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ABSTRACT 
 
The malignant bone tumors that are categorized as chondrosarcomas display a high potential for metastasis 
in late-stage disease. Higher-grade chondrosarcomas contain higher levels of expression of platelet-derived 
growth factor (PDGF) and its receptor. The phosphorylation of sphingosine by sphingosine kinase enzymes 
SphK1 and SphK2 generates sphingosine-1-phosphate (S1P), which inhibits human chondrosarcoma cell 
migration, while SphK1 overexpression suppresses lung metastasis of chondrosarcoma. We sought to 
determine whether S1P mediates levels of PDGF-A expression and angiogenesis in chondrosarcoma. 
Surprisingly, our investigations found that treatment of chondrosarcoma cells with S1P and transfecting them 
with SphK1 cDNA increased PDGF-A expression and induced angiogenesis of endothelial progenitor cells 
(EPCs). Ras, Raf, MEK, ERK and AP-1 inhibitors and their small interfering RNAs (siRNAs) inhibited S1P-
induced PDGF-A expression and EPC angiogenesis. Our results indicate that S1P promotes the expression of 
PDGF-A in chondrosarcoma via the Ras/Raf/MEK/ERK/AP-1 signaling cascade and stimulates EPC 
angiogenesis. 

mailto:chtang@mail.cmu.edu.tw
mailto:lz3399@wmu.edu.cn


www.aging-us.com 11041 AGING 

INTRODUCTION 
 
The malignant bone tumors that constitute chondro-
sarcomas are not easy to diagnose or treat [1, 2], being 
characterized by poor responsiveness to conventional 
chemotherapy and radiotherapy [3], and high-grade 
chondrosarcoma has a poor prognosis with low survival 
rates despite wide surgical resection, which is considered 
to be the cornerstone of treatment [4]. 
 
Metastasis is the primary cause of cancer mortality [5–7]. 
Angiogenesis is vital for the development of cancer and 
metastasis [8–10]; the chief proangiogenic factor in these 
processes is vascular endothelial growth factor-A 
(VEGF-A) [11, 12]. Another crucial mediator of tumor 
angiogenesis and metastasis is the platelet-derived 
growth factor receptor (PDGFR); a positive correlation 
has been observed between levels of PDGFR-α 
expression and the aggressiveness of chondrosarcoma 
[13], so it is important to examine the molecular 
mechanisms underlying PDGF expression in human 
chondrosarcoma cells. Data are awaited from phase II 
trials investigating the efficacy of pazopanib, a potent 
PDGFR inhibitor, in different chondrosarcoma patient 
populations [14]. 
 
Sphingosine-1-phosphate (S1P), a platelet-derived 
lysophospholipid mediator, strongly inhibits PDGR-
induced chemotaxis and cellular Rac activity in vascular 
smooth muscle cells [15]. Interestingly, deleting the S1P2 
receptor promotes murine embryonic fibroblast migration 
towards S1P and also PDGF, which stimulates S1P 
production; S1P2 deletion also increases the enzymatic 
expression and activity of sphingosine kinase 1 (SphK1), 
which is responsible for producing S1P [16]. S1P/S1P 
receptor signaling has been discussed to regulate 
angiogenesis and vasculogenesis [17, 18]. S1P is known 
to regulate various cellular processes that are involved in 
cancer: SphK1 maintains tumor cell survival and 
promotes the progression of hormone-independent 
prostate and breast cancer [19, 20]; SphK1 over-
expression stimulates Ras-dependent mechanisms that 
transform fibroblasts into fibrosarcoma; in estrogen 
receptor-positive breast cancer, high tumoral SphK1 
expression is associated with poorer survival and shorter 
times to disease recurrence; and S1P promotes tumor 
neovascularization and induces inflammation involved in 
cancer progression [21]. Moreover, SphK1 and S1P 
encourage tumor growth and angiogenesis, metastasis 
and apoptotic resistance [22]. On the contrary, S1P also 
inhibits cancer cell migration by activation of S1P2- and 
ROCK-mediated vimentin S71 phosphorylation [23]. 
S1P is also capable of inhibiting endothelial cell 
angiogenesis [24], and of suppressing cell proliferation 
by inactivating Akt in keratinocytes [25] and prostate 
cancer cells [19]. We have previously demonstrated that 

S1P inhibits the migration of human chondrosarcoma 
cells and that SphK1 overexpression decreases metastasis 
to the lungs in a chondrosarcoma xenograft model [26]. 
Here, we sought to elucidate the relationship between 
S1P, PDGF-A expression and tumor angiogenesis, as 
well as characterize the molecular process whereby S1P 
induces PDGF-A-dependent angiogenesis in human 
chondrosarcoma cells. 
 
