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INTRODUCTION 
 
Cerebral microbleeds (CMBs) are defined as focal 
round hypointense lesions, 2 to 10 mm in diameter with 
a blooming effect on T2*weighted/susceptibility 
weighted scans [1, 2]. CMBs are the consequence of 
two main pathological processes involving small vessels  

 

of the brain: 1) cerebral amyloid angiopathy (CAA) 
which is characterized by the deposition of amyloid in 
cortical blood vessels exclusively in lobar regions and, 
2) hypertensive arteriopathy, characterized by lipo-
hyalinosis and arteriosclerosis of cerebral blood vessels 
in deep regions of the brain (basal ganglia, thalamus, 
and infratentorial) [1]. The region-specific distribution 
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ABSTRACT 
 
Cerebral microbleeds (CMBs) in the lobar and deep locations are associated with two distinct pathologies: 
cerebral amyloid angiopathy and hypertensive arteriopathy. However, the role of mixed-location CMBs in 
neurodegeneration remains unexplored. We investigated the associations between strictly lobar, strictly deep 
and mixed-location CMBs with markers of neurodegeneration. This study recruited 477 patients from a memory 
clinic who underwent 3T MRI scans. CMBs were categorized into strictly lobar, strictly deep and mixed-location. 
Cortical thickness, white matter volume and subcortical structural volumes were quantified using Free-Surfer. 
Linear regression models were performed to assess the association between CMBs and cerebral atrophy, and 
the mean difference (β) and 95% confidence intervals (CIs) were reported. In the regression analyses, mixed-
location CMBs were associated with smaller cortical thickness of limbic region [β= -0.01; 95% CI= -0.02, -0.00, 
p=0.007) as well as with smaller accumbens volume [β= -0.01; 95% CI= -0.02, -0.00, p=0.004) and presubiculum 
region of hippocampus [β= -0.01; 95% CI= -0.02, -0.00, p=0.002). Strictly lobar CMBs were associated with 
smaller total white matter volume [β= -0.03; 95% CI= -0.04, -0.01, p<0.001] and with region specific white 
matter volumes. The underlying mechanism requires further research and may involve shared mechanisms of 
vascular dysfunction and neurodegeneration.  

mailto:phchs@nus.edu.sg


www.aging-us.com 10582 AGING 

of CMBs suggests the possibility of different underlying 
etiologies and different risk factors for lobar and deep 
CMBs [1–3]. 
 
CMBs are frequently observed in elderly population 
with prevalence ranging from 5–28% [4] and are 
associated with cognitive impairment, functional 
decline and dementia [1]. Furthermore, co-existence 
of CMBs with other cerebral small vessel disease 
markers (SVD) such as WMH, lacunes and cerebral 
atrophy is common in elderly [4, 5]. Previous studies 
have shown vascular risk factors such as hyper-
tension, diabetes, hyperlipidemia and increasing age 
to be linked with brain atrophy [6, 7] and these risk 
factors are also associated with CMBs [8–10]. 
Although CMBs and brain atrophy mostly share 
common risk factors and occur concomitantly, the 
association between them has not been explored in the 
Asian population.  
 
It is further reported that lobar CMBs may alter cerebral 
white matter perfusion leading to brain volume 
reduction [11, 12]. However, previous studies have 
shown conflicting results. In CAA subjects, cortical 
thinning and decreased hippocampus volumes were 
observed compared to healthy controls but there was no 
independent association between the number of lobar 
CMBs and cerebral atrophy [12]. Another study in 
patients with Alzheimer’s disease (AD) showed an 
association between lobar CMBs and gray matter 
atrophy in the temporal lobe [13]. By contrast, one 
study reported a link between CMBs and higher 
volumes of basal ganglia and cerebellum [14]. Further 
studies are thus needed to understand the role of CMBs 
in neurodegeneration.  
 
Lately, the increased understanding of the significant 
overlap between vascular and neurodegenerative 
pathologies have challenged the traditional link of lobar 
CMBs to AD and deep CMBs to vascular cognitive 
impairment [15, 16]. With increased recognition of 
mixed-location CMBs as a common pattern observed in 
clinical practice [3], recent data has suggested that 
hypertensive arteriopathy may also cause lobar CMBs 
[17–19]. Keeping in view the possible synergistic or 
additive effects of hypertensive arteriopathy on CAA, 
mixed-location CMBs may potentially play a key role in 
both gray and white matter damage [3]. So far, previous 
studies were mainly focused on lobar and deep CMBs 
and ignored the most common type of CMBs i.e. 
mixed-location CMBs. Furthermore, these studies did 
not examine the associations with cortical, subcortical 
and white matter atrophy in detail according to the 
location and burden of CMBs. Finally, none of these 
studies were from a memory clinic population with 
mixed pathology. 

The present study aims to investigate the associations 
between strictly lobar, strictly deep and mixed-
location CMBs with markers of neurodegeneration 
including gray matter (cortical thickness, subcortical 
structural volumes including hippocampal subfields) 
and white matter volume in an Asian memory clinic 
population. Furthermore, we aim to explore whether 
the effect of CMBs distribution (strictly lobar, strictly 
deep and mixed-location) on neurodegeneration 
differs between patients with no cognitive impairment 
(NCI), cognitive impairment no dementia (CIND) and 
dementia. 
 
RESULTS 
 
Characteristics of participants  
 
Table 1 shows the characteristics of the patients with and 
without CMB. Of 477 patients, 41.9% (n=200) had at 
least 1 CMB. Among 200 patients, 53.5% (n=107) were 
strictly lobar, 17.5% (n=35) were strictly deep and 29.0% 
(n=58) were mixed-location CMBs. Among the patients 
with mixed-location CMBs (n=58), the median number of 
lobar CMBs was 5 and the median number of deep CMBs 
was 2. Patients with CMBs had higher white matter 
hyperintensities (WMH) volume (p<0.001) and had a 
higher prevalence of lacunes (p=0.032) compared to those 
without CMB. There were no differences in 
demographics, vascular risk factors (hypertension, 
hyperlipidemia and diabetes), total enlarged perivascular 
spaces (ePVS) and neurodegenerative markers (global 
cortical thickness, subcortical, total white matter and total 
intracranial volume) in patients with and without CMBs 
(p>0.05).  
 
Association between CMBs and cortical thickness  
 
Table 2 shows the association between CMBs and 
cortical thickness. Mixed-location CMBs were 
associated with smaller global cortical thickness 
(p<0.005). Region specific analysis showed that mixed-
location CMBs were associated with smaller cortical 
thickness in frontal, temporal and limbic lobes (p<0.05). 
On applying Bonferroni correction, the association 
between mixed-location CMBs and cortical thickness of 
limbic lobe remained significant. On categorizing 
mixed-location CMBs into presence of 2-4 CMBs and 
presence of >4CMBs; the presence of >4 CMBs were 
associated with smaller global cortical thickness as well 
as region specific cortical thickness in frontal, temporal, 
limbic and insular lobes when compared to patients with 
no CMBs. Most of these associations survived multiple 
testing. Similar associations were observed when CMBs 
locations (strictly lobar, strictly deep and mixed-
location) were treated as categorical data (presence vs 
absence) [Supplementary Table 1]. No association was 
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Table 1. Characteristics of patients with and without cerebral microbleeds. 

