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INTRODUCTION 
 

Apolipoprotein E4 (ApoE4) is the major genetic risk 

factor for late-onset Alzheimer’s disease (AD) [1]. 

ApoE4 carriers have reduced glucose metabolism in 

brain and this reduction may develop at earliest stage of 

amyloid-β deposition [2–10]. We and others reported 

ApoE4 was associated with reduced ATP levels in the 

cerebral cortex and this reduction in cerebral energy 

production was detrimental to learning and memory in 

mouse models of AD [11–14]. In our previous studies, 

we found that a mitochondrial protein, sirtuin 3 (Sirt3), 

was down-regulated in human AD postmortem brains  

 

when compared to non-demented subjects [15, 16]. 

Increasing Sirt3 expression by genetic engineering 

improved energy production and neuroprotection 

against oligo-amyloid β-42 induced hypometabolism in 

ApoE4 transgenic mice [17, 18]. However, how ApoE 

affects mitochondrial function and Sirt3-related 

pathway remains unclear. 

 

Peroxisome proliferator-activated receptor gamma 

coactivator-1 alpha (PGC-1α) is a transcriptional 

activator of Sirt3 expression [19, 20]. Exercise and 

fasting activate PGC-1α and Sirt3 and lead to enhanced 

mitochondrial function [21–23]. Thus, we hypothesized 
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ABSTRACT 
 

Cerebral hypometabolism is a pathophysiological hallmark of Alzheimer’s disease (AD). Our previous studies 
found that a mitochondrial protein, sirtuin3 (Sirt3), was down-regulated in human AD postmortem brains. Sirt3 
protected neurons against oligo-amyloid β-42 induced hypometabolism in human Apolipoprotein E4 (ApoE4) 
transgenic mice. However, how ApoE affects mitochondrial function and its proteins such as Sirt3 remains unclear. 
We characterized and compared levels of Sirt3 and peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC-1α, a Sirt3 activator), oxidative stress proteins, synaptic proteins, cognitive task 
performance and ATP production in 12-month old human ApoE4 and ApoE3 transgenic mice, and assessed 
changes in Sirt3 expression on cellular metabolism in primary neurons from ApoE4 and ApoE3 transgenic mice. 
Compared to ApoE3 mice, Sirt3 and PGC-1α levels were significantly lower in ApoE4 mice. Learning and 
memory, synaptic proteins, the NAD+/ NADH ratios, and ATP production were significantly lower in ApoE4 mice 
as well. Sirt3 knockdown reduced the oxygen consumption and ATP production in primary neurons with the 
human ApoE3, while Sirt3 overexpression protected these damages in ApoE4 neurons. 
Our findings suggest that ApoE4 suppresses mitochondrial function via the PGC-1α- Sirt3 pathway. This 
discovery provides us novel therapeutic targets for the treatment and prevention of AD. 
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that ApoE4 down-regulates the PGC-1α-Sirt3 signal 

pathway and subsequently affects mitochondrial function. 

 

To test this hypothesis, we characterized and compared 

protein levels of Sirt3 and PGC-1α, oxidative stress 

proteins, synaptic proteins, cognitive task performance 

and ATP production in human ApoE4 and ApoE3 

transgenic mice, and assessed the effects of experimental 

modifications in Sirt3 expression on cellular metabolism 

in primary neurons from ApoE4 and ApoE3 transgenic 

mice. 

 

RESULTS 
 

ApoE regulates the PGC-1α-Sirt3 pathway 

 

