
DNA methylation and tumorigenesis in ccRCC. Based 
on eQTMs analysis, rigorously speaking, FOXM1 
upregulation and promoter hypomethylation are 
significantly correlated (FDR < 0.05), while if 
hypomethylation leads to upregulation of FOXM1 or 
upregulation of FOXM1 leads to hypomethylation are 
unclear and require further functional experiments. 
Previous evidences showed that loss of H3K36me3 
demethylase SETD2 due to genomic alterations and 
hypermethylation was identified in both primary and 
metastases of ccRCC [15], while decreased methylation 
in regional H3K36me3 was only observed in lesions of 
distant metastases [28]. In fact, hypomethylated CpGs 
among ~420,000 probes were observed in tumors with 
distant metastasis, while hypomethylation of EDCGs 
affected by eQTMs were not identified. Together, the 
DNA methylation and CNAs during progression of 
ccRCC might deepen our understanding of the roles of 
epigenetic dysregulation in activation of cell cycle and 
EMT. 
 
RCC patients often have advanced disease by the time 
when observed due to the body is remarkably good at 
hiding the symptoms. Thus, improving the sensitivity of 
early diagnosis of tumors is helpful for reducing clinical 
adverse events [29]. Here, we developed a method by 
combined examination of gene expression levels and 
eQTM methylation levels to improve the performance of 
early diagnosis. As a result, based on the model of 
FOXM1 and its eQTM cg00044170, the sensitivity and 
specificity of early diagnosis in ccRCC were apparently 
raised. However, we noticed that there are only 24 
controls in the paired methylation data and gene 
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expression data in TCGA database. Future studies with 
larger, well-controlled datasets may be needed to 
achieve more accurate performance. In addition, the 
strategy proposed that simultaneous apply the expression 
and DNA methylation levels could be a valuable and 
promising method for early diagnosis of early ccRCCs. 
Moreover, FOXM1 was associated with overall survival 
of patients with ccRCC. Importantly, FOXM1 could be 
an independent prognostic marker for pT3 patients with 
distant metastasis. Thus, FOXM1 may be an important 
clinical biomarker in ccRCC. 
 
In summary, we identified that the signature (FOXM1 
and cg00044170) and FOXM1 may be valuable for early 
diagnosis of ccRCC and OS prognosis for pT3 patients 
with distant metastasis respectively. Our approaches 
may be utilized for omics-level spectrum investigations 
in future studies encompassing larger gene sets, or gene 
signatures involved in specific biological function 
modules, which will uncover more staged behaviors of 
key modulators in cancer. 
 
MATERIALS AND METHODS 
 
Multi-omics data acquisition, quality control and 
preprocessing 
 
HTSeq-counts data of RNA-sequencing (RNA-Seq) and 
miRNA-seq of ccRCC were downloaded from Genomic 
Data Commons (GDC, https://portal.gdc.cancer.gov/ 
repository) data portal and used for transcriptomic 
analysis. The samples with RNA Integrity Number > 7.0 
were included. RSEM expected-counts data was re-
analyzed using raw sequencing data of The Cancer 
Genome Atlas (TCGA) and The Genotype-Tissue 
Expression (GTEx) Consortium downloaded from UCSC 
Xena (http://xena.ucsc.edu/public) [30]. Twenty four 
microarray profiles (Affymetrix Human Genome U133 
Plus 2.0 Array platform, Illumina, San Diego, CA, USA) 
were downloaded from Gene Expression Omnibus 
(GEO) database. The corrected raw background CEL 
files were analyzed using robust multi-chip average 
method [31]. All samples from GEO were combined and 
quantile normalized. 
 
