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INTRODUCTION 
 

Disruption of the glucose metabolic system is nearly 

universal in aging and as this primary metabolic process 

falters, a negative energy balance occurs, as ATP levels 

reduce while reactive oxygen species (ROS) levels 

increase. This simultaneous loss of the capacity to 

maintain energetic processes in the face of increasing 

oxidative stress will eventually overwhelm cellular 

antioxidant capabilities, resulting in oxidative damage 

of DNA, one of the most well-known and recognized 

hallmarks of aging [1]. Many age-related disorders that 

affect our population, such as neurodegeneration, type 2  

 

diabetes mellitus (T2DM) and cardiovascular disorders, 

are caused by these hallmarks [2]. 

 

Stress-induced DNA damage is arguably the most 

prominent underlying cause of aging and in turn may be 

one of the primary players in almost all age-related 

disorders [3]. This hypothesis has been supported by the 

investigation of accelerated aging disorders, i.e. 
Hutchinson–Gilford progeria syndrome, Ataxia 

Telangiectasia and Werner syndrome, which have one 

commonality, they are a direct effect of DNA damage 

response (DDR) and repair disruption [4–8]. As such, 

therapeutic amelioration of this stress-induced DNA 
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ABSTRACT 
 

DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related 
disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays 
a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated 
that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-
targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed 
understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging 
therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in 
oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors 
on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins 
linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, 
and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and 
repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate 
cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related 
damage accumulation. 
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damage could be very effective for treating age-related 

disorders. We recently identified the G protein-coupled 

receptor (GPCR) associated protein, GIT2, as a potential 

keystone in aging [9]. Further work demonstrated that 

this receptor scaffolding protein also plays a role in 

oxidative stress responses [10], and is crucial for 

integrating several components of the DDR [11]. GIT2 

knockout (GIT2KO) mice showed an increased 

vulnerability to DNA damage [12], displayed symptoms 

of T2DM [13], showed signs of ‘inflammaging’ [14, 15], 

and most importantly, showed accelerated aging 

compared to their wild-type littermates [12]. While this 

makes GIT2 an interesting target for treating multiple 

age-related disorders, GIT2 is a scaffolding protein and is 

therefore difficult to target directly. Typically, drugs are 

designed to be directed at enzymes, ion channels or 

receptors. However, as GIT2 is a GPCR interacting 

protein, it is highly likely that we can identify a receptor 

that is strongly associated with the GIT2 system. Our 

recent work has shown that GPCRs possess a potent 

capacity to control transcriptional and translational 

efficacies, often via non-G protein signaling activities 

[16, 17]. This likely contributes to their ability to 

generate and control the integrity and coherency of 

cellular signaling pathways, via the coordinated 

regulation of cascade proteins [18–20]. As there are 

likely to be strong transcriptional co-relationships 

between proteins linked via a common signaling 

function, it is possible that there are dedicated GPCRs 

that possess a profound link to specific signaling proteins 

via correlated expression. This ability to link an 

important target signaling protein to a tractable drug 

target, such as a GPCR, holds tremendous promise for 

the generation of intelligently-targeted therapeutics for 

age-related disorders. In this study, we investigated a 

receptor that shows an expressional and functional 

relationship with GIT2, the Relaxin Family Peptide 3 

Receptor (RXFP3).  

 

RXFP3 has been implicated in stress response [21], 

anxiety [22], depression [22, 23], feeding [24–27], 

arousal [24] and alcohol addiction [28] using 

RXFP3/RLN3 deficient mouse models. The first 

indications linking the RXFP3/RLN3 system to stress 

and metabolic control, was through its presence in the 

hypothalamic regions involved in the hypothalamic-

pituitary-adrenal axis [27, 29–31] and the paraventricular 

nucleus [26, 27]. The relationship to stress has further 

been supported by the activation of RLN3 containing 

neurons in the nucleus incertus after administration of 

corticotropin releasing factor. The association to anxiety 

and depression was discovered as RLN3 expressing 

neurons also express inhibitory serotonin type 1A (5-

HT1A) receptors, suggesting functional interactions 

between these two systems [32]. There is currently 

emerging evidence linking anxiety to accelerated aging, 

as several accelerated aging mouse models display 

anxiety [12, 13]. In addition, we have previously shown 

that RXFP3 expression is significantly affected when an 

aging-associated alteration occurs in the affect-

modulating dopaminergic functionality in mice [33]. 

Thus, RXFP3 may be associated with controlling aging-

related functions in addition to its anxiolytic and anti-

depressant effects. Furthermore, RXFP3 may represent 

an important neurochemical markers of depression in 

Alzheimer's disease (AD), where Lee et al. demonstrated 

an increase in immunoreactivity in depressed AD patients 

[22]. Given our previous work concerning the role of 

GIT2 in the regulation of the aging process, the 

determination of a therapeutically targetable GIT2-

RXFP3 synergistic signaling system may provide a basis 

for the design of novel GIT2-RXFP3 based therapeutics 

for the treatment of aging-related disorders. 

 

RESULTS 
 

Coordinated mRNA and protein expression profiles 

between GIT2 and RXFP3 

 

In this study, multiple tissues, from the central nervous 

system (cortex, hippocampus and hypothalamus) and 

the periphery (pancreas and liver) were collected from 

male GIT2KO mice for mRNA expression profiling 

(Figure 1A), where we found a strong connection 

between GIT2 and RXFP3 expression, replicating what 

we have previously seen for murine GIT2 heterozygous 

KO hypothalamic extracts [34]. To validate these 

mRNA expression findings, we performed western blots 

to assess RXFP3 protein expression patterns in multiple 

GIT2KO mice (Figure 1B). Again, we found that in 

response to a diminution of GIT2 expression, there was 

a significant decrease in the levels of RXFP3 in all the 

assessed tissues. Additionally, upon introduction of a 

cDNA clone for human RXFP3 to either human 

neuronal SH-SY5Y or classical HEK293 cells, we 

found a significant increase in the expression of human 

GIT2 (Figure 1C).  

 

Previously, we showed that hypothalamic functionality 

was altered in GIT2KO mice [13]. Thus, we investigated 

whether functional stimulation of endogenous RXFP3 at 

endogenous expression levels in murine hypothalamic 

neuronal GT1-7 cells with its cognate ligand relaxin 3 

(RLN3, 1-100 nM, 6hrs of stimulation) would affect 

GIT2 expression. We found a significant dose-dependent 

elevation of GIT2 expression (Figure 1D). Hence, both 

in response to enhanced constitutive receptor activity 

(induced by augmented ectopic expression – Figure 1C) 

and ligand stimulation (Figure 1D), the active RXFP3 

state seems to be functionally associated with GIT2 

expression levels. In a previous study, we showed that 

GIT2 expression levels are associated with oxidative 
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stress, diabetic pathologies, advancing age and DNA 

damage [9–11, 13]. These data suggest that the GIT2-

RXFP3 relationship may represent a molecular axis 

important for regulation of age-related damage. Thus, 

we next investigated further functional links between 

these two proteins with relation to oxidative stress and 

DNA damage. 

 

RXFP3 constitutive activity regulates the expression 

of DNA damage response proteins 

 

Recent research has demonstrated that in addition to 

short-term intermediary cell metabolism events mediated 

by G protein activation, GPCRs such as RXFP3 can 

regulate the expression profiles of multiple downstream 

signaling proteins. This occurs via the creation of more 

stable signaling entities, such as intricate G protein-

independent multi-protein ‘receptorsome’ complexes  

[17, 35]. The human (and murine) RXFP3 is a relatively 

unique receptor with respect to its basal activity status. It 

bears a pro-activating natural mutation in its ultra-

conserved Asp-Arg-Tyr (DRY) amino acid triple motif, 

an Asp to Thr alteration, found at the juxtamembrane 

region of the second intracellular loop (Supplementary 

Figure 1A, 1B). This natural mutation increases its ligand 

independent activity [36]. Therefore, RXFP3 likely 

possesses a range of diverse signaling functions in the 

absence of its cognate ligand.  