We used transgenic mice that express homozygous 

human ApoE4 and age-matched human ApoE3 to test 

brain levels of Sirt3 and PGC-1α. We selected 12-

month-old ε4 mice since they had shown cognitive 

impairment in previous studies [12]. In temporal lobes, 

PGC-1α levels in ApoE4 mice (0.68± 0.06) were 

decreased compared to ApoE3 mice (1.01± 0.10, p= 

0.010, Figure 1A and 1B). Sirt3 levels in ApoE4 mice 

(0.69± 0.05) were decreased compared to that in ApoE3 

mice (0.89± 0.04, p= 0.007, Figure 1A and 1C). Since 

Sirt3 is an NAD+-dependent protein, which deacetylates 

and activates multiple substrates that are related with 

ATP production [24–26], we tested the effect of ApoE4 

on NAD+/ NADH ratio and ATP production. The NAD+/ 

NADH ratio was reduced in ApoE4 mice (3.22± 0.26) 

compared with ApoE3 mice (4.34± 0.26, p= 0.009, 

Figure 1D). So were ATP levels in ApoE4 mice (34380± 

2438), compared with age-matched ApoE 3 mice 

(46300± 2419, p= 0.004, Figure 1E). 

 

ApoE regulates oxygen consumption and ATP 

production via Sirt3 

 

We cultured primary cortical neurons from newborn 

ApoE4 or ApoE3 mice and transfected them by 

lentivirus, encoding a Sirt3 shRNA (Sirt3 knockdown) 

or a Sirt3 cDNA (Sirt3 overexpression) sequence. Sirt3 

is an important mitochondrial protein which regulates 

mitochondrial bioactivity. The oxygen consumption rate 

of the cell is a hallmark indicator of normal cellular 

function, and it is used as a parameter to study 

mitochondrial function. With Sirt3 overexpression or 

Sirt3 knockdown, we measured the oxygen consumption 

rate and ATP production of ApoE4 or ApoE3 neurons. 

The amplitude and slope of the curves of oxygen 

consumption kinetics were studied. The amplitude was 

 

 
 

Figure 1. ApoE regulates the PGC-1α-Sirt3 pathway. Temporal lobes were freshly collected from 12-month-old ApoE4 mice and age-

matched ApoE3 mice. (A–C) The levels of PGC-1α and Sirt3 were evaluated and normalized with an internal control (β-actin) in Western blot. 
(D) NAD+/ NADH ratio was measured and analyzed using the NAD+/ NADH assay kit. (E) ATP levels were measured using the ATP assay kit and 
normalized with brain tissue wet weight (Luminescent counts/ brain tissue weight). N= 8 for each group, *p< 0.05, **p< 0.01. 
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defined as the difference between the max and the min in 

the curves of oxygen consumption kinetics. The 

amplitude represented the capacity of mitochondrial 

function, the bigger the amplitude, the stronger the 

capacity of mitochondrial function. The slope of oxygen 

consumption curves represented mitochondrial 

respiratory speed, the less the slope, the faster the 

mitochondrial respiratory speed. A higher amplitude and 

lower slope indicate a stronger cellular oxygen 

consumption rate. The oxygen consumption rate was 

reduced in ApoE4 neurons and ApoE3 neurons with 

Sirt3 knockdown; whereas it was improved in ApoE4 

neurons with Sirt3 overexpression (Figure 2A). The 

group difference in the oxygen consumption rate was 

obvious in the amplitude (ApoE3: 780± 36.5, ApoE3+ 

Sirt3 shRNA: 641.4± 58.1, ApoE3+ Sirt3 cDNA: 820.7± 

72.6, ApoE4: 609.3± 16.4, ApoE4+ Sirt3 shRNA: 

538.3± 72.1, and ApoE4+ Sirt3 cDNA: 702.8± 79.7, 

Figure 2B); and in the slope (ApoE3: 7.69± 1.12, 

ApoE3+ Sirt3 shRNA: 7.20± 1.93, ApoE3+ Sirt3 

cDNA: 6.08.± 1.03, ApoE4: 11.66± 2.87, ApoE4+ Sirt3 

shRNA: 12.70± 1.43, and ApoE4+ Sirt3 cDNA: 

9.41±1.75, Figure 2C). There were significant difference 

between ApoE3 and ApoE4 (p< 0.01), ApoE4 and 

ApoE4+ Sirt3 cDNA (p< 0.05) and to a less degree 

ApoE3 and ApoE3+ Sirt3 shRNA. Finally, when Sirt3 

was knocked down in ApoE3 neurons, the ATP level 

was decreased (Figure 2D, p<0.01); and vice versa, 

when Sirt3 was overexpressed in ApoE4 neurons, the 

ATP level was increased (Figure 2D, p<0.01). These 

data provide strong evidence that ApoE regulates energy 

metabolism via Sirt3. 