Characteristics 
Without CMBs 

(n=277) 
With CMBs (n=200) p- value 

Age (years), mean (SD) 72.6 (8.1) 73.8 (7.6) 0.123 
Females, n. (%) 163 (58.8) 106 (53.0) 0.204 
Vascular risk factors 
Hypertension, n. (%) 187 (67.5) 137 (68.5) 0.819 
Hyperlipidemia, n. (%) 198 (71.5) 144 (72.0) 0.901 
Diabetes mellitus, n. (%) 97 (35.0) 70 (35.0) 0.997 
Cerebrovascular disease markers 
Presence of lacunes, n (%) 73 (26.4) 71 (35.5) 0.032 
Total WMH volume  (ml), mean (SD) (log transformed) 1.4 (0.9) 1.9 (1.2) <0.001 
Total ePVS, median (IQR)  (n=328) 16 (11) 17.5 (9.2) 0.319 
Neurodegenerative markers 
Global cortical thickness (mm), mean (SD) 2.3 (0.1) 2.2 (0.1) 0.052 
Subcortical structures volume (ml), mean(SD) 56.4 (8.0) 55.1 (8.0) 0.096 
Total white matter volume (ml), mean (SD) 354.6 (61.9) 358.1 (72.5) 0.567 
Total intracranial volume (ml), mean (SD) 1113.6 (146.0) 1140.8 (158.6) 0.053 

SD, standard deviation; IQR, interquartile range; ml, milliliters; mm, millimeters; CMBs, cerebral microbleeds; ePVS, enlarged 
perivascular spaces; WMH, white matter hyperintensities. 
Bold values represents statistically significant associations at p<0.05. 
 

observed between strictly lobar and strictly deep CMBs 
with global and region specific cortical thickness. 
 
Association between CMBs and subcortical 
structures volume 
 
Table 3 shows the associations between CMBs and 
subcortical structural volumes. Mixed-location CMBs 
were associated with smaller accumbens volume 
(p<0.05) and a borderline significance with total 
hippocampus volume (p=0.075) independent of 
demographic and vascular risk factors. On applying 
Bonferroni correction, association with acumbens 
volume remained significant. Further categorization of 
mixed-location CMBs into 2-4 and >4 CMBs revealed an 
association between presence of >4 CMBs with smaller 
accumbens and brain stem volumes. By contrast, mixed-
location CMBs were associated with a larger thalamic 
volume and presence of >4 mixed-location CMBs were 
associated with larger lentiform nucleus volume 
(p<0.05). These associations survived multiple testing. In 
case of strictly lobar CMBs, 1 CMB and 2-4 CMBs were 
associated with smaller lentiform nucleus volume and >4 
CMBs were associated with smaller hippocampus and 
brain stem volumes. Most of these associations were still 
observed in the analysis involving presence and absence 
of CMBs [Supplementary Table 2]. No significant 
association was found between strictly deep CMBs with 
subcortical structures volumes. 

Figure 1 shows the association between mixed-location 
CMBs and hippocampus subfield volumes. Mixed-
location CMBs were associated with smaller volumes of 
hippocampus tail, subiculum, CA1, presubiculum, 
molecular layer, GCMLDG, CA3 and CA4 (p<0.05). 
No significant association was found between strictly 
lobar and strictly deep CMBs with hippocampus 
subfield volumes [data not shown]. When treating 
location of CMBs as categorical data (presence vs 
absence) no significant association was again found 
between presence of strictly lobar, strictly deep and 
mixed-location CMBs with hippocampus subfield 
volumes [data not shown].  
 
Association between CMBs and white matter volume 
 
Table 4 shows the association between CMBs and white 
matter volumes. Strictly lobar CMBs were associated 
with smaller total white matter volume as well as 
smaller volumes of frontal, parietal, temporal and 
occipital white matter (p<0.05). These associations 
remained significant after applying Bonferroni 
correction. On categorizing strictly lobar CMBs into 
presence of 1, 2-4 and >4 strictly lobar CMBs; presence 
of >4 strictly lobar CMBs were associated with smaller 
total white matter volume as well as in the frontal, 
parietal and temporal lobes white matter volumes, 
which did not survive multiple testing. Deep CMBs 
were associated with larger parietal, temporal and 
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Table 2. Association between CMBs and cortical thickness. 

 

Global cortical 
thickness 

mean difference 
(95%CI) 

Region specific cortical thickness, mean difference (95%CI) 

Frontal Parietal Temporal Occipital Limbic Insula 

Strictly 
lobar 
CMBs 
(counts) 

-0.00 (-0.02, 0.02) 
p=0.983 

0.01 (-0.01, 0.03) 
p=0.406 

-0.00 (-0.02, 0.01) 
p=0.674 

-0.00 (-0.02, 0.01) 
p=0.673 

-0.01 (-0.02, 0.01) 
p=0.582 

-0.00 (-0.02, 0.02) 
p=0.922 

0.01 (-0.01, 0.02) 
p=0.567 

1 CMB -0.06 (-0.35, 0.22) 
p=0.665 

0.05 (-0.24, 0.32) 
p=0.751 

-0.17 (-0.45, 0.12) 
p=0.244 

-0.05 (-0.33, 0.29) 
p=0.8555 

-0.11 (-0.39, 0.17) 
p=0.444 

0.13 (-0.15, 0.41) 
p=0.370 

0.17 (-0.21, 0.46) 
p=0.259 

2-4 CMBs -0.03 (-0.35, 0.30) 
p=0.860 

0.11 (-0.22, 0.44) 
 p=0.507 

-0.08 (-0.40, 0.24) 
p=0.628 

-0.03 (-0.35, 0.29) 
p=0.855 

-0.14 (-0.46, 0.17) 
p=0.369 

-0.10 (-0.42, 0.23) 
p=0.562 

0.15 (-0.19, 0.48) 
p=0.384 

>4 CMBs 0.00 (-0.48, 0.47) 
p=0.991 

0.10 (-0.38, 0.59) 
p=0.675 

-0.07 (-0.54, 0.40) 
p=0.756 

-0.15 (-0.62, 0.32) 
p=0.527 

0.10 (-0.36, 0.56) 
p=0.671 

-0.01 (-0.48, 0.45) 
p=0.950 

0.11 (-0.38, 0.59) 
p=0.665 

Strictly 
deep 
CMBs 
(counts) 