 

To assess these functions, likely generated by an 

ensemble of stably reinforced receptorsome structures, 

we used a stepwise ectopic expression process for 

generating the broadest possible range of ‘active’ 

receptorsome complexes, which we termed a

 

 
 

Figure 1. Discovery of RXFP3 as a possible controller for GIT2, identified through an expressional relationship. (A) Using 

transcriptome profiling, we investigated the expression levels of RXFP3 in GIT2-knock out (GIT2KO) mice (n=4). Both in the central nervous 
system (CNS) (cortex, hippocampus, and hypothalamus) and in peripheral tissues (pancreas, and liver) RXFP3 expression level was decreased 
compared to Wild-type (WT) littermates (n=4), GAPDH expression was shown to be stable as a control. (B) These results were replicated 
using western blotting, actin loading control was used. (C) Through transient transfection, RXFP3 was over expressed in SH-SY5Y and HEK293 
cells at 1 and 2μg, as control cells were also overexpressed with an empty vector (pcDNA3). Actin was used as a loading control (n=3). A 
specific expression increase for GIT2 was seen after overexpression of RXFP3 in both cell types. (D) Stimulation of GT1-7 cells using the 
endogenous ligand Relaxin 3 (RLN3), showed a dose dependent increase in GIT2 expression, with increasing levels of RLN3 (n=3). Data 
represent the means ± SEM (standard error of the mean). Statistical analyses (Student’s t-test) were performed using GraphPad Prism 
version 7.0 (GraphPad Software, San Diego, CA, USA). Significance level is indicated in each figure as *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 
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‘constellation curve’ [37–39]. Without an unprecedented 

knowledge of receptorsome composition, or range of 

sub-state-selective or biased ligands, the ability to 

selectively induce distinct-signaling receptorsomes can 

only be achieved using such an expression-level variation 

protocol. By increasing expression levels, the range of 

receptorsomes will likely increase the diversity of distinct 

RXFP3 receptorsomes incrementally, revealing 

expression-specific function actions, until a saturation 

level is reached. As a gestalt readout of these distinct 

receptor forms, we employed a proteomic screening 

assessment of cellular alterations in response to the 

different RXFP3 receptorsomes, analogous (although less 

detailed) to a perturbagen ‘constellation’ process with the 

GIT2 scaffolding protein to assess which signaling 

pathways it was associated with [11]. In this current 

study, we performed a ‘constellation’ experiment in 

HEK293 cells, where we ectopically expressed an 

ascending level of an N-terminally 3xHA-tagged human 

RXFP3. Selective western-blot analyses specific for HA 

epitope tag (RXFP3) confirmed the effective 

constellation expression variance of the human RXFP3 

receptor clone (Figure 2A). Using both anti-native 

RXFP3 antibody measurements and our quantitative 

mass spectrometric data we found that even a higher 

expression level of RXFP3 (5 µg) only engendered a 

relatively modest increase in total cellular RXFP3 

content (1.5-2-fold increase). It is likely that such modest 

alterations are a) relatively within normal physiological 

expression ranges and b) more akin to the potentially 

elevated levels of RXFP3 that may be engineered by the 

cells after protracted periods of stressor exposure as is 

likely in the aging process. 

 

We next assessed, in an unbiased manner, the proteomic 

‘constellation’ perturbagen response to these ascending 

expression levels of RXFP3. Protein extracts were 

investigated as a multiplex using quantitative proteomics 

through iTRAQ labelling, with each RXFP3 expression 

level compared ratiometrically to the proteomic response 

effects to empty vector (E.V.) ectopic expression 

(Supplementary Table 1). We found that the introduction 

of various expression levels of RXFP3 (Figure 2A) 

caused significant and selective alterations in protein 

expression across the whole RXFP3 level range. The 

number of significantly altered proteins (compared to 

empty vector (E.V) transfected controls) responding to 

the specific RXFP3 expression levels were the following: 

0.5 µg RXFP3 – 183; 1 µg RXFP3 – 293; 2 µg RXFP3 

297; 5 µg RXFP3 – 278; 10 µg RXFP3 – 269. We next 

separated the common and distinctive RXFP3 

perturbagen responsive proteins using InteractiVenn 

(Figure 2B). For each expression level, the percentage of 

uniquely-regulated proteins was relatively similar, i.e. 0.5 

µg RXFP3 21.8% unique; 1 µg RXFP3 – 37.2% unique; 

2 µg RXFP3 26.6% unique; 5 µg RXFP3 25.2% unique; 

10 µg RXFP3 40.8% unique (Figure 2B). In contrast to 

these unique expression events, 12 proteins were 

significantly altered across all five RXFP3 expression 

levels (Supplementary Figure 3: PRR14L, SCYL1, 

CCDC9, NEK7, HIST1H3A, ATPIF1, CDCA2, PAGR1, 

POTEKP, MTMR1, ZCCHC3, MEPCE). Many of these 

commonly regulated proteins are known to be associated 

with energy balance regulation (PRR14L [40]), 

inflammaging (NEK7 [41]; ATPIF1 [42]), aging 

associated DNA damage (SCYL1 [43]; CCDC9 [44]; 

HIST1H3A [45]; ATPIF1 [46]; PAGR1 [47]; ZCCHC3 

[48]) or cell senescence (CDCA2 [49]). As such it 

appears that in addition to expression level effects, a core 

functionality of the RXFP3 was also evident, which was 

tightly linked to age-related pathologies.  

 

Given the impact on protein complex formation and the 

regulation of cellular signaling paradigms, we next 

analyzed, using protein-protein interaction (PPI) pattern 

analysis, each distinct RXFP3 expression level dataset 

using Enrichr (Supplementary Figure 2A) [50], to 

discover the most DDR-related RXFP3 overexpression 

level. We observed a strong representation of multiple 

DNA damage repair and energy metabolism-related 

proteins across the RXFP3 expression ranges used 

(Figure 2C; Supplementary Tables 2–6). The strongest 

PPI dataset enrichment for DDR proteins such as 

PRKDC, p53, PARP1 and TOP1 was observed for 

proteins influenced by the 5 µg RXFP3 expression level 

(Figure 2C). This was also indicated by calculating a 

hybrid score, i.e. the number of input dataset proteins 

associating with the target PPI database protein 

multiplied by the negative log10 of the enrichment 

probability, evidenced by the greater numbers of DDR-

associated PPI proteins found (Figure 2D) as well as the 

total sum of the hybrid scores for DDR-associated PPI 

proteins associated with the different RXFP3 protein 

datasets (Figure 2E). 