DNA methylation profiles of 312 primary tumors and 
155 control samples of Illumina Infinium DNA 
HumanMethylation450 BeadChip (Illumina, San Diego, 
CA, USA, 450k) were obtained from GDC legacy 
archive. Fourteen tumors and 96 controls of 9 studies 
from GEO database were obtained as GEO methylation 
dataset. Another dataset GSE105288 with expression-
methylation data was composed of 9 primary tumors and 
9 normal controls. The raw IDAT files were preprocessed 
using minfi package [32] in R software (v3.2.5).  
The background correction was performed using 

‘preprocessIllumina’ function without normalization. The 
samples with mean of detection P value of probes >0.05 
or with bad probes (detection P > 0.01) >10% were 
excluded. The non-specific probes listed by previous 
study were removed [33]. The CpG probes affected by 
SNPs or from sex chromosomes were also removed. 
Moreover, the beta values of bad probes were replaced 
with NA. The beta-value were transformed to M-value 
[34]. Finally, the M-values of ~420,000 probes of totally 
326 tumors and 251 controls were combined and quantile 
normalized. The masked CN segment of ccRCC were 
downloaded to analyze ccRCC-related CN alterations 
(CNA). The gene-level CNA were generated using 
GISTIC 2.0.23 [35]. All datasets used in this study were 
shown in Table 1 and the patient clinical information 
were provided in Supplementary Tables 3–8. The major 
code was provided as Supplementary Code 1. 
 
Text mining 
 
To identify genes correlated with EMT, we performed 
text mining based on abstracts of literatures in the 
PubMed database. Specifically, the search criteria 
“((EMT OR (Epithelial to mesenchymal)) AND (cancer 
OR tumor OR carcinoma))” were used. The abstracts of 
24,832 articles were extracted as input to perform part-
of-speech tagging, shallow parsing, and named entity 
recognition using both GENIA Tagger and Enju 
software (NaCTeM Software Tools) [36]. Only genes 
identified by both above softwares were submitted to 
filter false identified ones and remove duplication using 
org.Hs.eg.db package (version 3.6). 
 
Batch effects analysis 
 
Batch effects of five potential confounding factors listed 
in the recent study [37] and the plate id (a part of TCGA 
barcode) were assessed by hierarchical clustering and 
principal component analysis based on MBatch v1.0 
software [37]. The batch variables with Dispersion 
Separability Criterion ≥0.3 and P value <0.05 were 
considered as significant batch effects. The significant 
batch variables (batches of the samples processed and 
the date shipped the data to process) were added as 
covariates into the design model for differential 
expression analysis of GDC HT-Seq counts, rather than 
direct adjustment. Batch effects of the GEO expression 
dataset were only corrected for the year the data 
generated using ComBat algorithm [38]. The somatic 
mutations and CNA data were already discretized and 
adjusted for background loads. 
 
Differential expression and DNA methylation analysis 
 
For count data from TCGA, DESeq2 R package (v1.10.1) 
[39] was used to identify differential expression. 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
http://xena.ucsc.edu/public
http://xena.ucsc.edu/public
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Table 1. Datasets used in this study. 

Dataset name Tumor Localized Normal Source/Identifier 
GDC HT-Seq count 531 329 72 GDC data portal 
TCGA-GTEx RSEM count 527 325 99  
GDC miRNA HT-Seq count 544 - 71 GDC data portal 

GEO expression 189 - 251 

GSE11151, GSE11166, GSE12606, GSE13818, 
GSE18549, GSE19249, GSE19750, GSE20615, 
GSE20677, GSE22541, GSE25471, GSE25861, 
GSE27556, GSE28050, GSE33371, GSE34437, 
GSE41137, GSE46699, GSE66272, GSE7307, 
GSE75693, GSE76948, GSE8050, GSE81156 

GEO DNA methylation 14 8 96 
GSE89648, GSE66872, GSE59157, GSE77871, 
GSE79100, GSE54719, GSE69502, GSE52955, 

GSE43293 
GDC DNA methylation 312 185 155 GDC data portal 
GEO expression-methylation 9 - 9 GSE105288 
GDC expression-methylation 308 186 24 GDC data portal 
GDC copy number 500 - 332 GDC data portal 
Expression-CNA paired 445 - 38 GDC data portal 

 

For microarray expression profiles, limma package 
(v3.36.5) [40] was used. For DNA methylation M-
values, the limma package [40] and DMRcate package 
(v1.6.53) [41] were used to identify differentially 
methylated CpGs and regions, respectively. The  
P-values were adjusted for multiple test using 
Benjamini-Hochberg (BH) algorithm. Genes, CpGs or 
methylated regions with False Discovery Rate (FDR) 
<0.05 were collected. Only genes differentially 
expressed in at least two datasets were considered as 
deregulated. The samples were randomly divided into 
two datasets with equal sample size to perform 
differential methylation analysis for mutual validation. 
 