-0.05 (-0.18, 0.07) 
p=0.407 

-0.08 (-0.21, 0.05) 
p=0.247 

0.02 (-0.10, 0.15) 
p=0.721 

-0.07 (-0.20, 0.05) 
p=0.262 

-0.10 (-0.22, 0.03) 
p=0.131 

-0.04 (-0.16, 0.09) 
p=0.577 

-0.09 (-0.23, 0.00) 
p=0.155 

1 CMB 0.14 (-0.26, 0.54) 
p=0.493 

0.11 (-0.30, 0.52) 
p=0.913 

-0.01 (-0.30, 0.50) 
p=0.615 

0.26 (-0.14, 0.65) 
p=0.199 

-0.01 (-0.38, 0.40) 
p=0.970 

-0.03 (-0.37, 0.43) 
p=0.879 

0.26 (-0.15, 0.67) 
p=0.220 

2-4 CMBs -0.25 (-0.86, 0.37) 
p=0.432 

-0.22 (-0.85, 0.40) 
p=0.484 

-0.59 (-1.32, 2.50) 
p=0.542 

-0.25 (-0.85, 0.35) 
p=0.410 

-0.42 (-1.02, 0.17) 
p=0.165 

-0.20 (-0.80, 0.41) 
p=0.528 

-0.34 (-0.97, 0.29) 
p=0.287 

>4 CMBs -0.76 (-2.65, 1.14) 
p=0.435 

-1.21 (-3.16, 0.75) 
p=0.227 

0.60 (-1.29, 2.49) 
p=0.533 

-1.25 (-3.13, 0.63) 
p=0.193 

-1.03 (-2,89, 0.83) 
p=0.278 

-0.27 (-2.17, 1.64) 
p=0.784 

-1.29 (-3.25, 0.68) 
p=0.199 

Mixed-
location 
CMBs 
(counts) 

-0.01 (-0.02, -0.00) 
   p=0.015# 

-0.01 (-0.02, -0.00) 
    p=0.030# 

-0.01 (-0.01, 0.00) 
p=0.136# 

-0.01 (-0.02, -0.00) 
p=0.016 

-0.01 (-0.01, 0.00) 
p=0.078# 

-0.01 (-0.02, -0.00) 
p=0.007*# 

-0.01 (-0.01, 0.00) 
p=0.070 

2-4 CMBs -0.01 (-0.42. 0.41) 
p=0.973 

-0.01 (-0.42, 0.43) 
p=0.974 

0.13 (-0.28, 0.53) 
p=0.538 

-0.07 (-0.48, 0.34) 
p=0.725 

-0.08 (-0.49, 0.33) 
p=0.692 

-0.06 (-0.48, 0.35) 
p=0.757 

0.11 (-0.32, 0.54) 
p=0.606 

>4 CMBs -0.42 (-0.76, -0.08) 
p=0.015# 

-0.48 (-0.82, -0.14) 
p=0.006*# 

-0.22 (-0.55, -0.11) 
p=0.189 

-0.43 (-0.76, -0.10) 
p=0.010 

-0.21 (-0.54, 0.12) 
p=0.219 

-0.54 (-0.87, -0.21) 
p=0.002* 

-0.45 (-0.80, -0.11) 
p=0.011 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes. 
Bold values represents statistically significant associations at p<0.05. 
* Statistically significant after Bonferroni correction (0.05/6 ~ 0.0083). 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05). 
 

occipital white matter volume which were stronger in 
the presence of >4 deep CMBs. On applying Bonferroni 
correction, only association with occipital lobe 
remained significant. Similar associations were 
observed when CMBs locations (strictly lobar, strictly 
deep and mixed-location) were treated as categorical 
data (presence vs absence) (Supplementary Table 1). 

Subgroup analysis with other MRI markers 
 
In the subgroup analysis consisting of 328 patients, 
mixed-location CMBs were associated with smaller 
global cortical thickness [β= -0.03; 95% CI= -0.05, -
0.01, p=0.013] as well as cortical thickness in frontal 
[β= -0.02; 95% CI= -0.04, -0.00, p=0.043], parietal  
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Table 3. Association between CMBs and subcortical structures volume. 

 
Accumbens 

Mean difference 
(95%CI) 

Amygdala 
Mean difference 

(95%CI) 

Lentiform 
Mean difference 

(95%CI) 

Thalamus 
Mean difference 

(95%CI) 

Hippocampus 
Mean difference 

(95%CI) 

Brainstem 
Mean difference 

(95%CI) 

Strictly 
lobar 
CMBs 
(counts) 

-0.00 (-0.02, 0.01) 
p=0.698 

-0.01 (-0.02, 0.01) 
 p=0.433 

-0.00 (-0.02, 0.02) 
p=0.811 

-0.01 (-0.03, 0.00) 
p=0.155 

-0.01 (-0.03, 0.00) 
p=0.070 

-0.01 (-0.03, 0.00) 
p=0.074 

1 CMB -0.05 (-0.23, 0.22) 
p=0.741 

-0.11 (-0.36, 0.15) 
p=0.410 

-0.45 (-0.72, -0.18) 
p=0.001* 

-0.09 (-0.33, 0.15) 
p=0.484 

-0.19 (-0.44, 0.07) 
p=0.155 

-0.04 (-0.28, 0.20) 
p=0.734 

2-4 
CMBs 

0.02 (-0.29, 0.32) 
p=0.924 

-0.15 (-0.44, 0.14) 
p=0.321 

-0.34 (-0.65, -0.03) 
p=0.030 

-0.06 (-0.33, 0.22) 
p=0.681 

-0.12 (-0.41, 0.17) 
p=0.415 

0.14 (-0.13, 0.41) 
p=0.315 

>4 CMBs -0.13 (-0.58, 0.32) 
p=0.567 

-0.33 (-0.75, 0.09) 
p=0.123 

0.09 (-0.36, 0.53) 
p=0.699 

-0.11 (-0.51, 0.29)  
p=0.586 

-0.46 (-0.89, 0.04) 
p=0.032 

-0.42 (-0.82, -0.02) 
p=0.039 

Strictly 
deep 
CMBs 
(counts) 

-0.03 (-0.15, 0.09) 
p=0.615 

0.00 (-0.11, 0.11) 
p=0.985 

0.11 (-0.01, 0.23) 
p= 0.073 

-0.00 (-0.11, 0.11) 
p= 0.995 

0.01 (-0.11, 0.12) 
p=0.882 

-0.08 (-0.18, 0.03) 
p=0.168 

1 CMB -0.04 (-0.42, 0.34) 
p=0.832 

0.22 (-0.14, 0.57) 
p=0.232 

-0.02 (-0.40, 0.36) 
p=0.909 

0.21 (-0.12, 0.55) 
p=0.215 

0.25 (-0.11, 0.61) 
p=0.173 

0.01 (-0.33, 0.34)  
p=0.968 

2-4 
CMBs 

0.03 (-0.55, 0.61) 
p=0.912 

-0.15 (-0.69, 0.40) 
p=0.600 

0.17 (-0.41, 0.76) 
p=0.563 

-0.20 (-0.72, 0.31) 
p=0.439 

-0.25 (-0.80, 0.31) 
p=0.385 

-0.56 (-1.08, -0.04) 
p=0.034 

>4 CMBs -0.45 (-2.26, 1.37) 
p=0.629 

-0.15 (-1.86, 1.56) 
p=0.866 

1.74 (-0.09, 3.56) 
p= 0.063 

0.00 (-1.62, 1.61) 
p=0.997 

0.23 (-1.50, 1.96) 
p=0.792 

-0.26 (-1.88, 1.36) 
p=0.753 

Mixed-
location 
CMBs 
(counts) 