RESULTS 
 
S1P enhances PDGF-A-dependent EPCs 
angiogenesis 
 
The application of S1P to chondrosarcoma cell lines 
JJ012 and SW1353 concentration-dependently 
augmented PDGF-A mRNA and protein expression 
(Figure 1A, 1B). Evaluation of S1P-regulated 
angiogenesis in chondrosarcoma cells by EPC migration 
and tube formation assays [27] revealed that 
conditioned medium (CM) from S1P-treated chondro-
sarcoma cells stimulated EPC migration and tube 
formation (Figure 1C, 1D), whereas PDGF-A mono-
clonal antibody (mAb) treatment suppressed these 
events (Figure 1C, 1D). To confirm the role of S1P in 
EPC angiogenesis, the cells were transfected with 
SphK1 cDNA. We observed that overexpression of 
SphK1 cDNA increased levels of SphK1 protein 
expression (Figure 2B). Overexpression of SphK1 also 
increased PDGF-A mRNA and protein expression, EPC 
migration and tube formation (Figure 2). In addition, the 
PDGF-A mAb also blocked SphK1 facilitated EPC 
migration and tube formation (Figure 2C, 2D). Thus, 
S1P appears to stimulate EPC angiogenesis in a PDGF-
A-dependent manner. 
 
S1P promotes PDGF-A-mediated angiogenesis 
through the Ras/Raf/MEK/ERK pathway 
 
The Ras/Raf/MEK/ERK signaling pathway regulates 
tumor angiogenesis and metastasis [28, 29]. Treatment 
of cells with manumycin A (a Ras inhibitor) or 
GW5074 (a Raf inhibitor) suppressed S1P-enhanced 
PDGF-A expression, EPC migration and tube formation 
(Figure 3A–3C). Next, Ras and Raf siRNAs were used 
to confirm the results obtained from pharmacological 
inhibitors. We found that Ras and Raf siRNAs 
abolished S1P-mediated effects (Figure 3A–3C). 
Incubation of chondrosarcoma cells with S1P enhanced 
Ras kinase activity and Raf phosphorylation (Figure 
3D). The Ras inhibitor also reduced S1P-enhanced 
phosphorylation of Raf (Figure 3E), indicating that Ras 
serves as an upstream molecule of Raf. 
 
MEK/ERK is a common downstream signaling pathway 
of Ras and Raf proteins [28, 30]. Incubating 
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chondrosarcoma cells with MEK inhibitors (PD98059 
and U0126) or siRNAs against MEK and ERK 
effectively reduced S1P-enhanced PDGF-A expression, 
EPC migration and tube formation (Figure 4A–4C). 
Stimulation of chondrosarcoma cells by S1P promoted 
MEK and ERK phosphorylation (Figure 4D). 
Conversely, S1P-induced phosphorylation of MEK and 
ERK was reduced when cells were pretreated with Ras, 
Raf and MEK inhibitors (Figure 4E, 4F). These results 
suggest that S1P acts via the Ras/Raf/MEK/ERK 

signaling mechanism to enhance levels of PDGF-A 
expression and angiogenic activity in human chondro-
sarcoma cells. 
 
AP-1 transcriptional activity regulates S1P-
promoted PDGF-A expression and angiogenesis 
 
AP-1 appears to regulate PDGF gene expression [31]. 
We therefore examined whether AP-1 influences S1P-
mediated PDGF-A expression in chondrosarcoma cells. 