 

In a previous study, we demonstrated that when 

investigating novel GPCR-based signaling paradigms it 

is possible to assess selective signaling specificity using 

comparisons of empirical data with mass analysis-based 

‘theoretical’ signaling datasets [17]. To this end, we 

created a GIT2-specific signaling set in an analogous 

manner to our previously created arrestin-signaling 

datasets [17], by isolating the intersection dataset 

between ‘Cellular Signaling’ and ‘GIT2’ associated text 

matrices (Figure 3A: Supplementary Table 7–9). This 

concatenated Latent Semantic Analysis (LSA)-based 

dataset comprised 760 GIT2-Signaling proteins. Initially 

we found that with canonical signaling pathway analysis 

(Supplementary Table 10) of this ‘theoretical’ dataset, a 

strong signaling pathway phenotype reminiscent of 

known GIT2 signaling capacities was apparent, i.e. 

cytoskeletal control, GPCR signaling, immune function, 
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stress responses as well as cell cycle and metabolism 

regulation [13, 51, 52] (Figure 3B). This GIT2-

reminiscent mechanistic interpretation of our ‘theoretical’ 

GIT2 signaling dataset, strongly reinforces our unbiased 

informatics approach to aid novel signaling paradigm 

investigation. Furthermore, upon inspection of some 

exemplars of the significantly enriched pathways 

(Ingenuity Pathway Analysis-based) within this 

theoretical dataset, we not only demonstrate specific 

GIT2-associated activities, e.g. ‘Actin Cytoskeleton 

Signaling’ [53], ‘Breast Cancer Regulation by Stathmin 

1’ [11] and ‘Mitochondrial dysfunction’ [13], but also 

novel functions, e.g. ‘Sirtuin Signaling’ and ‘Relaxin 

Signaling’ (Figure 3B). We then compared the overlap 

between this theoretical GIT2 dataset and the diverse 

RXFP3 expression levels, to help identify any potential 

biases towards GIT2-associated signaling functionality 

(Supplementary Figure 2B). Calculating both the 

numerical and percentage overlap of distinct RXFP3 

expression range, we found that the strongest intersection 

with the theoretical GIT2-signaling set occurred with the 

5 µg RXFP3 expression level (Figure 3C). 

 

 
 

Figure 2. 5 µg of RXFP3 overexpression indicates a role in the DNA damage response. (A) Western blot validation of the 
differential overexpression curve for RXFP3-HA (n=3). We see a clear increase of RXFP3-HA signal with an increased level of transfections. (B) 
We then selected the proteins unique to each overexpression level using a InteractiVenn for further investigation, obtaining the following 
percentages of uniquely-regulated proteins: 0.5 µg RXFP3 21.8% unique; 1 µg RXFP3 – 37.2% unique; 2 µg RXFP3 26.6% unique; 5 µg RXFP3 
25.2% unique; 10 µg RXFP3 40.8% unique. (C) Applying protein-protein interaction (PPI) pattern analysis through Enrichr, we were able to 
show a strong representation for DNA damage repair and energy metabolism-related proteins across the different RXFP3 expression ranges. 
We also observed a strongest PPI dataset enrichment for DNA damage response proteins for the 5 µg RXFP3 expression level. (D–E) We next 
calculated the number of input dataset proteins associated with the target PPI database protein multiplied by the negative log10 of the 
enrichment probability, or hybrid score. We see that for the (D) sum and the (E) total sum of hybrid score occurrences, the enrichment for 
DDR-associated factors was shown to be most profound for the 5 µg RXFP3 level. 
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Figure 3. RXFP3 constellation comparison to a theoretical GIT2-Cell signaling dataset. (A) To further investigate the role for RXFP3 

as a controller for GIT2, we created a GIT2-specific signaling set, comprised out of 760 proteins, by investigating the intersection dataset 
between ‘Cellular Signaling’ and ‘GIT2’ associated text matrices. (B) Analysis of this theoretical GIT2-signaling set using canonical signaling 
pathway analysis shows a strong recollection of the known GIT2 signaling capacities. But interestingly some other novel functionalities were 
also apparent such as Sirtuin Signaling and Relaxin Signaling. (C) Lastly, we investigated which overexpression level of the RXFP3 constellation 
showed a potential GIT2-associated bias. Calculating both the numerical and percentage overlap, we found that the strongest intersection 
with the theoretical GIT2-signaling set was clear with the 5 µg RXFP3 level. 
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From our unbiased multidimensional ‘constellation’ 

analysis it was clear that a strong phenotype related to the 

protection of nucleic acids was observed. To further 

investigate this, we then focused on two levels of RXFP3 

expression – one relatively innocuous 0.5 µg (allowing 

ectopic expression to occur without the introduction of a 

profound cellular phenotype), and the second being the 5 

µg level that was strongly associated with DNA 

protection activity. Protein expression patterns 

significantly regulated in response to 0.5 µg and 5 µg of 

RXFP3 overexpression were co-analyzed using Gene 

Ontology (GO) term enrichment analysis (Supplementary 

Figure 2C), demonstrating the presence of common 

(RNA binding, cadherin binding) as well as distinct 

(transmembrane transport activity – 0.5 µg; Double 

stranded DNA binding – 5 µg) significantly enriched GO 

term groups (Figure 4A). The strongest clustering 

proteins at the 0.5 µg RXFP3 level were associated with 

mitochondrial activity (ATP5C1) and RNA methylation 

(YTHDF3, YTHDF2) – while in response to the 5 µg 

RXFP3 expression level, strongly clustering proteins 

were associated with DNA damage/repair (TOP1), stress 

responsiveness (HMGB1) and cell senescence 

(HMGB2). Using the natural language processing 

informatic platform Textrous! [54] (Supplementary 

Figure 2D), we also found a strong functional divergence 

between these two datasets, i.e. the lower level of 

expression was associated with histone and microtubular 

function while the 5 µg RXFP3 expression level again 

was strongly associated with DNA repair activities. The 

WriteWords phrase frequency counter was used 

(Supplementary Figure 2D) to extract the top 4 highest 

frequency phrases from Textrous! visualized in Figure 

4B, 4C. Given these results and our PPI enrichment 

analysis results (Figure 2) we next decided to further 

investigate the physical interactome of the human RXFP3 

receptor in control and aging stress-associated conditions. 

 

Aging-related cellular stress alters the physical 

RXFP3 interactome 

 

As complex signal transduction occurs through the 

dynamic modulation of PPIs [55], especially with 

respect to receptors [37, 56, 57], we next analyzed the 

nature of the proteins which physically associate with 

RXFP3, and how these interactions are modulated in 

response to oxidative stress (peroxide-induced) and 

DNA damage (CPT-induced). Using western blotting 

and confocal microscopy we observed the presence of 

DNA damage foci in the nucleus, specifically 

demonstrated by γ-H2AX as well as the increase of 

phospho-ATM – both these factors indicate DNA 

damage and DDR (Supplementary Figure 4A) [58, 59].  

 

Employing a cellular SILAC (Stable Isotope Labeling 

with Amino Acids in Cell Culture)-based affinity 

purification-mass spectrometry (AP-MS) approach, we 

were able to identify and quantify the potential 

interacting proteins that may represent components of 

the RXFP3 interactome. Three AP-MS RXFP3 

interactomes were extracted, i) control interactome 

‘Control’: E.V. vs. RXFP3 no stress (n=3); ii) oxidative 

stress interactome ‘Ox Stress’: E.V. vs. RXFP3 stressed 

with 100 nM H2O2 for 90 minutes  (n=3); and iii) DNA 

damage interactome ‘DNA damage’: E.V. vs. RXFP3 

stressed with 1 µM of CPT for 3 hours (n=3). We then 

compared the different protein compositions of these 

interactomes and investigated the proteins unique to 

each condition (Figure 5A, proteins are listed in 

Supplementary Table 2). In control conditions we 

reliably observed 47 distinct RXFP3 interacting partner 

proteins (Figure 5A – Supplementary Table 11). Among 

these control condition interacting proteins, we found 

several that were strongly associated with DNA stability 

management, e.g. EIF4A1 [60], RPS27A [61], MAP4 

[62] and PHB [63]. Upon the introduction of the two 

age-related perturbagens, H2O2 and CPT, we found a 

profound increase – potentially due to a functional 

stabilization of the interactome complexes [64] – in the 

size of the stress-associated RXFP3 interactomes 

(Figure 5A). In response to peroxide exposure, multiple 

factors linking oxidative stress to DNA damage 

management and senescence were found to physically 

associate with RXFP3 receptorsomes including PRDX6 

[65, 66], PCNA [67, 68], FUS [69], RBMX [70], 

PARP1 [71], PRDX1 [72–74], SOD1 [75, 76], LDHB 

[77] and YBX1 [78]. In response to a DNA damaging 

perturbagen, multiple factors linking cellular stress to 

DNA damage management, senescence and organismal 

longevity were also found to be physically associated 

with RXFP3 receptorsomes, including PHB2 [79–82], 

TRAP1 [83, 84], AIMP1 [85, 86], KPNA2 [87, 88], 

TUFM [89], EMD [90, 91], MAT2A [92, 93], NONO 

[94-100], IGFBP2 [101–103], SNRPA1 [104], 

HNRNPF [105], FAM98A [106] and ELAVL1 [107–

110]. It is likely that during pathological aging, the 

generation of oxygen radicals, e.g. ROS, precedes the 

eventual DNA damage that is induced by this ongoing 

oxidative stress [111], which is what our results 

demonstrate. These data indicate that, with respect to 

PPI-associated signaling events, RXFP3 can be 

‘activated’ or stabilized into distinct states by aging-

associated stress and thus dynamically modifies its 

stable interactome profile.  