-0.01 (-0.02, -0.00) 
p=0.004* 

-0.00 (-0.01, 0.00) 
p=0.309 

0.00 (-0.00, 0.01) 
p=0.190 

0.01 (0.01, 0.02) 
p<0.001* 

-0.01 (-0.01, 0.00) 
p=0.075 

-0.00 (-0.01, 0.00) 
p=0.467# 

2-4 
CMBs 

0.17 (-0.22, 0.56) 
p=0.383 

-0.07 (-0.30, 0.45) 
p=0.704 

0.33 (-0.07, 0.73) 
p=0.104 

-0.16 (-0.51, 0.19) 
p=0.377 

0.14 (-0.24, 0.52)  
p=0.470 

-0.28 (-0.64, 0.07) 
p=0.113# 

>4 CMBs -0.60 (-0.92, -0.28) 
p<0.001* 

-0.18 (-0.48, 0.12) 
p=0.241 

0.46 (0.14, 0.78) 
p=0.005* 

-0.25 (-0.54, 0.03) 
p=0.083 

-0.17 (-0.48, 0.14) 
p=0.281 

-0.39 (-0.67, -0.10) 
p=0.008* 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes mellitus. 
Bold values represents statistically significant associations at p<0.05. 
* Significant after Bonferroni correction (0.05/5 ~0.010). 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05). 
 
[β= -0.02; 95% CI= -0.04, -0.00, p=0.004], occipital 
[β= -0.02; 95% CI= -0.04, -0.00, p=0.020] and limbic  
[β= -0.03; 95% CI= -0.05, -0.01, p=0.010] lobes, 
smaller brainstem volume [β= -0.03; 95% CI= -0.04, -
0.01, p=0.001] and smaller volumes of all the 
hippocampus subfields (p<0.05) when further adjusted 

for total WMH volumes, presence of lacunes and total 
ePVS. Similarly, strictly lobar CMBs were associated 
with smaller total white matter volume and region 
specific white matter volumes in frontal, parietal, 
temporal and occipital lobes (p<0.05) [data not 
shown]. 
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Figure 1. Forest plot for the association between mixed-location CMBs with hippocampus subfields volume. Effect 
estimates adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes. Bold values represents 
statistically significant associations at p =0.05. * Statistically significant after Bonferroni correction (0.05/12 ~ 0.0041). # Statistically 
significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total enlarged perivascular 
spaces (n=328) (p<0.05). CMBs, cerebral microbleeds; CA, Cornu Amonis; GCMLDG, Molecular and Granule Cell Layers of the Dentate 
Gyrus; HAAT, Hippocampal Amygdala Transition Area. 
 
 
Stratified analysis by diagnostic groups 
 
On performing secondary analysis among patients 
with NCI, CIND and dementia, we found that in 
patients with CIND, strictly deep CMBs were 
associated with smaller cortical thickness in temporal 
lobe [β= -0.14; 95% CI= -0.27, -0.01, p=0.040] and 
with larger parietal [β= 0.16; 95% CI= 0.02, 0.31, 
p=0.027], temporal [β= 0.14; 95% CI= 0.00, 0.27, 
p=0.044] and occipital [β= 0.33; 95% CI= 0.20, 0.47, 
p<0.001] white matter volumes whereas, mixed-
location CMBs were associated with smaller 
accumbens volume [β= -0.03; 95% CI=- 0.04, -0.01, 
p=0.001]. However, in patients with dementia, mixed-
location CMBs were associated with larger thalamic 
[β= 0.02; 95% CI= 0.02, 0.03, p<0.001] and lentiform 
nucleus volumes [β= 0.01; 95% CI= 0.00, 0.02, 
p=0.010]  and  smaller  total and region specific white 

 
 
matter volumes (p<0.05). No significant associations 
were found between strictly lobar, strictly deep and 
mixed-location CMBs with hippocampus subfield 
volumes among patients with NCI, CIND and 
dementia [data not shown]. 
 
DISCUSSION 
 
The present study demonstrated that mixed-location 
CMBs were associated with cortical thinning in frontal, 
temporal, and limbic lobes and smaller accumbens 
volume independent of demographics, vascular risk 
factors and intracranial volume. These associations 
were more specifically observed in patients who had 
more than 4 mixed-location CMBs. Mixed-location 
CMBs were also associated with smaller hippocampus 
subfield volumes, more specifically in hippocampal tail, 
subiculum, presubiculum, molecular, GCMLDG, CA3
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Table 4. Association between CMBs and white matter volume. 

 
Total white matter 

volume (ml) 
mean difference 

(95%CI) 

Lobe specific white matter volume (ml), mean difference (95%CI) 

Frontal Parietal Temporal Occipital 

Strictly lobar 
CMBs (counts) 

-0.03 (-0.04, -0.01) 
p<0.001*# 

-0.03 (-0.05, -0.01) 
p<0.001*# 

-0.02 (-0.04, -0.01) 
p=0.002*# 

-0.03 (-0.04, 0.01) 
p<0.001*# 

-0.02 (-0.04, -0.00) 
p=0.010*# 

1 CMB -0.16 (-0.40, 0.09) 
p=0.218 

-0.13 (-0.38, 0.12) 
p=0.316 

-0.10 (-0.35, 0.15) 
p=0.448 

-0.20 (-0.45, 0.04) 
p=0.103 

-0.16 (-0.41, 0.10) 
p=0.231 

2-4 CMBs -0.09 (-0.37, 0.20) 
p=0.552 

-0.08 (-0.37, 0.20) 
p=0.573 

-0.10 (-0.39, 0.19) 
p=0.506 

-0.08 (-0.36, 0.20) 
p=0.579 

-0.15 (-0.44, 0.15) 
p=0.329 

>4 CMBs 0.45 (-0.86, -0.04) 
p=0.033# 

-0.42 (-0.83, -0.01) 
p=0.046# 

-0.45 (-0.87, -0.04) 
p=0.033# 

-0.47 (-0.87, -0.07) 
p=0.022# 

-0.18 (-0.60, 0.24) 
p=0.404# 

Strictly deep 
CMBs (counts) 

0.09 (-0.02, 0.20) 
p=0.0.099 

0.01 (-0.11, 0.12) 
p=0.926 

0.12 (0.01, 0.24) 
p=0.032 

0.13 (0.02, 0.24) 
p=0.016 

0.26 (0.14, 0.37) 
p<0.001*# 

1 CMB 0.25 (-0.10, 0.59) 
p=0.166 

0.16 (-0.19, 0.51) 
p=0.370 

0.19 (-0.16, 0.54) 
p=0.293 

0.19 (-0.15, 0.53) 
p=0.269 

0.25 (-0.10, 0.60) 
p=0.166 

2-4 CMBs 0.23 (-0.31, 0.76) 
p=0.403 

0.38 (-0.16, 0.92) 
p=0.164 

0.01 (-0.53, 0.55) 
p=0.967 

0.19 (-0.15, 0.53) 
p=0.269 

0.19 (-0.35, 0.73) 
p=0.487 

>4 CMBs 1.06 (-0.61, 2.72) 
p=0.214 

-0.83 (-2.51, 0.85) 
p=0.335# 

2.14 (0.45, 3.84) 
p=0.013 

1.81 (0.18, 3.45) 
p=0.030 

4.30 (2.62, 5.97) 
p<0.001*# 

Mixed-location 
CMBs (counts) 