We performed differential expression and differential 
DNA methylation analysis based on eleven grouping 
methods: (1) all patients with ccRCC versus normal; (2) 
low-stage patients versus normal; (3) high-stage patients 
versus low-stage patients; (4) low-grade patients versus 
normal; (5) high-grade patients versus low-grade 
patients; (6) patients without lymph nodes metastasis 
versus normal; (7) patients with lymph nodes metastasis 
versus patients without it; (8) patients of progression free 
versus normal; and (9) recurred patients versus patients 
are progression free; (10) patients without distant 
metastasis versus normal; (11) patients with distant 
metastasis versus those without it. 
 
Unsupervised clustering analysis 
 
Log2 transformed count per million data of HTSeq-
counts was used for gene expression pattern 

investigation. Gene-level CNAs was used for clustering. 
The function dist in R was used to compute the distance 
matrix and the function hclust was used for clustering. 
We utilized Euclidean as our distance metric with Ward 
linkage to cluster both the rows and the columns for gene 
expression clustering, while Euclidean as distance metric 
with Ward2 linkage was used for CNAs clustering. For 
each clustering, the number of clusters was determined 
using the same distance metric and linkage method by 
ConsensusClusterPlus package (v1.44.0) [42] in R. 
Clusters shown in heatmap were separated using the 
cutree function. 
 
eQTMs and eQTCNs identification 
 
GTEx project identified expression quantitative trait loci 
in ~53 human tissues that influence gene expression 
[27]. Similarly, the expression quantitative trait 
methylation (eQTMs) and expression quantitative trait 
CN (eQTCNs) were also able to affect gene expression. 
In this study, we performed eQTMs analysis based on 
deregulated genes and corresponding differentially 
methylated CpG islands in their gene region mapped 
using IlluminaHumanMethylation450kanno.ilmn12.hg19 
package. The matched samples (n=332) with gene 
expression data and methylation data of TCGA were 
used to perform Pearson correlation analysis and non-
zero correlation. CpG-gene pairs with negative Pearson 
correlation and FDR <0.05 were considered as eQTMs. 
The eQTCNs analysis was based on genes obtained by 
GISTIC2.0 with CNA frequency >5% in ccRCC. The 
CNAs of genes with significant expression changes 
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(unpaired student t-test, FDR <0.05) between samples 
with CN deletions and samples with CN amplifications 
were considered as eQTCNs. 
 
Generalized linear regression analysis 
 
The univariate Cox proportional hazard regression was 
used to determine the prognosis-related genes. The genes 
with BH-adjusted P value <0.05 were considered as 
candidate variables and were subjected to multivariate 
Cox regression model. Variables with log-rank P-values 
<0.05 were considered associated with patient survival. 
The expression data and overall survival rate of pT3 
ccRCC patients with distant metastasis from 
International Cancer Genome Consortium (n=50) cohort 
were used for overall survival validation. The logistic 
regression was used to determine diagnostic markers. 
We used the logistic model to distinguish localized 
tumors (AJCC stage I/II) and normal samples based on 
the eQTM methylation, gene expression, or expression-
methylation signature levels (epsilon values). The 
epsilon values of samples were calculated based on the 
expression levels of specific gene and the methylation 
levels of corresponding eQTM. Moreover, receiver 
operating characteristic curves and area under curves 
were used to evaluate the performance of the classifier. 
The original methylation datasets and expression 
datasets were randomly divided into two subsets of equal 
sample size for training and testing, respectively. This 
step was repeated for 1000 times. The model with 
median sensitivity and specificity was eventually 
considered. In the early diagnosis analysis of FOXM1 
methylation, cg00044170 methylation level was used as 
a classifier to distinguish localized ccRCC tumors (even 
pT1a tumors) and normal samples. In the early diagnosis 
analysis of FOXM1-cg00044170 signature, the epsilon 
values calculated from FOXM1 expression levels and 
cg00044170 methylation levels by our formula (Figure 
7C) was served as a new classifier for early diagnosis. 
The logistic regression was used to determine whether 
CN deletion/amplification was associated with advanced 
tumors. A deleted gene with odds ratio (OR) <1 and 
FDR <0.05 represents that its deletion was associated 
with advanced tumors. In contrast, an amplified gene 
with OR >1 and FDR <0.05 represents its amplification 
was related to advanced tumors. 
 