 

To further investigate this dynamic receptorsome aspect 

of RXFP3 biology (Supplementary Figure 5), we 

performed unbiased natural language processing 

analytics to generate a gestalt appreciation of the 

distinctive phenotypes of the stress-associated RXFP3 

interactomes (Supplementary Figure 5A). Applying the 

collective processing mode of Textrous! to the specific 
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RXFP3 interactomes we found that the extracted words 

with the strongest association frequency to the entire 

peroxide-induced interactome dataset (measured using 

WriteWords) were all linked to DNA damage repair 

processes (Figure 5B), while the CPT-induced RXFP3 

interactome, was linked to cell cycle regulation – 

indicative of potential senescent related behavior (Figure 

5B). Using noun-phrase chunking platform of Textrous! 

 

 
 

Figure 4. RXFP3 constellation, differential overexpression of RXFP3 indicates a role in DNA damage response. (A–C) The results 

from the bioinformatic analysis of 0.5 µg RXFP3-HA (Left, grey), and 5 µg RXFP3-HA overexpression (Right, orange) using (B) Gene Ontology 
through Enrichr [50]; (C) Wordcloud generation and (D) phrase frequency counting (WriteWords) of the words and noun-phrases extracted 
from Textrous! [54]. Here we see that a different overexpression level of RXFP3, indicates a different role of RXFP3, where with 0.5 µg RXFP3 
we see a role in translation, and chromatin structure, while for 5 µg RXFP3 overexpression a role for DNA damage response and repair.  
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[54], allowing more natural syntactic interpretations of 

the interactome datasets, we again demonstrated a DNA 

damage versus cell cycle regulation distinction between 

peroxide- or CPT-induced interactomes (Figure 5C). 

Inspecting the specific agglomerative wordcloud 

structures for the control (Figure 5D) RXFP3 

interactome bore a strong association with 

neurodegenerative conditions such as dementia, and more 

specifically frontotemporal dementia, that are strongly 

associated with age-related damage accumulation [112] 

suggesting a basic and fundamental role of RXFP3 

systems in age-related disease. The RXFP3 interactomes 

stabilized by peroxide (Figure 5E) or CPT (Figure 5F) 

treatment again revealed a strong bias towards DNA 

 

 
 

Figure 5. Initial analysis of the unique RXFP3 interactomes under stress conditions indicates a role in DNA damage response 
and cell cycle control. (A) VennPlex analysis of the different RXFP3 interactomes, RXFP3 without stress (control; orange) (n=3), RXFP3 in 

response to Oxidative stress using 100 nM hydrogen peroxide for 90 minutes (Ox Stress; Green) (n=3), and DNA damage using 1 µM of 
camptothecin for 3 hours (DNA damage; blue) (n=3). For further analysis, the proteins unique to Oxidative stress and DNA damage were used 
for further analysis using Textrous! (textrous.irp.nia.nih.gov), which employs latent semantic indexing to achieve an easy and unbiased 
appreciation of our data, supplying a list of words and noun-phrases related to our dataset. Further analysis of these wordlists using 
WriteWords (http://www.writewords.org.uk), enabled us to count the most prominently present (B) words, and (C) noun-phrases associated 
to the specific datasets, from this it becomes clear that RXFP3 interacts with proteins involved in DNA damage response (Oxidative Stress) 
and Cell cycle control (DNA damage) in response to stress. Next, we extracted the hierarchical wordcloud from Textrous!, where we see the 
specific words for (D) Control, indicating a role in control of neurodegenerative disorders such as Alzheimer’s disease and frontotemporal 
dementia (FTD), (E) Oxidative Stress, again indicating an association with DNA damage repair; and (F) DNA damage, indicating a connection to 
cell cycle control.  

http://www.writewords.org.uk/
http://www.writewords.org.uk/
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damage repair and cell cycle regulatory behavior 

respectively. Further adding to the connection between 

RXFP3 biology and its ability to interact with cell cycle 

machinery, we indeed found that the RXFP3 can 

physically interact with mitotic spindle structures 

(Supplementary Figure 4B), thus potentially revealing an 

additional role of the RXFP3 in anti-aging and 

Senescence Associated Secretory Phenotype (SASP)-

associated mechanisms [113, 114] that have also been 

linked previously to GIT2 functionality [13, 15]. 

 

Stress sensitive RXFP3 network analysis 

 

Using the specific and consistent peroxide- (Figure 6A, 

6B) or CPT-induced (Figure 6C, 6D) RXFP3 

interactome protein datasets, we investigated the 

potential dynamic physical networks of these proteins 

using the Network Analyst platform (Supplementary 

Figure 5C) [115]. We employed both generic (non-

tissue specific) and hypothalamic-specific datasets (given 

the initial identification of GIT2 as an aging keystone in 

this tissue) as background databases to generate 

statistically-significant interaction networks for KEGG 

pathway enrichment (Figure 6A, 6C) and Gene Ontology 

(GO; biological process; Figure 6B, 6D). At the level of 

both GO and KEGG pathway enrichment, the use of 

either background databases resulted in highly similar 

enriched GO terms and KEGG pathways. For GO analysis 

the percentage overlap of hypothalamic (Supplementary 

Table 12 (Peroxide) –Supplementary Table 13 (CPT)) vs. 

generic tissue (Supplementary Table 14 (Peroxide) – 

Supplementary Table 15 (CPT)) was 72.1 and 87.1% for 

peroxide- and CPT-induced interactomes respectively. At 

the KEGG pathway level, these same analytical values 

were 56.5 and 45.5% respectively for KEGG analysis of 

peroxide or CPT effects.  

 

Using the peroxide-induced RXFP3 interactome we 

found that at the KEGG pathway level (Supplementary 

Table 16 (Generic) – 17 (Hypothalamic)) the interacting 

protein network was strongly associated (indicated by 

significant pathway enrichment values) with DNA 

protection management (Base Excision Repair 

p=0.0403; Mismatch Repair p=0.0206), cell cycle 

control (Cell Cycle p=0.0319), energy management 

diversity (Glycolysis/Gluconeogenesis p=0.028) and 

lifespan (Longevity Regulating Pathway p=0.022: 

Figure 6A). Using GO biological annotation of the 

peroxide-induced RXFP3 interactome network we 

found that this protein cluster was strongly linked to 

DNA integrity management (Response to DNA Damage 

Stimulus p=0.00702; Base Excision Repair p=0.0319) 

and age-associated oxidative damage (Response to 

Oxidative Stress p=0.0079; Aging p=0.0346) (Figure 

6B). Performing similar KEGG pathway analysis of the 

CPT-induced RXFP3 interactome (Supplementary 

Table 18 (generic) – 19 (hypothalamic)) we again found 

a strong aging-associated network phenotype of 

proteins, i.e. a strong representation (indicated by 

significant pathway enrichment values) of KEGG 

pathways associated with cell cycle control (Cell Cycle 

p=0.0455) and age-associated tissue pathology (Cellular 

Senescence p=0.0297; Necroptosis p=0.0311) (Figure 

6C). GO biological process analysis of the CPT-induced 

RXFP3 interactome supported these results, i.e. energy 

diversification (Mitochondrion organization p=0.00854) 

and stress resilience (Response to DNA Damage 

Stimulus p=0.00000159; Cellular Response to Stress 

p=0.000377) (Figure 6D). Upon meta-analysis of these 

GO/KEGG annotations we found that for the oxidative 

stress RXFP3 interactome, the most dominant 

interacting protein factor was proliferating cell nuclear 

antigen (PCNA), through multiple (6 independent 

associations) links to different annotations (both GO 

and KEGG). In a similar manner, in response to CPT 

the most multidimensional factor (5 independent 

associations) linked to multiple significant annotations 

was cyclin-dependent kinase Inhibitor 2A (CDKN2A). 