0.00 (-0.00, 0.01) 
p=0.303 

0.00 (-0.00, 0.01) 
p=0.373 

-0.00 (-0.01 0.01) 
p=0.958# 

0.01 (-0.01, 0.01) 
p=0.112 

0.00 (-0.03, 0.01) 
p=0.437 

2-4 CMBs 0.19 (-0.17, 0.56) 
p=0.296 

0.18 (-0.19, 0.55) 
p=0.340 

0.19 (-0.18, 0.57) 
p=0.306 

0.23 (-0.13, 0.59) 
p=0.205 

0.08 (-0.29, 0.46) 
p=0.664 

>4 CMBs 0.04 (-0.26, 0.33) 
p=0.806# 

-0.04 (-0.34, 0.25) 
p=0.787# 

-0.05 (-0.35, 0.25) 
p=0.727# 

0.16 (-0.13, 0.44) 
p=0.287 

0.06 (-0.24, 0.36) 
p=0.701 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes mellitus. 
Bold values represents statistically significant associations at p<0.05. 
* Statistically significant after Bonferroni correction (0.05/4 ~ 0.013). 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05). 
 

and CA4. Subjects with strictly lobar CMBs had smaller 
total and region specific white matter volumes. Mixed-
location CMBs were associated with larger thalamic 
volume and strictly deep CMBs were associated with 
larger parietal, temporal and occipital white matter 
volumes. 
 
Previous studies have suggested that CMBs might be a 
consequence of two separate pathways that act as a 
catalyst towards subsequent neurodegeneration [20]. 
Although in patients with intracranial hemorrhage, it 
has been shown that CAA and hypertensive arteriopathy 
play a role in the pathophysiology of CMBs and 
dementia [3, 21]. The present study adds further to the 
previous findings by demonstrating that cerebral 
atrophy may be a possible consequence of mixed 
pathology. Previous histopathological studies have 
shown controversial results where one study reported 

that cerebral amyloid is typically deposited in the 
cortical vessels and manifests as lobar CMBs [22], 
whereas another study has shown the presence of lobar 
CMBs in patients with hypertensive arteriopathy [19]. 
When similar concepts were extrapolated in observation 
studies, it was reported that the hypertensive arterio-
pathy may also cause lobar CMBs [17, 18, 23, 24]. It is 
further shown that 50% of CAA patients have 
hypertension suggesting underlying mixed pathology in 
CAA [25]. Our current findings of an association 
between mixed-location CMBs with neurodegenerative 
markers may be due to presence of both CAA and 
hypertensive arteriopathy. Amyloid-beta deposited in 
blood vessels not only leads to the destruction of vessel 
wall and development of CMBs, but may also give rise 
to ischemic manifestations [26]. Moreover, 
hypertensive arteriopathy due to lipohyalinosis and 
arteriosclerosis of cerebral blood vessels may also 
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compromise cerebral blood flow [27–29]. Apart from 
vascular amyloid, parenchymal amyloid deposition may 
also lead to neuronal loss [30]. Hence, cortical atrophy 
in the presence of mixed-location CMBs may also be 
due to secondary axonal or trans-synaptic degeneration 
[31]. Fronto-subcortical circuits which connect frontal 
lobe with subcortical structure may be disrupted due to 
presence of CMBs in deep region. Thus, atrophy of 
frontal lobe and other brain regions might be expected 
due to mixed-location CMBs-associated secondary 
degeneration [31].  
 
With regards to subcortical structures, we found that 
mixed-location CMBs were associated with smaller 
volumes of accumbens and hippocampal subfields. 
These associations may be explained by the fact that 
these subcortical structures are interconnected by 
neural circuits [32] and are particularly vulnerable to 
deposition of amyloid protein [33, 34]. It has been 
shown that intraneuronal aggregates of tau, first target 
the entorhinal cortex and spread into hippocampus, 
causing damage to the neuronal networks in the 
hippocampus [35, 36]. Furthermore, it has been shown 
that CA3 atrophy is associated with amyloid β [37]. 
Thus, subcortical atrophy in these regions may be due 
to a disruption in neuronal circuits connection or 
secondary degeneration due to deposition of amyloid-
beta aggregates which triggers myelin loss and 
degeneration of connecting neurons [38]. Further-
more, cerebral hypoperfusion due to mixed pathology 
may be the cause of subcortical atrophy. In age, 
gender, vascular risk factors and other MRI markers 
of SVD adjusted models, we found mixed-location 
CMBs were associated with smaller brain stem 
volume. It has been shown that deposition of 
neurofibrillary tangles and alterations of neuro-
transmitters in brain stem may occur in patients with 
Alzheimer’s disease [39]. In this study, mixed-
location CMBs were also associated with larger 
thalamic volume and the presence of >4 mixed-
location CMBs were associated with larger lentiform 
nucleus volume. These associations were mostly seen 
in patients with dementia. There could be two possible 
explanations to these findings; firstly, it has been 
reported that increased neuronal hypertrophy and/or 
inflammation are typically observed in AD pathology 
giving rise to increase volumes of lentiform and 
thalamus [39]. Secondly, periventricular white matter 
hyperintensities are difficult to distinguish from gray 
matter especially the caudate nucleus on T1 sequences 
and hence may lead to an artificially increased volume 
of basal ganglia nuclei [39]. Interestingly, in our 
analyses, we observed that the associations of mixed 
microbleeds with neurodegenerative markers were 
specifically observed in patients without dementia 
suggesting that neurodegenerative process starts early 

in the preclinical stages of dementia but eventually 
plateaus in late stages of dementia.  
 
We also found that strictly lobar CMBs were associated 
with smaller total and region specific white matter 
volumes. Previously it has been reported that CMBs in 
cortical region of the brain may cause axonal degeneration 
triggering myelin loss and ultimately leading to 
dysfunction and degeneration of connecting axons in 
white matter [38]. Furthermore, deposition of amyloid-
beta in leptomeningeal vessels may cause hypoperfusion 
leading to ischemic damage and white matter atrophy in 
patients with dementia [26, 29, 40]. Our findings are thus 
in line with the previous findings. Interestingly, we found 
that deep CMBs, more specifically in patients with CIND 
were associated with larger parietal, temporal and 
occipital white matter volume. This may be explained by 
the fact that, CMBs which consist of hemosiderin and 
other extravagated blood products in the brain may cause 
blood brain barrier dysfunction and inflammatory changes 
in brain tissue leading to edema of neurons [41]. Another 
explanation in the current literature revolves around the 
possibility that amyloid deposition in the blood vessels 
may cause insufficient drainage of interstitial fluids 
increasing its accumulation in brain tissue [42]. Previous 
study has also shown increased white matter free water 
content in the patients with cerebrovascular disease [43]. 
 