 

ApoE regulates mitochondrial oxidative stress 

 

Mitochondria regulate reactive oxygen species 

production. We measured oxidative stress proteins 

SOD2 and Foxo3a. The protein levels of SOD2 were 

88.4± 7.0 (ApoE3) and 63.5± 4.9 (ApoE4); and Foxo3a 

were 46.1± 2.1 (ApoE3) and 30.8± 2.7 (ApoE4) (Figure 

3A–3C). SOD2 and Foxo3a were down-regulated in 

ApoE4 mice (p< 0.05). 

 

 
 

Figure 2. ApoE regulates oxygen consumption and ATP production via Sirt3. Primary cortical neurons from new born ApoE4 or 
ApoE 3 mouse brain were transfected by a lentivirus encoding Sirt3 shRNA (Sirt3 knockdown) or Sirt3 cDNA (Sirt3 overexpression). The 
oxygen consumption kinetics was analyzed. (A) Oxygen consumption curves; (B) Amplitude of oxygen consumption curves; (C) Slope of 
oxygen consumption curves. (D) ATP levels were measured in different groups (n= 8 in each groups, ** p< 0.01 compared to ApoE3 neurons, 
# p< 0.05 and ## p< 0.01 compared to ApoE4 neurons). 
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ApoE4 impairs synaptic integrity and cognitive 

function 

 

Since learning and memory are dependent on synaptic 

integrity, we measured the levels of synaptic-related 

proteins, PSD95 and synaptophysin. Both PSD95 

(ApoE3: 0.75± 0.04 vs. ApoE4: 0.55± 0.04, p= 0.003, 

Figure 4A) and synaptophysin (ApoE3: 1.11± 0.06 vs. 

ApoE4: 0.78± 0.07, p=0.004, Figure 4B) were 

significantly reduced in ApoE4 mice. ApoE4 impaired 

the learning and memory ability of mice in the MWM 

task. The escape latency measures how fast the  

mouse can find the platform to escape out of the  

water maze. ApoE3 mice were faster than ApoE4 mice 

in learning after the second day of training (p< 0.01, 

Figure 4C), suggesting a faster learning curve. They 

also spent more time in the target quadrant even  

after the platform was removed, suggesting better 

delayed recall (40.8± 3.1s vs. 31.5± 2.1s, p= 0.018, 

Figure 4D). 

 

 
 

Figure 3. ApoE regulates mitochondrial oxidative stress. Brain tissues (temporal lobe) were collected from 12-month old ApoE3 and 

ApoE4 mice. Proteins involved in mitochondrial oxidative stress were measured and normalized with an internal control (β-actin) in Western 
blot. (A) Representative Western blots for SOD2 and Foxo3a were shown. (B) SOD2 and (C) Foxo3a protein levels were analyzed and plotted 
(n= 6-9 per group, * p< 0.05). 

 

 
 

Figure 4. ApoE4 impairs synaptic integrity and cognitive function. Brain tissues (temporal lobe) were collected from 12-month old 
ApoE3 and ApoE4 mice. Synaptic proteins were measured and normalized with an internal control (β-actin) in Western blot.  
(A) Representative Western blot and plotted data of PSD95; (B) Representative Western blot and plotted data of Synaptophysin (n= 6-9 per 
group, **p< 0.01). The ability of learning and memory of ApoE4 mice and ApoE3 mice were also evaluated in MWM, the data of performance 
were analyzed for (C) the escape latency during 4-day learning period; (D) the time spent at the target quadrant on day 5 (n=11-12, * p< 0.05, 
**p< 0.01). 
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DISCUSSION 
 

Our previous studies reported that mitochondria and its 

protein such as Sirt3 are important in regulating cerebral 

hypometabolism [17, 18]. In this study, we used human 

ApoE4 and ApoE3 targeted gene replacement mice, and 

genetically modified primary neurons from these 

transgenic mice to demonstrate that ApoE4 reduced ATP 

production by regulating the PGC-1α-Sirt3 signal 

pathway. This triggered mitochondrial oxidative stress 

and subsequently damaged synapses and caused 

cognitive impairment. This is the first report that 

identified a close link between ApoE4 and the PGC-1α-

Sirt3 pathway. 