Recent evidence has shown that one of the most specific 

functions of PCNA is to control the oxidative stress 

sensitivity of cells in concert with DNA damage repair 

mechanisms [116]. CDKN2A is an active connector 

between oxidative and DNA damage [117] with cellular 

senescence/pathological aging programs [118, 119]. 

The dynamic physical interaction of RXFP3 with these 

key factors in stress-related aging mechanisms 

underpins the potential importance of RXFP3 system in 

pathological aging. 

 

Comparative interactome analysis 

 

To simplify the following analysis, we combined the 

peroxide- and CPT-induced RXFP3 interactomes to 

make one generic ‘stress’ interactome (Supplementary 

Figure 5B). We then compared the RXFP3 ‘control’ and 

combined ‘stress’ datasets to each BioGRID-derived 

protein interactomes. We extracted specific curated 

physical interactome database entries from BioGRID 

version 3.5, for well-known oxidative stress (G3BP1 – 

299 proteins, SIRT1 – 251 proteins, SOD1 – 294 

proteins) and DDR (PRKDC – 283 proteins, H2AFX – 

300 proteins, MDM2 – 299 proteins, MDC1 – 198 

proteins, TP53 – 300 proteins, BRCA1 – 301 proteins) 

proteins (Supplementary Table 20), to assess the potential 

PPI-based functionality of RXFP3 receptorsomes 

(Supplementary Figure 5D). To control for the 

differences in numerical size between the ‘control’ (47 

proteins) and ‘stress’ RXFP3 interactome (268 proteins) 

we also employed multiple (n=3) randomly generated 

(www.molbiotools.com/randomgenesetgenerator.html) 

protein datasets (47 for ‘control’ RXFP3 and 268 for the 

‘stress’ RXFP3 interactome) for comparative interactome 

http://www.molbiotools.com/randomgenesetgenerator.html
http://www.molbiotools.com/randomgenesetgenerator.html
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analyses. We found that with both the ‘control’ and 

‘stress’ interactomes, versus the random datasets, there 

were considerable functional overlaps with many of the 

aging/metabolism BioGRID interactome datasets (Figure 

7A, 7B). The largest overlap was seen for G3BP1 (G3BP 

Stress Granule Assembly Factor 1), H2AFX (H2A 

Histone Family Member X), and BRCA1 (BRCA1, DNA 

repair associated) (Figure 7A). As an additional 

workflow control for this comparative interactome 

experiment we created an extra list of proteins relatively 

unrelated to aging and DNA damage (CNTRL, CRP, 

LONP2: ‘Non-stress’), where we clearly see a minimal 

overlap compared to the oxidative stress and DNA 

damage proteins (Figure 7B). The large overlap seen for 

all these proteins indicates an important regulatory role 

for RXFP3 in stress response. How this correlates to 

aging and age-related disorders was analyzed next. 

 

We extracted available meta-data for several age-related 

disorders and non-age-related disorders from GEN3VA 

[120] and compared these to our interactome datasets 

(Figure 7C, 7D; Supplementary Figure 5E). We extracted 

datasets for classical Aging, Schizophrenia, in fact a 

potential aging-associated disorder [121] and non-

specifically age-associated condition, i.e. aortic aneurysm 

as a control to assess whether the protein overlap is 

specific (Supplementary Table 21). As can be seen in 

Figure 7C and 7D, the numerical protein overlap with

 

 
 

Figure 6. Comparison of the oxidative stress and DNA damage RXFP3 interactome indicates roles in age-related processes. 
Using the specific and consistent peroxide (A, B) and CPT-induced (C, D) RXFP3 interactome datasets we investigated the potential of these 
proteins to form a network using NetworkAnalyst. To generate statistically-significant interaction network KEGG enrichment (A and C) and 
Gene Ontology – Biological process (B and D) analysis were performed. Using both generic and hypothalamus-specific backgrounds resulted 
in highly similar enriched GO terms and KEGG pathways. Using the peroxide-induced RXFP3 interactome we found that the interacting 
protein network was (A) strongly associated with DNA protection management, cell cycle control, energy metabolism, and lifespan at the 
KEGG pathways level, (B) while at the GO biological annotation, we also see a strong connection to DNA integrity management, and 
additional age-associated oxidative damage. (C) Using the same KEGG pathways analysis on the CPT-induced interactome we again found a 
strong network phenotype associated with aging, i.e. cell cycle control, and age-related tissue pathology. (D) GO biological process analysis 
showed a strong association with pathological aging responses, such as energy diversification and stress resilience. 
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‘Aging’ is larger than the other two datasets, where 64 of 

the combined RXFP3 ‘stress’ dataset show overlap, 

which is 23.88% of the total RXFP3 ‘stress’ set. Perhaps 

not completely unsurprising [121], we also see a strong 

overlap with ‘schizophrenia’, i.e. 54 proteins, or 20.90%. 

We see only one protein overlapping with ‘aortic 

aneurysm’ for the RXFP3 ‘stress’ dataset, namely 

PHGDH (Phosphoglycerate Dehydrogenase) and none for 

the RXFP3 ‘control’ set. These results gained from 

human curated dataset collections further support our 

hypothesis that RXFP3 may play a role in aging and the 

related disorders. 

Lastly, we used the Latent Semantic Indexing (LSI)-

based informatic platform GeneIndexer [122], to 

interrogate our RXFP3 ‘control’ and ‘stress’ datasets 

with the following age-related syntactic concepts 

(Aging): Neurodegeneration, Cognitive impairment, 

Senescence, Parkinson's Disease, Amyotrophic lateral 
sclerosis, Alzheimer's Disease; and non-age-related 

terms (non-Aging): Tuberculosis, Spina Bifida, Asthma, 

Tourette syndrome, ADHD, Achondroplasia (Figure 8A, 

8B; Supplementary Figure 5F). Using this, we were able 

to assess the (RXFP3 ‘control’ (Supplementary Table 

22) or ‘stress’ (Supplementary Table 23)) strength of

 

 
 