 

 
 

Figure 1. S1P increases PDGF-A expression and angiogenesis in human chondrosarcoma cells. (A, B) Chondrosarcoma cells were 
incubated with S1P (2.5–10 μM) for 24 h; PDGF-A expression was examined by qPCR and Western blot assays (n=4). (C, D) Chondrosarcoma 
cells were incubated with S1P for 24 h then stimulated with PDGF-A or IgG antibody (1 μg/ml) for 30 min. The conditioned medium (CM) was 
then collected and applied to endothelial progenitor cells (EPCs) (n=4). EPC migration and tube formation was measured. Results are 
expressed as the mean ± SEM. *p < 0.05 as compared with the control group; #p < 0.05 as compared with the S1P-treated group. 
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Transfecting cells with an AP-1 inhibitor (tanshinone 
IIA) or c-Jun siRNA reduced S1P-promoted PDGF-A 
expression (Figure 5A); these compounds also 
suppressed S1P-induced EPC migration and tube 
formation (Figure 5B, 5C). S1P significantly promoted 
c-Jun phosphorylation (Figure 5D), which was reduced 
by pretreatment with Ras, Raf and MEK inhibitors 
(Figure 5E). To confirm that the Ras/Raf-1/MEK1/ERK 
signaling pathway mediated S1P-enhanced activation of 
AP-1, the AP-1 luciferase promoter plasmid was used. 
Treatment of cells with S1P augmented AP-1 luciferase 
activity, while pretreating the cells with Ras, Raf, MEK 
and ERK inhibitors or their siRNAs reduced S1P-
induced AP-1 luciferase activity (Figure 5F, 5G). 
Activation of Ras, Raf-1, MEK1 and ERK appears to be 
involved in S1P-induced AP-1 activation in human 
chondrosarcoma cells. 

DISCUSSION 
 
Chondrosarcomas are heterogeneous, malignant bone 
neoplasms [26, 32] that are characterized by an increasing 
propensity for metastasis at higher pathological grades. 
Chemotherapy and radiotherapy are of limited 
effectiveness in chondrosarcoma; surgery is the favored 
therapeutic option [33]. Growth rates of many low- and 
moderate-grade chondrosarcomas are relatively slow; 
approximately 15% of all deaths due to metastasis occur 
more than 5 years after diagnosis [34]. This phenomenon 
offers a window of opportunity for the therapeutic 
prevention of chondrosarcoma metastasis. Our previous 
investigation reported that S1P inhibits migration, 
invasion and metastasis in human chondrosarcoma [26]. 
Here, we found that S1P enhanced PDGF-A expression in 
human chondrosarcoma and facilitated EPC angiogenesis 

 

 
 
Figure 2. Overexpression of SphK1 facilitates in PDGF-A expression and angiogenesis in human chondrosarcoma. (A, B) 
Chondrosarcoma cells were transfected with SphK1 cDNA; SphK1 and PDGF-A expression was examined by qPCR and Western blot assays 
(n=5). (C, D) The CM was applied to EPCs and analyses assessed migratory and tube formation activity (n=4). Results are expressed as the 
mean ± SEM. *p < 0.05 as compared with the vector group. 
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through the Ras, Raf, MEK, ERK and AP-1 signaling 
pathways. The human umbilical vein endothelial cell 
(HUVEC) are common used model of tumor angio-
genesis. However, few reports used this model to examine 
the angiogenic effect in chondrosarcoma. Whether EPCs 
or HUVEC are best model to study in the context of 
chondrosarcoma needs further study. 

Human chondrosarcoma cell lines show upregulated 
PDGF and PDGFR activities, which are required for 
tumor growth and metastasis [35]. Pazopanib (a PDGFR 
inhibitor) was associated with clinical benefits in a patient 
with metastatic chondrosarcoma that had failed to respond 
to first-line chemotherapy [14]. Pazopanib has also 
demonstrated efficacy (prolonged disease stabilization for

 

 
 

Figure 3. The Ras and Raf pathways mediate S1P-promoted PDGF-A expression and angiogenesis. (A) Cells were pretreated for 
30 min with manumycin A (10 μM) and GW5074 (10 μM), or transfected with Ras and Raf siRNAs then stimulated with S1P (10 μM). PDGF-A 
expression was examined by qPCR assays (n=5). (B, C) The CM was applied to EPCs and analyses assessed migratory and tube formation 
activity (n=4). (D) JJ012 cells were incubated with S1P; Ras and Raf activity was examined by Western blot assay (n=3). (E) JJ012 cells were 
pretreated with manumycin A for 30 min, then stimulated with S1P and Raf phosphorylation was examined (n=3). Results are expressed as 
the mean ± SEM. *p < 0.05 as compared with the control group; #p < 0.05 as compared with the S1P-treated group. 
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over 6 months) and good tolerability in 8 patients with 
progressive chondrosarcoma administered pazopanib 
800 mg/day [36]. The PDGF/PDGFR axis is therefore a 
promising target for chondrosarcoma progression and 
metastasis. This paper reports that S1P enhanced 
PDGF-A mRNA and protein expression in both 
chondrosarcoma cell lines. Overexpression of SphK1 
facilitated PDGF-A production. Otherwise, S1P also 
increases other angiogenic factors expression in 