 

PGC-1α expression was found to be decreased along 

with the clinical progression of dementia in the AD 

postmortem brain. This reduction in PGC-1α paralleled 

with an accumulation of amyloidogenic Aβ1-42 and 

Aβ1-40 peptides and phosphorylated tau proteins in 

cultured neurons derived from Tg2576 AD mice and in 

monkeys [27, 28]. Injection of PGC-1α in APP23 mice 

attenuated Aβ accumulation through reducing β-APP 

cleaving enzyme (BACE1) [29]. In human ApoE 

transgenic mice, genetic Ingenuity pathway analysis 

indicated that the PPAR-γ/ PGC-1α signaling pathway 

was activated in the ApoE2 brain and inhibited in the 

ApoE4 brain. In addition, PGC-1α overexpression 

ameliorated ApoE4-induced deficits in glycolysis and 

mitochondrial respiration [30]. PGC-1α activates Sirt3 

expression [19, 20]. Because Sirt3 is NAD+-dependent, 

Sirt3 activity could be regulated by regulating the NAD+ 

level. ApoE4 expressing neurons had decreased the 

NAD+/NADH ratio, down regulated several electron 

transport chain (ETC) subunits, compromised 

mitochondrial function and reduced the ATP production 

[31]. Low ATP levels were found in the cortices of 

ApoE4 mice [13, 14]. ApoE4-induced reduction in 

NAD+ impedes Sirt3 to execute its deacetylase activity. 

Sirt3 knockout mice demonstrate hyperacetylated 

mitochondrial proteins and low levels of many ETC 

subunits [32]. On the other hand, activation of the Sirt3 

energy pathway can improve total ATP production [18, 

24–26]. These data demonstrate that ApoE regulates 

oxygen consumption and ATP production via the PGC-

1α-Sirt3 pathway. 

 

Mounting evidence indicates that ApoE4 may interfere 

with Aβ clearance [2, 3]. However, in aged ApoE4 

transgenic mice, although cognitive abilities were 

impaired, no amyloid plaques were observed despite an 

increased total Aβ burden [11, 12]. Thus, other than Aβ, 

synaptic integrity likely plays an important role in 

preservation of memory and learning in this model. In 

this study, we have shown both PSD 95 and 

synaptophysin were down-regulated in ApoE4 mice. 

Sirt3 also mediated neuroprotective effects in neurons by 

regulating oxidative stress [33, 34]. We speculate Sirt3 

exerts protective effects on synapses by reducing 

oxidative stress. Further studies are warranted to 

investigate the direct effect on Sirt3 on oxidative stress 

and synapses by using Sirt3 and ApoE double transgenic 

mice. 

 

In conclusion, ApoE4 impairs mitochondrial biogenesis, 

causes oxidative stress and damages synapses to lead to 

cognitive deficits. Sirt3 overexpression improves 

mitochondrial function and ATP production in ApoE4 

mice. Take together with our previous studies, these 

data provide further evidence that the PGC-1α-Sirt3 

pathway plays a critical role in regulating ApoE4-

induced cerebral hypometabolism and it may provide a 

novel strategy for the treatment and prevention of AD. 

 

MATERIALS AND METHODS 
 

ApoE transgenic mice 

 

Transgenic mice carrying either human ApoE4 or 

ApoE3 were purchased from Taconic Biosciences, Inc. 