Figure 7. RXFP3 interactome analysis using BioGRID extracted interactomes and GEN3VA extracted signatures, a first 
indication of a role in Aging. Using the BioGRID database (https://www.thebiogrid.org) the interacting proteins of several known 

oxidative stress and DNA damage proteins were extracted, and assembled into specific interactomes. (A) Here we show the number of 
overlapping proteins between the unstressed RXFP3 interactome (Ctrl; black) versus the stressed interactomes (combined both the response 
to oxidative stress and DNA damage, Stress; Red) and the interacting proteins of DNA damage response/repair proteins (MDC1, H2AFX, 
BRCA1, PRKDC, TP53, MDM2) and oxidative stress proteins (SOD1, G3BP1, SIRT1). We see that while the RXFP3 interactome in control 
conditions already shows overlap, this overlap is considerably increased under stress. (B) When we assemble the interactomes of the 
oxidative stress and DNA damage proteins separately, Ox Stress and DDR, respectively, we again see this greater overlap for the RXFP3 
“stress” interactome. When this was repeated for three proteins unrelated to oxidative stress, DNA damage or aging (other), we did not see 
this overlap. (C) Next, GEN3VA (http://amp.pharm.mssm.edu/gen3va/) was used to extract protein signatures pertaining to aging, which is of 
most interest to us, schizophrenia, of which we hypothesize RXPF3 might be a controlling factor, and as a negative control we extracted 
protein signatures for aortic aneurysm, where we suspect RXFP3 is not associated with at all. The overlap was visualized using InteractiVenn 
(http://www.interactivenn.net). (D) The overlapping proteins were then visualized in a bar chart, showing the large differences between 
“ctrl” and the “stress” interactomes of RXFP3. In addition, we see nearly no overlap with the signature for aneurysm, a decent overlap for 
schizophrenia, and a large overlap with aging. This data not only indicates the large differences between RXFP3 in control versus RXFP3 in 
stress conditions, but that RXFP3 possible plays an important role in oxidative stress, DNA damage response and aging. 

https://www.thebiogrid.org/
https://www.thebiogrid.org/
http://amp.pharm.mssm.edu/gen3va/
http://amp.pharm.mssm.edu/gen3va/
http://www.interactivenn.net/
http://www.interactivenn.net/
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Figure 8. Investigation of the RXFP3 interactome using Latent Semantic Indexing program, GeneIndexer. Using specific age-related 

or -unrelated interrogator terms, the Latent Semantic Indexing program, GeneIndexer is able to show a relationship between our dataset and 
aging. (A) Using Neurodegeneration, cognitive impairment, senescence, Parkinson’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease 
as the Age-related interrogation terms (“aging”), and Tuberculosis, spina bifida, asthma, Tourette syndrome, ADHD, achondroplasia, as the 
unrelated aging terms (“Non-aging”), we were able to support our relationship of RXFP3 with aging (Figure 5). Both for the Control (ctrl) and 
Stress interactome a stronger correlation was seen with the aging interrogation terms. (B) When the results of the interrogation terms were 
added together, the difference between the aging and non-aging terms was significant. (C) GeneIndexer output with the cosine similarity score 
for the proteins with the interrogation terms of the control interactome for RXFP3, and (D) for the stress interactome for RXFP3. 
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correlation with specific aging- and non-aging related 

interrogator concepts and the RXFP3 interactome 

datasets (Figure 8C, 8D), by averaging the different 

extracted individual protein cosine similarity scores. In 

this instance we see a larger average cosine similarity 

score for both RXFP3 datasets with the age-related 

terms compared to the non-aging interrogation 

paradigm.  

 

RXFP3 is a possible protective factor against DNA 

damage 

 

If RXFP3 acts as a regulatory factor for aging-related 

stress management we hypothesized that, like GIT2 [10, 

11], its expression may be directly altered by aging-

associated stress perturbations. We compared 24 hours of 

vehicle to 24 hours of CPT stimulation and saw a 

significant increase in RXFP3 expression with CPT-

induced DNA damage, which was indicated by an 

increase in γ-H2AX and phospho-ATM (Figure 9A). To 

assess the potential mechanistic role of RXFP3 in DNA 

damage repair, we overexpressed RXFP3 in cells prior to 

stressing the cells using CPT (Figure 9B). We 

investigated how this RXFP3 overexpression affected the 

phosphorylation status of DNA damage repair proteins, 

such as BRCA1, H2AX, ATM and PRKDC. The 

phosphorylation of BRCA1 is indicative of the cells’ 

attempt to repair and recover from the damage caused 

[123–125]. The phosphorylation of H2AX, generating 

the γ-H2AX form, is the first sign of DNA damage, 

which is dephosphorylated immediately after DNA 

damage has been repaired. ATM activation mediates 

DDR through homologous recombination (HR), while 

PRKDC (also known as DNA-PKc) activates non-

homologous end-joining (NHEJ). With the introduction 

of ectopic RXFP3 expression we observed a decrease in 

ATM and H2AX phosphorylation, while we observed a 

concomitant increase in BRCA1, PRKDC 

phosphorylation (Figure 9B), suggesting that the cellular 

DNA-reparative process is likely induced with increased 

RXFP3 expression. When stress is applied to the cells, 

we observed a clear increase in ATM and PRKDC 

phosphorylation, while BRCA1 activation was 

diminished compared to control levels. This data suggests 

that RXFP3 overexpression likely enhances the cellular 

stress responsivity to potential DNA damage – in a 

similar manner previously observed with GIT2 

expression potentiation and protection against DNA-

damaging insults [11]. 

 

In addition to this passive functionality of RXFP3, we 

tested the DNA-protective ability of RLN3-mediated 

stabilization of RXFP3. In this experimental paradigm, 

cell cultures were strongly stimulated with RLN3 (100 

nM) for 1 and 2 hours before the introduction of CPT-

induced DNA damage. We observed an effective 

reduction in ATM, BRCA1, and H2AX phosphorylation, 

compared to our control conditions. These results 

indicate that the activation of RXFP3 with its endogenous 

ligand RLN3 attenuated the potential impact of DNA 

damage stress and thus may be associated with an 

augmented cellular protection from stress and thus aid in 

cellular recovery via a more effective stress resilience 

mechanism. This relationship between ligand-stimulated 

RXFP3 and DNA damage recovery proteins was next 

investigated using confocal microscopy (Figure 9C) and 

western blotting (Figure 9D). Here we observed a strong 

decrease in the number of nuclear foci identified using γ-

H2AX and phospho-BRCA1 antibodies in conditions 

where the cells were pre-stimulated with RLN3 

compared to the control cells (Figure 9C, D). In addition 

to this, we investigated the dynamic phosphorylation 

status of the DNA damage regulating kinase, PRKDC. 

Here we saw the opposite, PRKDC phosphorylation is 

higher in RLN3 compared to vehicle control conditions 

(Figure 9C, D). To assess the potential therapeutic (as 

opposed to prophylactic) DNA-protecting capacity of 

RXFP3 activity, we first stressed the cells with CPT and 

then stimulated them with two doses of RLN3. Similar to 

our findings in Figure 9D, we see that when administered 

after the DNA-stressing insult we again revealed the 

ability of RLN3 to reduce the extent of eventual DNA 

stress, suggesting that, in addition to a prophylactic 

DNA-protective capacity, RLN3 can also induce an 

efficient, post-stress, DNA-damage attenuation 

therapeutic action (Figure 9E).  

 