chondrosarcoma, the PDGF-A is most upregulated 
(Supplementary Figure 1). Importantly, incubating 
EPCs with PDGF-A mAb antagonized S1P-induced 
migration and tube formation, indicating that S1P 
enhances EPC angiogenesis via a PDGF-A-dependent 
manner. Treatment of EPC with S1P slightly increased 
EPC tube formation (Supplementary Figure 2), 
indicating S1P also have direct effect in EPC 
angiogenesis. 

 

 
 

Figure 4. The MEK and ERK pathways mediated S1P-promoted PDGF-A expression and angiogenesis. (A) Cells were pretreated 
for 30 min with PD98059 (10 μM) and U0126 (5 μM), or transfected with MEK and ERK siRNAs, then stimulated with S1P (10 μM). PDGF-A 
expression was examined by qPCR assays (n=5). (B, C) The CM was applied to EPCs and analyses assessed migratory and tube formation 
activity (n=4). (D) JJ012 cells were incubated with S1P; MEK and ERK phosphorylation was examined by Western blot assay (n=3). (E, F) JJ012 
cells were pretreated with manumycin A, GW5074 and PD98059 for 30 min, then stimulated with S1P (10 μM). MEK and ERK phosphorylation 
was examined (n=3). Results are expressed as the mean ± SEM. *p < 0.05 as compared with the control group; #p < 0.05 as compared with 
the S1P-treated group. 
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Figure 5. AP-1 is involved in S1P-facilitated PDGF-A expression and angiogenesis. (A) Cells were pretreated for 30 min with 
tanshinone IIA (3 μM), or transfected with c-Jun siRNA, then stimulated with S1P (10 μM). PDGF-A expression was examined by qPCR assays 
(n=5). (B, C) The CM was applied to EPCs and analyses assessed migratory and tube formation activity (n=4). (D) JJ012 cells were incubated 
with S1P (10 μM); c-Jun phosphorylation was examined by Western blot assay (n=3). (E) JJ012 cells were pretreated with manumycin A, 
GW5074, PD98059 and U0126 for 30 min, then stimulated with S1P (10 μM). The c-Jun phosphorylation was examined (n=3). (F, G) JJ012 cells 
were pretreated with Ras, Raf, MEK and ERK inhibitors or siRNAs, then stimulated with S1P (10 μM) and AP-1 Luciferase activity was 
examined (n=4). Results are expressed as the mean ± SEM. *p < 0.05 as compared with the control group; #p < 0.05 as compared with the 
S1P-treated group. 
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S1P, a simple bioactive sphingolipid, is generated by 
SphK-induced phosphorylation of sphingosine. S1P 
regulates cancer-related processes such as autophagy, 
proliferation, angiogenesis and migration, by binding to 
its membranous receptors or by targeting the intra-
cellular molecules [19, 22]. SphK1 upregulation has 
been identified in several cancers and is associated with 
poor survival prognosis [37]. We have previously 
demonstrated that S1P inhibits cellular migratory 
activity in human chondrosarcoma [26]. However, this 
investigation has demonstrated the opposite effect, in 
that S1P enhanced PDGF-A expression and EPC 
angiogenesis in human chondrosarcoma cell lines. We 
speculate that these apparently contradictory results 
may be explained in several ways. Firstly, angiogenesis 
is observed in the early stages of tumorigenesis, 
whereas endothelial cell migration generally occurs 
during tumor metastasis [38]. Secondly, EPC angio-
genesis is only part of tumor angiogenesis; the 
endothelium cells may play a more important role than 
EPCs during tumor angiogenesis. Thirdly, the five S1P 
receptors may mediate different cell functions [16]. 
Finally, our investigation did not include an in vivo 
animal model to confirm the mediatory effects of S1P 
upon EPC angiogenesis. 
 