Abbreviations 
 
ccRCC: clear cell renal carcinoma; EMT Epithelial–
mesenchymal transition; CDH1: E-cadherin; VIM: 
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Genotype-Tissue Expression; GEO: Gene Expression 
Omnibus; CN: copy number; BH: Benjamini-Hochberg; 
FDR: false discovery rate; eQTM: expression 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

 

 
 

Supplementary Figure 1. Consensus clustering of expression of EMT-related genes using Euclidean as distance metric with 
Ward linkage. (A) and (C) Consensus Cumulative Distribution Function (CDF) plots to determine at what number of clusters, k, the CDF 
reaches an approximate maximum. (B) and (D) Delta area plots show the relative change in area under the CDF curve comparing k and k-1. 
They showed that the delta areas had no appreciable increase when k=4 and k=7 for sample clustering (B) and gene clustering (D), 
respectively. 
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Supplementary Figure 2. Gene ontology enrichment for expression quantitative trait methylation (eQTMs). 
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Supplementary Figure 3. Frequent deleted areas of ccRCC genome and involved functions of expression quantitative trait 
copy number (eQTCNs). (A) The EDCGs located in the focal CN deletion peaks. False-discovery rates (q values) and scores generated by 
GISTIC 2.0 for amplifications (x-axis) are plotted against chromosome locations (y-axis). Dotted lines indicate the centromeres. The green line 
represents cut-off (q = 0.25) that determines statistical significance. (B) Deleted EDCGs involve GO functions. (C) Amplified EDCGs involve GO 
functions. 
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Supplementary Tables 
 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 3–8. 
 
Supplementary Table 1. 756 EMT-related genes identified by text-mining in this study. 

Supplementary Table 2. The univariate and multivariate Cox regression model. 

Variable 
Univariate regression Multivariate regression 

P value Hazard ratio (95% CI) P value Hazard ratio (95% CI) 
Overall survival of FOXM1 (TCGA cohort, n =531) 

FOXM1 (High vs Low) 2.19E-07 2.309(1.683–3.169) 2.56E-03 1.693(1.202–2.383) 
Age (median = 60) 3.99E-04 1.748(1.283–2.380) 1.05E-03 1.700(1.237–2.334) 

Gender (ref = Female)     

Male 0.781 0.957(0.700–1.307) 0.639 0.924(0.664–1.286) 
Stage (ref = I)     

II 0.48 1.250(0.673–2.321) 0.088 3.184(0.841–12.057) 
III 4.89E-06 2.609(1.729–3.936) 0.002 5.237(1.817–15.094) 
IV 2.00E-16 6.880(4.694–10.084) 2.00E-04 1.773(3.762–83.486) 
Unknown 0.049 7.394(1.008–54.236) 0.014 2.055(1.841–229.394) 

Grade (ref = G1)     

G2 0.993 1.329 (0.512–1.968) 0.992 2.594(0.698–3.855) 
G3 0.993 1.843 (0.453–1.572) 0.991 2.657(0.789–5.815) 
G4 0.994 2.015(0.679–5.320) 0.992 4.621(0.664–6.144) 
Unknown 0.994 1.552(0.684–1.801) 0.992 2.318(0.678–4.314) 

pT (ref = T1)     