DISCUSSION 
 

We investigated the potential connectivity of RXFP3 

with the DDR signaling domain. Our previous studies 

demonstrated that the GPCR scaffolding protein GIT2 

likely plays a potent and trophic level regulatory role in 

the aging process [52]. We have found that GIT2 

expression is sensitive to oxidative perturbations [126], 

normal and pathological aging [9, 13, 127], alterations of 

dietary energy intake [13], age-related neurodegeneration 

[33], somatic glycemic and metabolic status [13] and 

DNA-damaging insults [11]. GIT2 genomic deletion has 

been shown to disrupt pancreatic beta cell development 

[13], adipose deposition [127], immune cell migration 

[53], control cellular senescence as well as attenuate 

overall lifespan [15]. These multidimensional findings 

suggest that GIT2 could indeed represent a novel 

therapeutic target for aging related disorders. One 

mechanism that is currently being investigated is the 

synthetic chemical mediated regulation of ADP 

ribosylation factor GTPase Activating Protein (ARF 

GAP) enzymatic activity, with the experimental agent 

QS11 [128]. While small molecules are a simple 

mechanism to regulate ARF GAP activity, the GIT 

molecules (both GIT1 and GIT2) are highly 
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Figure 9. RXFP3 acts as a protective factor of DNA damage. (A) RXFP3 expression increases significantly with DNA damage caused by 
10 μM CPT for 24 hours (n=3). Induction of DNA damage was validated using γ-H2AX and p-ATM. (B) Overexpression of RXFP3 compared to 
control (E.V.) elicits a specific response of DNA damage-associated proteins in unstressed stressed (CPT-treated) cells. Overexpression of the 
RXFP3, in the absence of CPT exposure, appears to prepare the cell for stress responsivity as this results in the activation of BRCA1 (p-BRCA1), 
PRKDC (p-PRKDC), ATM (p-ATM) and H2AX (γ-H2AX). However, we also see a decrease in activation compared to control (E.V.) transfected 
cells after stress of these proteins, indicating that the RXFP3 potentially facilitates DNA damage repair (n=3). (C) RXFP3 stimulation using 
RLN3 (100 nM, 1 and 2 hours prior to stress induction using 10 µM CPT), directly affects the number of γ-H2AX, pBRCA1 and pPRKDC foci 
(n=30) using confocal microscopy, where we see a specific decrease in γ-H2AX, and p-BRCA1 foci, and an increase in PRKDC activation. (D) 
These results were also shown using immunoblotting (n=6). (E) Stimulating RXFP3 after stress induction (2 shots, 1 and 2 hours after 3h 10 
µM CPT), here called post-stimulation, induced similar effects (n=6). 
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interconnected proteomic factors and simple 

indiscriminate inhibition of enzymatic activity will not 

likely elicit specific signaling effects. In addition, as 

GIT2 is a scaffolding protein, as well as an ARF GAP, it 

is also possible that simple chemical 

inhibition/modulation of ARF GAP activity, will not 

control all the additional protein-protein binding 

functionalities of GIT2. Our work over recent years has 

demonstrated that in addition to the simple regulation of 

intermediary cell metabolism events such as calcium 

mobilization or activation of protein kinases, GPCRs 

possess a functional efficacy profile that exists at the 

transcriptional and protein translational level [16, 17, 

129-131]. Thus, GPCRs likely possess a translational 

relationship with signaling factors that they then employ 

as components in their diverse signaling outputs – hence 

each signaling molecule possesses an intrinsic priority 

relationship to their associated GPCRs. In this study, we 

investigated this potential for linking a cell surface GPCR 

to intracellular signaling protein GIT2, and to modulate 

its age-controlling functionality. Thus, we present a novel 

paradigm for therapeutic drug development and 

prioritization. Using a genomic deletion model for GIT2 

analysis we found that the RXFP3 was reflexively altered 

in its expression in a coordinated manner with GIT2 

(Figure 1). In addition to this expression-based 

relationship, we also demonstrated that both ectopic 

expression and ligand stimulation (using RLN3) of the 

RXFP3 receptor was able to exert an expression level 

effect (in multiple cell types) upon GIT2, suggesting a 

close functional synergy between GIT2 and the RXFP3 

receptor. The cognate ligand of RXFP3, RLN3, is also 

termed insulin-like peptide 7 and like insulin, is 

composed of an A- and B-chain connected by two 

disulfide bonds [132]. While RXFP3 responds to the 

binding of its ligand, its amino acid structure 

(Supplementary Figure 1A, 1B) reveals the presence of a 

natural modification of the canonical third 

transmembrane helix (TM3) activity-regulating ‘DRY’ 

motif - replaced by a ‘TRY’ motif, where the aspartic 

acid is replaced by a threonine in humans and an alanine 

in mice. DRY motif disruption typically results in 

enhanced constitutive active levels in the absence of the 

cognate orthosteric ligand [36]. In typical class A 

GPCRs, the DRY motif Asp is bound to a Gln/Glu in 

TM6 which allows the formation of a salt bridge, creating 

an ionic lock which is further stabilized by the interaction 

between the Asp and Arg in the DRY motif itself [133, 

134]. This ionic lock, which typically constrains the 

receptor in an ‘inactive’ state until a ligand is bound, is 

absent in RXFP3 allowing it to exist in the active 

conformation [36, 133, 134]. While considerable research 

has been conducted into how structural alterations can 

affect constitutive activity levels, these studies were 

conducted initially in the context of a monodimensional 

mode of GPCR signaling, i.e. through heterotrimeric G 

proteins. Subsequent discoveries concerning first β-

arrestin [135] and then further multi- [16] and 

pluridimensional [136] GPCR signaling modes 

necessitates the application of a nuanced understanding 

of which multiple output efficacies are constitutively 

active, and which are not. Within the pluridimensional 

signaling context, it is likely that a broad receptorsome 

ensemble [137] is responsible for the multiple modes of 

receptor signaling. Therefore, the measurement of a 

single, often soluble second messenger index, is unlikely 

to reveal a diverse range of efficacy profiles.  

 

Using our ‘constellation’ curve analysis, we correlated 

such a divergent signaling profile with a ‘theoretical’ 

GIT2 dataset approach we have pioneered recently to 

investigate unchartered signaling paradigms [17]. 

Employing this approach (Figure 3) we found that the 

RXFP3 expression level most associated with DDR 

functionalities was also most strongly intersecting (at 

the protein expression level) with the GIT2-signaling 

‘theoretical’ dataset. It is interesting to note that the 

natural DRY motif mutation in the RXFP3 has been 

associated with preferences for enhanced receptor 

internalization. It may be possible therefore that this 

internalized RXFP3 receptor pool could initiate distinct 

signaling modalities independent from that emanating 

from the plasma membrane [138, 139]. In this context, 

it is unsurprising that such a functional idiosyncrasy 

may be associated with a protein strongly linked to 

internalization behavior and microvesicular movement, 

i.e. GIT2 [51]. This theory coincides with the possibility 

that RXFP3 might be a stress sensor within the cellular 

interior. 

 

With our RXFP3 constellation expression data we saw a 

clear suggestion of a role in DNA damage response at 5 

µg overexpression level compared to 0.5 µg (Figures 2 

and 4; top 15 up and down-regulated proteins in 

Supplementary Table 24). In addition to these most 

strongly regulated proteins, we observed proteins that 

specifically relocate to another cellular fraction, e.g. 

Thioredoxin (TXN2) involved in oxidative stress 

response [140], translocated from the nucleus to the 

plasma membrane. Using LSI (Textrous!) we revealed a 

strong connection between DDR activity and increased 

RXFP3 expression (Figure 4B). While this may suggest 

that RXFP3 causes DNA damage, we hypothesize, that 

increased expression of RXFP3 prepares the cells for 

damage. Therefore, RXFP3 activity may enhance innate 

cellular resilience and thus engender an augmented, 

more sensitive response mechanism to DNA damage, 

which was supported by the elevation in RXFP3 

expression after DNA damage (Figure 9A), which may 

be a response of the cell to prepare for the presence of 

incipient damage and thus responds by enhancing its 

coterie of interacting DDR proteins. In turn, our data 
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also demonstrates that RXFP3 interacts with many 

proteins involved in the DNA damage response and 

repair process (Figure 5). 

 

As signaling proteins are unlikely to exist as discrete 

unitary entities, it is now widely accepted that the 

formation of coherent and co-functional protein 

complexes lies at the basis of nearly each physiological 

and pathophysiological process [141–143]. Our AP-MS 

investigation into the dynamic RXFP3 interactome was 

interrogated using multiple unbiased approaches (Figs. 

5-8) to generate an accurate gestalt appreciation of this 

signaling entity. From a receptor-based point of view 

our current research was primarily focused on the 

augmentation of our understanding of molecular 

interactomes in a high-dimensionality manner, i.e. 
focusing on proteins as a collective functional group 

rather than focusing down specifically on one protein in 

a more reductionist manner [144–146]. Hence, while 

not focusing in-depth on specific protein-protein 

interactions, albeit an entirely valid scientific endeavor, 

here we chose to appreciate molecular signaling at a 

more collective, gestalt, level [147–149]. Our follow-up 

manuscript on this topic, addresses in a combinatorial 

manner both a low-dimensionality (i.e. specific protein-

protein interaction analysis) and high-dimensionality 

data analysis of DNA-repair complexes linked with this 

receptor system. Hence, the most effective appreciation 

of GPCR associated signaling dynamics will likely 

emerge from such synergistic approaches. 