Though, it has been consistently shown that CAA is the 
major pathological mechanism for lobar CMB and 
hypertensive arteriopathy for deep CMBs [1]; however, 
our data did not support these findings. This may be due 
to the presence of mixed pathology in our population. We 
postulate that CAA and hypertensive arteriopathy might 
be two separate mechanisms in preclinical stages, but at 
the advanced stage they co-occur and manifest as mixed 
pathology [40]. Hence, it is also possible that cerebral 
atrophy in this study may be due to pre-existing 
neurodegenerative pathology or CAA/ hypertensive 
arteriopathy-related microvascular ischemic changes 
[12].  
 
Limitations of this study include; first, as most of our 
study subjects were recruited from memory clinic with 
different risk factors profile, our findings may not be 
generalizable to the general population. Second, even 
though we adjusted for several risk factors and MRI 
markers of SVD, we cannot ignore the possibility of 
residual confounding. Third, we were unable to 
determine whether cerebral atrophy in our patients was 
due to CMBs-related microvascular changes or due to 
pre-existing neurodegeneration. Nevertheless, intra-
cranial volume was treated as an important confounder 
in all our models. Fourth, we were unable to explore the 
temporal relationship between mixed-location CMBs 
and neurodegeneration due to cross-sectional design. 
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Fifth, even though we have included 477 participants in 
this study, the sample size for CMBs in various groups 
(strictly lobar= 107, strictly deep =35 and mixed-
location=58) were relatively small which may 
underestimate effect sizes. Finally, lobar CMBs 
detected on MRI may provide an indirect measure of 
CAA or amyloid deposition and deep CMBs may 
provide an indirect measurement of atherosclerosis and 
lipohyalinosis in cerebral blood vessels. Due to lack of 
positron emission tomography images and pathological 
data, we were unable to confirm our findings. Hence, 
our results should be interpreted with caution. Strengths 
of this study include, automated and standardized image 
processing to quantify neurodegenerative markers. 
CMBs were graded blinded to clinical findings which 
prevented overestimation of CMBs. 
 
CONCLUSIONS 
 
The present study showed that mixed-location CMBs 
were independently associated with cortical and 
subcortical atrophy whereas strictly lobar CMBs were 
associated with white matter atrophy. Our findings 
suggest a shared mechanism of vascular dysfunction 
due to deposition of amyloid beta, lipohyalinosis and 
arteriosclerosis of cerebral blood vessels. Thus, greater 
emphasis should be made on treating vascular risk 
factors so as to prevent CMBs-related neuro-
degeneration and cognitive changes. 
 
MATERIALS AND METHODS 
 
Study population 
 
For this study, data was obtained from the ongoing 
prospective memory clinic based case-control study. The 
controls were individuals who may have subjective 
cognitive complains, but no objective cognitive 
impairment on comprehensive neuropsychological tests 
or functional impairment and were diagnosed as No 
Cognitive Impairment (NCI). Cases were participants 
with subjective memory complains and impairment on 
neuropsychological assessment and were diagnosed with 
cognitive impairment no dementia (CIND) and dementia. 
CIND was defined as impairment in at least one 
cognitive domain on comprehensive neuropsychological 
test, but did not meet the criteria for dementia according 
to the Diagnostic and Statistical Manual for Mental 
Disorder-Fourth Edition (DSM-IV). Dementia was 
diagnosed according to the DSM- IV criteria. The 
etiological diagnoses of dementia were based on 
internationally accepted criteria: Alzheimer’s Disease 
(AD) was diagnosed using the National Institute of 
Neurological and Communicative Disorders and Stroke 
and the Alzheimer's Disease and Related Disorders 
Association (NINCDS-ADRDA), AD with cerebro-

vascular disease or mixed dementia was defined as 
subjects fulfilling criteria of diagnosis of AD together 
with concomitant cerebrovascular disease on MRI 
(presence of multiple infarcts or extensive white matter 
hyperintensities) and vascular dementia (VaD) was 
defined using the National Institute of Neurological 
Disorders and Stroke and Association Internationale pour 
la Recherché et l' Enseignement en Neurosciences 
(NINDS-AIREN) criteria [44–46]. 
 
A total of 578 patients were recruited for this study 
from August 2010 to January 2016. All subjects 
underwent comprehensive evaluation including 
physical, medical and neuropsychological assessment 
along with 3T magnetic resonance imaging (MRI), all 
done on the same day. Of 578 patients, 12 did not 
perform MRI scans (3 were claustrophobic, 1 refused 
MRI, 2 were uncooperative and could not follow 
instructions properly and 6 could not perform MRI due 
to other medical conditions), 18 patients with 
incomplete and poor quality MRI scan and 71 patients 
with cortical stroke were excluded, leaving 477 patients 
for the final analysis [NCI=104 (21.8%), CIND=211 
(44.2%) and Dementia=162 (34.0%) (AD=65; 40.1%, 
VaD=20; 12.3%, mixed dementia=77; 47.6%)]. 
 
This study was approved by the National Healthcare 
Group Domain-Specific Review Board and was 
conducted in accordance with the Declaration of Helsinki. 
A written informed consent was obtained from all subjects 
or their caregivers prior to the recruitment for this study. 
 
Covariates 
 
A detailed demographic questionnaire was administered 
for each subject to collect information on age, gender, 
years of formal education and smoking. History of 
hypertension, hyperlipidemia, and diabetes mellitus was 
noted and verified with medical records. Hypertension 
was defined as systolic blood pressure ≥140mmHg and 
/or diastolic blood pressure ≥90mmHg or a history of 
hypertension, or use of antihypertensive medication. 
Hyperlipidemia was defined as total cholesterol level 
≥4.14 mmol/l or a history of hyperlipidemia, or use of 
lipid-lowering medication. Diabetes mellitus was 
defined as glycated hemoglobin ≥6.5% or a history of 
diabetes mellitus, or the use of any glucose-lowering 
medication.  
 
Neuroimaging 
 
MRI scans of all the patients were performed at the 
Clinical Imaging Research Center of the National 
University of Singapore, using 3T Siemens Magnetom 
Trio Tim Scanner system, with a 32-channel head coil. 
The standardized neuroimaging protocol in this study 
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included a three dimensional T1-weighted, T2-
weighted, fluid-attenuated inversion recovery (FLAIR) 
and susceptibility weighted image (SWI) sequences. 
SWI sequence was used to detect CMBs with echo time 
= 20 ms; repetition time= 27 ms; flip angle= 15 degrees; 
field of view= 256 mm; field of view= 75%; image 
matrix= 192x256; slice thickness= 1.50 mm. 
 
Cerebrovascular disease markers 
 
MRI markers of cerebrovascular disease (lacunes, white 
matter hyperintensities, enlarged perivascular spaces 
and cerebral microbleeds) were graded using the 
Standards for Reporting Vascular changes on 
Neuroimaging (STRIVE) criteria [47]. 
 