The activation of the Ras/Raf/MEK/ERK signaling 
pathway is essential in many types of cancer for 
mediating multiple cellular functions, including cell 
survival, proliferation, migration and autophagy [29]. 

The Ras/Raf/MEK/ERK signaling pathway is also 
associated with tumor angiogenesis, as is seen with 
toluhydroquinone (2-methyl-1,4-hydroquinone), a 
marine-derived fungi, which reduces HUVEC angio-
genesis via the Ras/Raf/MEK/ERK cascade [39]. In 
this study, we observed that S1P enhanced Ras, Raf, 
MEK and ERK activation, while Ras, Raf, MEK and 
ERK inhibitors and their siRNAs inhibit S1P-induced 
PDGF-A expression. It appears that the Ras/ 
Raf/MEK/ERK signaling pathway is involved in S1P-
mediated PDGF-A expression and angiogenesis. AP-1 
has been indicated controls PDGF expression [31]. In 
current study, we also confirm AP-1  
inhibitor or c-Jun siRNA abolished S1P-promoted 
PDGF-A expression. Otherwise, KLF5 has been 
previously shown to regulate PDGF-A expression 
through HIF1α [40]. Whether HIF1α also involve 
S1P-controled PDGF-A production are needs further 
examination. 
 
The very poor prognosis for chondrosarcoma with 
metastatic disease makes it imperative that we can 
effectively prevent metastasis [41]. Our study shows that 
S1P enhances EPC angiogenesis in human chondro-
sarcoma, as a result of the upregulation of PDGF-A 
expression through the Ras/Raf/MEK/ERK/AP-1 sig-
naling pathway (Figure 6). Clearly, therapeutic inter-
ventions are needed that focus on the functioning of the 
S1P signaling pathway and its relationship with PDGF-A 
in chondrosarcoma.   

 

 
 

Figure 6. Schematic diagram summarizes the mechanisms of S1P-promoted tumor angiogenesis in chondrosarcoma. S1P 
facilitates PDGF-A production via the Ras/Raf/MEK/ERK/AP-1 signaling pathway in human chondrosarcoma cells and subsequently induces 
EPC angiogenesis. 
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MATERIALS AND METHODS 
 
Materials 
 
S1P was obtained from Avanti Polar Lipid Inc. 
(Alabaster, AL, USA). We obtained SphK1 
(GTX33516) antibody from Genetex (Irvine, CA, 
USA), Ras (SC-520), Raf (SC-133), MEK (SC-6250), 
ERK (SC-1647), PDGF-A (SC-9974), c-Jun (SC-
74543), p-Raf (SC-101791), p-ERK (SC-7383) and p-c-
Jun (SC-822) from Santa Cruz (Santa Cruz, CA, USA), 
and p-MEK (2338S) from Cell Signaling Technology 
(Danvers, MA, USA). ON-TARGETplus siRNAs were 
purchased from Dharmacon Research (Lafayette, CO, 
USA). SphK1 cDNA clone plasmid was purchased from 
OriGene (Rockville, MD, USA). Gibco-BRL Life 
Technologies (Grand Island, NY, USA) supplied fetal 
bovine serum (FBS), DMEM, α-MEM, and all other 
cell culture reagents. Promega (Madison, WI, USA) 
supplied the pSV-β-galactosidase vector and luciferase 
assay kits. The AP-1 luciferase plasmid was purchased 
from Stratagene (La Jolla, CA). All other chemicals or 
inhibitors were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). 
 
Cell culture 
 
The human chondrosarcoma cell line JJ012 was kindly 
supplied by Dr. Sean P. Scully’s laboratory at the 
University of Miami School of Medicine (Miami, FL, 
USA). The human chondrosarcoma cell line SW1353 
was purchased from the American Type Culture 
Collection (Manassas, VA, USA). Chondrosarcoma cell 
culture conditions were recorded as previously 
described [42]. Human EPCs were isolated and cultured 
by a standard method as previously described [43, 44]. 
This study was approved by the Institutional Review 
Board of Mackay Medical College, New Taipei City, 
Taiwan (P1000002). 
 