(Hudson, NY). They were generated as described 

previously [35, 36]. Briefly, mice deficient in ApoE 

(knockout, KO) were generated and maintained in the 

C57Bl/6 background. ApoE transgenic mice were 

generated by using microinjection of allele-specific 

human ApoE4 or ApoE3 genomic fragments to establish 

founders. The founders were then bred to ApoE KO 

mice lacking a functional mouse ApoE protein. These 

transgenic lines have been shown to transcribe and 

express appropriate human ApoE3 and ApoE4 protein in 

brain, liver, and other tissues without contamination of 

the endogenous mouse ApoE gene. We used 12-month-

old homozygous mice for our experiments. 

 

All mice were housed in a temperature and humidity-

controlled vivarium, kept on a 12 hour dark/light cycle, 

and had free access to food and water. All experimental 

procedures were approved by the Institutional Animal 

Care and Use Committee of the Barrow Neurological 

Institute and performed according to the Revised Guide 

for the Care and Use of Laboratory Animals. 

 

Learning and memory tests 

 

Spatial learning was assessed by the Morris water maze 

(MWM) task as described previously [37]. We labeled 

all mice with series number randomly. The person who 

performed these water maze tests was blinded to the 

number assignment. Briefly, each mouse was introduced 

into a circular pool and allowed to swim freely. The time 

(escape latency) required to reach the platform located in 

northeast quadrant, as well as the swimming speed was 
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recorded in each trial. Once the mouse located the 

platform, it was permitted to stay on it for 10 seconds. If 

the mouse did not locate the platform within 120 

seconds, it was placed on the platform for 10 seconds. 

The mouse was given four trials per day for 4 days with 

an inter-trial interval of 20 minutes. Each trial was 

initiated by randomly placing a mouse in one of the four 

starting locations. Escape latency and swimming speed 

were collected and analyzed using EthoVision® 3.1 

tracking software (Noldus Information Technology Inc., 

Leesburg, VA). On the 5th day, a single probe trial was 

carried out. In this trial, the platform was removed and 

each mouse was placed from southwest quadrant of the 

pool and allowed to swim for 120 seconds. The time 

spent in the target quadrant (northeast) was collected and 

calculated using EthoVision® 3.1 tracking software. 

 

Western blot 

 

Fifty µg total proteins were used for western blotting. 

Primary antibodies were the following: anti-Sirt3 

(#5490S, Cell Signaling Technology Inc., Danvers, 

MA), anti-peroxisome proliferator activated receptor 

gamma coactivator 1 alpha (PGC-1α, #NBP1-04676, 

Novus Biologicals Inc., Littleton, CO), anti-superoxide 

dismutase 2 (SOD2, Cell Signaling, Davers, MA), anti-

forkhead box protein O3a (Foxo3a, Cell Signaling, 

Davers, MA), anti-postsynaptic density protein 95 

(PSD-95, #3450, Cell Signaling Technology Inc.), anti-

synaptophysin (#12270, Cell Signaling Technology 

Inc.), anti-β-actin (Santa Cruz, Dallas, TX), IRDye 

800CW and IRDye 680CW antibodies (LI-COR 

Biosciences, Lincoln, NE). Immunoreactivity signals 

were quantified using Odyssey CLx. Protein levels were 

presented percentage relative to β-actin, an internal 

control. 

 

ATP measurement 

 

Fresh mouse temporal brain tissue (20 mg) was collected 

and homogenized in 200 ul 2M perchloric acid on ice. 

Samples were kept on ice for 30 minutes. After the 

samples were centrifuged, the supernatant was collected 

and diluted the volume to 1000ul with ATP assay buffer. 

Then, the supernatant was transferred into two new 

500ul tubes. Supernatant were neutralized to a pH 

between 7.0 and 7.6, and excess perchloric acid was 

precipitated with ice-cold potassium hydroxide (2M). 

After neutralization and centrifugation again, new 

supernatant were collected for ATP assay. For primary 

neurons growing on 96-well plates, they were treated 

with detergent and reconstituted substrate solution 

according to the manufacturer’s protocol. ATP levels 

were tested using a Luminescent ATP detection assay kit 

(#ab83355, Abcam, Cambridge, MA) according to the 

manufacturer’s protocol. 