1. CMBs were graded according to the Microbleed 
Anatomical Rating Scale [48]. CMBs were classified 
manually into two different locations: lobar (frontal, 
parietal, temporal, occipital and insula) and deep (basal 
ganglia, thalamus, internal and external capsule, 
brainstem and cerebellum). Based on the location of 
CMBs, patients were classified into 3 groups: strictly 
lobar CMBs (having CMBs exclusively in lobar region), 
strictly deep CMBs (having CMBs exclusively in deep 
region) and mixed-location CMBs (having CMBs in 
both lobar and deep locations). The total number of 
CMBs in each location was recorded. Both strictly lobar 
and strictly deep CMBs were further categorized in 
three groups according to CMBs burden: presence of 1 
CMB, presence of 2-4 CMBs and presence of >4 
CMBs, whereas mixed-location CMBs were categorized 
into two groups: presence of 2-4 CMBs and presence of 
>4 CMBs [49, 50]. 
 
2. Lacunes were defined as round or ovoid lesions, 3 to 
15 mm in diameter in the subcortical regions, with a 
high signal on T2-weighted images and a low signal on 
T1-weighted and FLAIR images, and a hyperintense 
rim with a center following the cerebrospinal fluid 
intensity [47]. 
 
3. WMH volume was quantified using T1 and T2 
weighted images. Image preprocessing and the tissue 
classification algorithm have been described elsewhere 
[51]. Region-specific WMH volume (ml) was 
calculated for frontal, parietal, occipital and temporal 
lobes. Total WMH volume was calculated as the sum of 
WMH volumes in above mentioned 5 regions [52]. 
 
4. ePVS were defined as round or linear lesion, which 
were hypointense on T1 weighted and hyperintense on 
T2 weighted images. It was considered dilated when 
lesion was ≥1mm in diameter. ePVs were visually 
graded in 4 different regions of brain: centrum 
semiovale, basal ganglia, mesencephalon and hippo-

campus. Total numbers of ePVS in each region were 
recorded. Total ePVS was calculated as sum of centrum 
semivale, basal ganglia, hippocampus and mesence-
phalon ePVS [52]. 
 
All the MRI scans were graded by two independent 
raters (B.G & M.A.S) blinded to the clinical history. All 
potential MRI markers of SVD were discussed in the 
weekly consensus meeting. Any disagreement was 
further discussed with an experienced neuroimaging 
fellow (SH) to make a final decision. Inter-rater and 
intra-rater agreement was excellent, which has been 
published previously [53, 54]. 
 
Neurodegenerative markers  
 
Quantitative MRI analyses were performed using 
automated segmentation procedure at the Department of 
Medical Informatics, Erasmus University Medical 
Center, Netherlands using a model based automated 
procedure (FreeSurfer, v.5.1.0) on T1 weighted images 
(TR=7.2 ms, TE=3.3 ms, matrix=256×256×180 mm3). 
For each patient, the following MRI markers were 
computed. 
 
1. Cortical thickness was measured as the shortest 
distance between gray/white matter boundary and pial 
surface at each vertex. Global and regional thickness 
averages were converted to millimeters (mm). Regional 
average was calculated from left and right lobes 
thickness using parcellation guide on sulcus and gyrus 
of cerebral cortex. Region specific cortical thicknesses 
were calculated for the frontal, parietal, occipital, 
temporal, insular, and limbic regions [55].  
 
2. Subcortical structures volumes were calculated for 
accumbens, amygdala, lentiform nucleus, thalamus, 
hippocampus, and brainstem. Segmentation was 
performed using rigid body registration and nonlinear 
normalization of images to a probabilistic brain atlas. 
During segmentation process, each voxel was labeled 
automatically as corresponding brain region on 
parcellation guide. Volumes of accumbens, amygdala, 
lentiform nucleus, hippocampus and thalamus and were 
calculated for left and right hemispheres separately. 
Finally, average volumes of each structure were 
calculated and then converted into milliliters (ml) [39, 
56].  
 
3. Hippocampus subfield volumes were calculated in 12 
subfields based on an ultra-high resolution ex-vivo atlas 
and includes: Cornu Amonis regions 1, 2 and 3 combined, 
and 4 (CA1, CA3, and CA4), parasubiculum, pre-
subiculum, subiculum, molecular and granule cell layer of 
dentate gyrus (GCMLDG), hippocampus amygdala 
transition area (HATA), fimbria, molecular layer, 
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hippocampal fissure, and hippocampal tail. For each 
subject both left and right hemisphere hippocampus 
subfield volumes were calculated separately. Finally, 
average volumes of each subfield were calculated and 
then converted into ml.  

 
4. White matter volume was quantified using T1 and 
T2 weighted images. The used image preprocessing 
steps and the tissue classification algorithm have been 
described elsewhere [51]. Briefly, k-nearest-neighbor 
brain tissue classifier technique was used to classify 
voxels into cerebrospinal fluid (CSF), gray matter, 
white matter, white matter hyperintensities (WMH). 
Volume (ml) was calculated for all biomarkers from 
these segmentations. Region-specific white matter 
volume was calculated for frontal, parietal, occipital and 
temporal lobes. Total white matter volume was 
calculated as the sum of white matter volumes in the 
above mentioned five regions. Intracranial volume was 
the sum of the CSF, gray matter, white matter and 
WMH. 
 
Statistical analysis 
 
In order to examine the differences in the baseline 
characteristics of patients with and without CMBs, t-test 
was performed for normally distributed continuous 
variables (age, total WMH volume and neuro-
degenerative markers), Mann-Whitney U Test for 
skewedly distributed continuous variable (total ePVs), 
and chi-square test for binary variables (gender, 
hypertension, hyperlipidemia, diabetes and presence of 
lacunes). For regression analysis logarithmical 
transformation of WMH volumes was performed to 
ensure normal distribution. Other neurodegenerative 
markers: global cortical thickness, region specific cortical 
thickness, total white matter volume, region specific 
white matter volumes, subcortical structures volumes and 
hippocampus subfields volumes were standardized by 
dividing each variable by its standard deviation [39, 55]. 
CMBs were treated as both count and categorical data. 
For categorical data, we classify CMBs by location: 
presence of strictly lobar vs absence, presence of strictly 
deep vs absence and presence of mixed-location vs 
absence and by numbers: strictly lobar and strictly deep 
CMBs as 1 vs absence, 2-4 vs absence and >4 vs absence 
and mixed-location CMBs as 2-4 vs absence, and >4 vs 
absence. Total numbers of CMBs in each location: 
strictly lobar, strictly deep and mixed-location were 
treated as count data. Linear regression models were 
performed to determine the association between CMBs 
with cortical thickness (global and region specific 
thickness), white matter volumes (total and region 
specific volumes), subcortical structure volumes 
(accumbens, amygdala, lentiform nucleus, thalamus and 
brainstem) as well as hippocampus subfield volumes 

(CA1, CA3, CA4, parasubiculum, presubiculum, 
subiculum, GCMLDG, HATA, fimbria, molecular layer, 
hippocampal fissure, and hippocampal tail). In our 
stratified analysis, we divided our patients into three 
groups i.e. patients with NCI, CIND and dementia (AD, 
VaD and mixed dementia). In the analysis we treated 
CMBs as determinants and cortical thickness, subcortical 
structures volume and white matter volume as outcomes. 
Regression models were first adjusted for age, gender, 
intracranial volume, hypertension, hyperlipidemia, and 
diabetes. Furthermore, in a subgroup of 328 patients 
regression models were further adjusted for presence of 
lacune, total ePVs and total WMH volume (ePVS 
grading were only available for 328 patients). Mean 
difference with 95% confidence intervals (CIs) from the 
regression models were reported.  
 