T2 0.069 1.606(0.963–2.678) 0.069 3.349(0.103–1.109) 
T3 1.98E-13 3.285(2.321–4.651) 0.022 0.313(0.123–0.894) 
T4 9.60E-12 10.763(5.433–21.323) 0.106 0.381(0.118–1.227) 

pN (ref = N0)     

N1 7.68E-05 3.585(1.904–6.750) 0.648 2.529 (0.618–10.362) 
Unknown 0.259 0.836(0.613–1.141) 0.139 0.785(0.570–1.082) 

pM (ref = M0)     

M1 2.00E-16 1.638 (1.423–18.603) 0.626 2.529 (0.618–10.362) 
Unknown 0.695 0.795(0.251–2.511) 0.468 0.611(0.162–2.312) 

TCGA cohort (training, n=56) Overall survival (distant metastatic patients with pT3 disease) 
FOXM1 (High vs Low) 4.86E-04 1.878 (1.318–2.677) 6.41E-03 1.719 (1.164–2.538) 
Age (median = 60) 0.946 1.021 (0.564–1.848) 0.76 1.005 (0.982–1.027) 
Gender (Male vs Female) 0.085 0.567 (0.299–1.081) 0.182 1.317 (0.806–2.151) 

Grade (ref = G1)     

G2 0.043 0.329 (0.112–0.968) 0.168 0.454 (0.147–1.395) 
G3 0.593 0.843 (0.453–1.572) 0.645 0.858 (0.447–1.645) 
G4 NA NA NA NA 
pN (N1 vs N0) 0.0125 1.638 (1.423–18.603) 0.197 2.529 (0.618–10.362) 

ICGC cohort (validation, n=50) Overall survival (distant metastatic patients with pT3 disease) 
FOXM1 (High vs Low) 3.62E-03 1.762(1.203–2.582) 0.018 1.622(1.079–2.437) 
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Age (median = 61) 0.695 0.876(0.453–1.696) 0.926 0.967(0.472–1.979) 
Gender (Male vs Female) 0.091 0.538(0.262–1.105) 0.245 0.626(0.285–1.378) 

Grade (ref = G1)     

G2 NA NA NA NA 
G3 0.136 2.323(0.767–7.041) 0.356 1.752(0.520–5.899) 
G4 0.087 2.604(0.871–7.790) 0.25 1.969(0.621–6.241) 
pN (N1 vs N0) 0.11 1.248(0.754–16.092) 0.468 1.826(0.359–9.285) 

Notes: P values in Bold represent statistical significant. NA represent no samples in that category or all samples belong to the 
same category. 
 
Supplementary Table 3. The patients and corresponding clinical information of GDC Htseq-counts dataset (n=603). 

Supplementary Table 4. The patients and corresponding clinical information of GDC miRNA-Seq dataset (n=615). 

Supplementary Table 5. The patients and corresponding clinical information of TCGA-GTEx dataset (n=626). 

Supplementary Table 6. The patients and corresponding clinical information of GEO expression dataset (n=440). 

Supplementary Table 7. The patients and corresponding clinical information of DNA methylation dataset (n=577). 

Supplementary Table 8. The patients and corresponding clinical information of GDC copy number dataset (n=832). 
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Supplementary Code 
 
 
Please browse Full Text version to see the data of Supplementary Code 1. 
 
Supplementary Code 1. (i) the code (Perl language) used to perform text mining in order to extract raw EMT related 
genes/proteins from Pubmed query xml results; (ii) the code (R language) for unsupervised clustering analysis based on expression 
levels of 756 EMT-related genes using multiple R packages; (iii) the code (Perl language) of our custom Perl functions to perform 
batch effect evaluation using MBatch v1.0 software; (iv) the code (Perl language) used to perform expression quantitative trait 
methylation (eQTM) and expression quantitative trait copy number alterations (eQTCN) analysis. 