Preparation of conditioned medium (CM) 
 
Human chondrosarcoma cells were plated in 6-well 
plates at a density of 2×105 cells/well in culture medium, 
grown to 80% confluence. Human chondrosarcoma cells 
were pretreated with pharmacological inhibitors, or 
transfected with siRNA followed by stimulation with S1P 
for 24 h. After treatment, cells were washed and changed 
to serum-free medium. CM was then collected 2 days 
after the change of medium and stored at −80°C until use. 
 
EPC tube formation assay 
 
The tube formation assay was performed using 
Matrigel-coated (BD Biosciences, Bedford, MA, USA) 
48-well plates. EPCs were resuspended at a density of 2 

× 104/200 μL in culture medium (50% EGM-MV2 
medium and 50% chondrosarcoma cell CM) and added 
to the wells. Measurement of tube formation examined 
the differentiation and formation of capillary-like 
tubules on EPCs, according to previously described 
procedures [45, 46].  
 
EPC migration assay 
 
Transwell inserts (8-μm pore size; Costar, NY, USA) 
were used for migration determination. Approximately  
5 × 103 cells were added to the upper chamber in 200 μL 
of 10% FBS MV2 complete medium. The lower chamber 
contained 150 μL 20% FBS MV2 complete medium and 
150 μl CM. EPC migratory ability was assayed using the 
method from our previous works [45, 47].  
 
Western blot analysis 
 
Chondrosarcoma cells were seeded on 6-well plates at a 
density of 3×105 cells/well, grown to 80% confluence 
and then handle different conditions according to 
experimental needs the next day. Cell lysates underwent 
electrophoresis with SDS-PAGE and were transferred to 
PVDF membranes according to the method described in 
our previous studies [48, 49]. After blocking the blots 
with 4% bovine serum albumin, the blots were treated 
with primary antibody and then peroxidase-conjugated 
secondary antibody. Visualizations of the blots were 
accomplished by enhanced chemiluminescence using 
the UVP Biospectrum system (UVP, Upland, CA, 
USA). 
 
Quantitative real-time PCR (qPCR) of mRNA 
 
Human chondrosarcoma cells were plated in 6-well 
plates at a density of 2×105 cells/well in culture 
medium, grown to 80% confluence and then handle 
different conditions according to experimental needs 
the next day. Total RNA was extracted from chondro-
sarcoma cells using TRIzol reagent. qPCR analysis 
was conducted according to an established protocol 
[50, 51]. 
 
Ras kinase activity 
 
Chondrosarcoma cells were seeded on 6-well plates at 
a density of 3×105 cells/well, grown to 80% 
confluence. Cells were treated with S1P then the 
activation of Ras (Ras-GTP) was detected using the 
Ras-binding domain of Raf-1 to pull down active Ras 
(Ras Activation Assay Kit; Millipore, CA, USA), 
according to the manufacturer's recommendations. 
Following separation by SDS-PAGE, proteins were 
transferred to membranes that were probed with an 
anti-RAS antibody [34]. 
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siRNA transient transfection and luciferase reporter 
assay 
 
Chondrosarcoma cells were seeded on 12-well plates at a 
density of 1×105 cells/well, grown to 80% confluence and 
transfected the next day. Cells were co-transfected with 
0.8 μg AP-1-luciferase reporter gene construct and 0.4 μg 
β-galactosidase using Lipofectamine 2000, as per the 
manufacturer's instructions. After 24 h of transfection, the 
cells were exposed to S1P. Luciferase activity was 
determined using the luciferase assay kit [52, 53]. 
 
Statistical analysis 
 
All data are presented as means ± standard errors of the 
means (SEMs) of at least three independent 
experiments. The Student’s t-test determined statistical 
differences between samples and the Bonferroni post 
hoc procedure was performed for a one-way analysis of 
variance (ANOVA) of statistical comparisons between 
more than two samples, and p-values of less than 0.05 
were considered significant. 
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SUPPLEMENTARY MATERIALS 
 
 

 
 

Supplementary Figure 1. S1P promotes angiogenic factors expression in human chondrosarcoma cells. Chondrosarcoma cells 
were incubated with S1P (10 μM) for 24 h; mRNAs expression was examined by qPCR. 

 

 
 

Supplementary Figure 2. S1P increases EPC tube formation. EPCs were incubated with S1P (10 μM) for 24 h; EPC tube formation was 
measured.
 