Results were considered significant at p<0.05. In view of 
multiple testing performed between CMBs and 
neurodegenerative markers, we used Bonferroni 
correction to obtain revised statistical significance level of 
0.05/6 ~0.0083 for cortical thickness and 0.05/5~0.010 for 
subcortical structural volumes. When analyzing the 
association between CMBs and region specific white 
matter volume, we used the revised statistical significant 
level set at 0.05/4 ~ 0.013. Similarly, when analyzing 
association between CMBs and hippocampus subfield 
volumes statistical significance level was set at 
0.05/12~0.0041. All data were analyzed using SPSS 
software package (version 25). 
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image; STRIVE: Standards for Reporting Vascular 
Changes on Neuroimaging; CI: Confidence interval; OR: 
Odds ratios; CA: Cornu Amonis; HATA: Hippocampus 
amygdala transition area; GCMLDG: Molecular and 
granule cell layer of dentate gyrus. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Table 1. Association between CMBs and cortical thickness. 

Global cortical thickness, mean 
difference (95%CI) 

Region specific cortical thickness, mean difference (95%CI) 

Frontal Parietal Temporal Occipital Limbic Insula 

Presence of 
strictly lobar 
CMBs  

-0.04 (-0.25, 0.17) 
p=0.705 

0.08 (-0.14, 0.30) 
p=0.473 

-0.12 (-0.33, 0.09) 
p=0.261 

-0.06 (-0.27, 0.15) 
p=0.597 

-0.09 (-0.03, 0.12) 
p=0.406 

0.03 (-0.19, 0.24) 
p=0.813 

0.15 (-0.07, 0.37) 
p=0.175 

Presence of 
strictly deep 
CMBs  

0.01 (-0.33, 0.35) 
p=0.974 

-0.02 (-0.37, 0.33) 
p=0.910 

0.04 (-0.30, 0.38) 
p=0.807 

0.07 (-0.26, 0.41) 
p=0.678 

-0.14 (-0.47, 0.19) 
p=0.397 

-0.04 (-0.38, 0.30) 
p=0.808 

0.04 (-0.31, 0.39) 
p=0.808 

Presence of 
mixed-location 
CMBs  

-0.26 (-0.53, 0.02) 
p=0.064 

-0.29 (-0.57, -0.01) 
p=0.042 

-0.09 (-0.37, 0.18) 
p=0.512 

-0.29 (-0.56, -0.02) 
p=0.035 

-0.16 (-0.43, 0.11) 
p=0.245 

-0.35 (-0.63, -0.08) 
p=0.011 

-0.23 (-0.51, 0.05) 
p=0.107 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes 
Bold values represent statistically significant associations at p =0.05 
* Statistically significant after Bonferroni correction (0.05/6 ~ 0.0083) 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05) 
 
Supplementary Table 2. Association between CMBs and subcortical structures volume. 

 
Accumbens  

Mean difference 
(95%CI) 

Amygdala  
Mean difference 

(95%CI) 

Lentiform  
Mean difference 

(95%CI) 

Thalamus  
Mean difference 

(95%CI) 

Hippocampus  
Mean difference 

(95%CI) 

Brainstem  
Mean difference 

(95%CI) 

Presence of strictly 
lobar CMBs 

-0.04 (-0.24, 0.16)  
p=0.175 

-0.16 (-0.35, 0.03)  
p=0.105 

-0.32 (-0.52, 0.12)  
p=0.002* 

-0.08 (-0.26, 0.10) 
p=0.385 

-0.21 (-0.40, -0.02) 
p=0.034 

-0.04 (-0.22, 0.14)  
p=0.683 

Presence of strictly 
deep CMBs 

-0.03 (-0.35, 0.29) 
p=0.848 

0.10 (-0.20, 0.41) 
p=0.500 

0.08 (-0.24, 0.41) 
p=0.622 

0.09 (-0.20, 0.38) 
p=0.542 

0.11 (-0.20, 0.42) 
p=0.483 

-0.16 (-0.45, 0.13)  
p=0.272 

Presence of mixed-
location CMBs 

-0.30 (-0.56, -0.04) 
p=0.024 

-0.08 (-0.33, 0.16) 
p=0.511 

0.41 (0.15, 0.67) 
p=0.002* 

-0.22 (-0.45, 0.02) 
0.068# 

-0.05 (-0.30, 0.20) 
p=0.702 

-0.35 (-0.58, -0.12)  
p=0.003*# 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes mellitus 
Bold values represent statistically significant associations at p =0.05 
* Significant after Bonferroni correction (0.05/5 ~0.010) 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05) 
 
Supplementary Table 3. Association between CMBs and white matter volume. 

 
Total white matter 
volume (ml), mean 
difference (95%CI) 

Lobe specific white matter volume (ml), mean difference (95%CI) 

Frontal Parietal Temporal Occipital 

Presence of strictly 
lobar CMBs  

-0.18 (-0.36, 0.01) 
p=0.060 

-0.16 (-0.35, 0.03) 
p=0.096 

-0.16 (-0.34, 0.03) 
p=0.107 

-0.20 (-0.38, 0.02) 
p=0.030 

-0.16 (-0.35, 0.04) 
p=0.109 

Presence of strictly 
deep CMBs  

0.26 (-0.03, 0.56) 
p=0.081 

0.20 (-0.10, 0.49) 
p=0.198 

0.19 (-0.11, 0.50) 
p=0.209 

0.29 (-0.01, 0.58) 
p=0.055 

0.34 (0.04, 0.65) 
p=0.027 

Presence of mixed-
location CMBs  

0.10 (-0.14, 0.34) 
p=0.422 

0.04 (-0.20, 0.28) 
p=0.721 

0.04 (-0.20, 0.28) 
p=0.736 

0.19 (-0.05, 0.42) 
p=0.121 

0.07 (-0.18, 0.31) 
p=0.584 

All values adjusted for age, gender, intracranial volume, hypertension, hyperlipidemia and diabetes mellitus 
Bold values represent statistically significant associations at p =0.05 
* Statistically significant after Bonferroni correction (0.05/4 ~ 0.013) 
# Statistically significant after further adjusting for white matter hyperintensities volume, presence of lacunes and total 
enlarged perivascular spaces (n=328) (p<0.05) 