NAD+ and NADH measurement 

 

Fresh mouse temporal brain tissue (20 mg) was collected 

and homogenized in 400ul NAD+/ NADH extract buffer 

on ice. After the samples were centrifuged, the supernatant 

was collected into a new tube and deproteinized with 

perchloric acid (4M). After a second centrifuge and 

second supernatant transfer into a new tube, the 

supernatant were neutralized to a pH between 7.0 and 7.6 

with ice-cold potassium hydroxide (2M). Then, samples 

were centrifuged and the supernatant were collected for 

total NAD+ and NADH assay. Total NAD+ and NADH 

were tested using an NAD+/ NADH assay kit (ab65348, 

Abcam) according to the manufacturer’s protocol. NAD+/ 

NADH ratio was calculated based on the value of total 

NAD+ and NADH (NAD+ = total NAD+ – NADH). 

 

Primary neuron culture 

 

Primary cortical neurons were prepared from new-born 

pups of transgenic mice that carry either human ApoE4 

or ApoE3. Cortical neurons were plated on poly-D- 

lysine coated glass coverslips in Neurobasal-media 

supplemented with 0.5% (w/v) L-glutamine, 1% 

Penicillin-Streptomycin 5% fetal bovine serum and 2% 

B27 supplement (Invitrogen) and medium was partially 

replaced every 4 days [37]. Primary neurons were 

transfected with lentivirus with Sirt3 cDNA or shRNA on 

day 7 [15]. On day 14, oxygen consumption and ATP 

levels were evaluated with MitoXpress Xtra-oxygen 

consumption assay and Luminescent ATP Detection 

Assay Kit. 

 

Vector construction and transfection 

 

Over-expression or knock down of Sirt3 was performed 

as previously described [38]. Briefly, we subcloned 

exogenous mouse Sirt3 cDNA sequence into Lenti-

CMV-GFP vector to over-express Sirt3. A short 

sequence consisting of 19 nucleotides targeting Sirt3 

location 764 was constructed into an OmicsLink RNA 

expression clone in order to effectively knock down the 

expression of Sirt3. The shRNA vector, Lenti-Sirt3 

vector, and a control vector were packaged into a third 

generation Lenti-Virus transfection system. After the 

cortical neurons matured in a petri dish for 7 days, we 

added transfecting viral particles at a multiplicity 100 

infection. All vectors contain sequence of eGFP so the 

effectiveness of transfection can be visualized after 2-5 

days. The levels of knocking down and over-expression 

were confirmed by Western blot [15]. 

 

Oxygen consumption test in primary neurons 

 

Oxygen consumption of primary cultured neurons was 

tested on day 14 using MitoXpress Xtra-oxygen 
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consumption assay (MX-200, Luxcel biosciences, 

Ireland) as previously described [37, 38]. The probe 

fluorescence intensity of every well on 96 wells plate was 

recorded every 5 minutes for total 60 minutes on TECAN 

Spectra Fluor Detector (Tecan Group Ltd. Switzerland). 

The fluorescence signal intensity correlated with 

neurons’ oxygen consumption of wells. For 96 wells 

plate, fluorescence intensity based on every well (n=6-8 

wells per group) from 0 minutes to 60 minutes were 

collected. Then, all data was analyzed using a Nonlinear 

regression (Curve fit)-Boltzmann sigmoidal on GraphPad 

Prism 7.03 software. Through Boltzmann sigmoidal 

analysis, the oxygen consumption curve (intensity) was 

produced and the value (the slope, maximal fluorescence 

intensity and minimal fluorescence intensity) were 

calculated for every well and group. The amplitude was 

recalculated through maximal fluorescence intensity 

minus minimal fluorescence intensity and represented the 

capacity of mitochondrial function. The slope represented 

mitochondrial respiratory speed. 

 

Statistical analysis 

 

We applied unpaired T-test to analyze data from two 

groups and one way ANOVA with Tukey’s multiple 

comparison tests to compare values across multiple 

groups using GraphPad Prism version 7.03. All data 

were expressed as the mean ± SEM. Statistical 

significance was set at p< 0.05. 
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