 

We found a potent link between RXFP3 and a role in 

DNA damage response and repair, cell cycle control and 

potentially even cell senescence regulation. We identified 

multiple proteins related to senescence, e.g. CDKN2A 

[150, 151], LMNA [152], PARP1 [153], PSMA5 [154], 

and PHB [155]. Senescence occurs naturally during 

embryonic development and recently it has received 

considerable attention through its potential role in the 

development of age-related disorders. Senescent cells 

arise due to replicative telomeric attrition or stress-

associated cellular damage and can have either an 

unfavorable or beneficial impact on tissues and organs 

depending on the cell type and metabolic state. As 

senescent cells amass in tissues with progressing age, 

they have been connected to many aging declines and 

diseases [150]. CDKN2A (p16)/RB (Retinoblastoma-

associated protein) directs one of the two pathways which 

is responsible for the initiating and maintaining cellular 

senescence programs, where CDKN1A or p21 together 

with p53, a consistent GIT2-interacting protein [11] 

directs the other [150]. 

 

BioGRID was used to compare the interactome of 

RXFP3 to known oxidative stress and DDR proteins 

(Figure 7). A large interactome overlap was found for 

several canonical DDR proteins, (MDC1 [156]; H2AFX 

- [157, 158]; BRCA1 [159, 160]; PRKDC [161], TP53 

[162], MDM2 [160]) and anti-oxidative stress 

associated proteins (SOD1 [163]; SIRT1 [164, 165]; 

G3BP1 [166]). MDC1 is recruited to the double strand 

break (DSB) sites [156] after the initiation of the 

signaling cascade caused by these lesions, which starts 

with the phosphorylation of H2AX, generating the γ-

H2AX species. The interaction between MDC1 and γ-

H2AX allow for binding and retaining of additional 

DDR factors at DNA damage sites including GIT2 and 

BRCA1 [12, 167]. With DNA damage, p53 expression 

elevates significantly in cells and functions as a 

transcription factor to control the expression of proteins 

that coordinate the DDR related post-translational 

modification of the E3 ubiquitin ligase MDM2, which 

may act as the master regulator of p53 [160]. BRCA1 is 

a tumor suppressor gene, which contributes to DNA 

repair and transcriptional regulation in response to DNA 

damage, and protects the genome from damage. In 

addition, this repair protein regulates the transcription of 

proteins involved in the repair of DNA. Lastly, PRKDC 

is recruited to DSBs and aids in the repair of DNA via 

NHEJ, interacts with the GIT2-interactor p53 and 

appears to play a pivotal role in DNA repair in non-

proliferating cells [168]. 

 

SOD1 scavenges ROS such as superoxide radicals 

produced in the body, thus playing a vital role in 

oxidative stress and lifespan management [169–171]. 

SIRT1, similar to SOD1, is an oxidative stress-sensitivity 

[172] and longevity regulator that has stress attenuation 

functions in vascular endothelial and neuronal cells, 

indicating a role in cardiovascular and neurodegenerative 

disorders. G3BP1, while not directly related to oxidative 

stress, is important in stress granule formation in 

response to this oxidative stress. Cells have two methods 

following exposure to environmental stress, i) induce 

apoptosis, ii) inhibit apoptosis and repair the damage 

induced by stress. These two options minimize cell loss, 

while preventing the damaged cells, with abnormal DNA 

and protein changes [173–175]. Stress granules control 

these two alternatives and this antioxidant activity is 

partially regulated by G3BP1 [176, 177]. 

 

The overlap over RXFP3 with these proteins related to 

oxidative stress and subsequent stress granule (SG) 

formation – which is also associated with senescence 

mechanisms [166] piqued our interest. SGs are formed 

by RNA binding proteins which consolidate important 

transcripts required to maintain cell viability during the 

presence and after the alleviation of stress [178]. In this 

context in our constellation data we found that SOD1, 

ATXN2 and G3BP1 were seen to be specifically 

translocated from the nucleus to the cytoplasm in 

response to RXFP3 overexpression. In addition, we 
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have shown that RXFP3 interacts with SOD1 and 

G3BP1 proteins in response to oxidative stress and 

DNA damage, respectively, using AP-MS. This in 

combination with the considerable overlap of the 

RXFP3 and the curated SOD1 and G3BP1 interactomes, 

supports our hypothesis that RXFP3 acts as a stress 

sensor and then controls translation of DDR proteins 

and interacts with these SGs in order to protect the cell 

from potential harm. However, further investigation into 

this role of RXFP3 as an oxidative stress sensor and 

responder will be the subject of further studies. 

 

Using GEN3VA-based curated data we were able to 

establish independently that there may be a role for 

RXFP3 in aging, and a new potential role was found for 

RXFP3 in the development of schizophrenia (Figure 7), a 

mental disorder characterized by delusions and 

hallucinations [179] that is being increasingly associated 

with pro-aging mechanisms [121]. One of the plausible 

underlying mechanisms for schizophrenia is a disruption 

in dopaminergic neurotransmission, possibly due to 

oxidative stress [180]. While this connection between 

RXFP3 and schizophrenia has previously not yet been 

made, as RXFP3 plays a potential role in dopamine 

transmission [181] and protection against oxidative 

stress, shown in this paper, this association with 

schizophrenia is not entirely surprising. Reinforcing this 

posit we have also recently shown that in pro-aging 

murine models areas of the central nervous system whose 

dopaminergic connectivity is affected also show deficits 

in both GIT2 and RXFP3 expression [33]. 

 

Following our molecular investigation of RXFP3 at the 

dynamic interactome level we have demonstrated that 

stimulation of the RLN3/RXFP3 system in cells, 

appears to be protective against DNA damage. Both 

prior to stress or following stressor exposure, RLN3 

application decreased the phosphorylation of H2AX and 

BRCA1, while increasing PRKDC phosphorylation. 

This shows that RLN3 is a protective factor prior to 

damage, indicating it could possibly be used as a DNA-

damage protecting agent.  

 

Furthermore, BRCA1 is bound and phosphorylated by 

ATM kinase [125, 182], as well as G2/M control kinase, 

CHK2, and potentially many other kinases [183]. Further 

investigation has shown that BRCA1 is involved in 

complexes that promote and activate the repair of DSB and 

initiate HR. This is supported by the co-localization and 

interaction with important DDR proteins such as Rad51 

[184], Rad50, MRE11 [185, 186], ATM [125, 182], 

H2AX [187, 188], and p53 [183]. Lastly, BRCA1 and 

PARP, whilst involved in completely different response 

and repair mechanisms, appear to cooperate to repair DNA 

damage [189]. In addition, and underlining the role of 

DDR processes in neurodegenerative aging, BRCA1 has 

also been recently implicated in AD [190]. Many of these 

stress repair proteins, i.e. H2AX, GIT2, PARP, BRCA1, 

and ATM, have been shown to be of importance in both 

here with the RXFP3 paradigm and our previous GIT2 

signaling findings, i.e. GIT2 is phosphorylated by ATM 

upon DNA damage and form complexes with DDR-

associated factors such as p53, ATM, PARP1 and γ-H2AX 

[11]. 

 

Using our current findings we have attempted to situate 

RXFP3 and its signaling functionality within the known 

DDR domain (Figure 10A, 10B). We propose that RXFP3 

participates in PRKDC activation following RLN3 

stimulation. This RXFP3-entrained process allows the cell 

to employ PRKDC-dependent NHEJ, in addition to 

typically ATM-associated HR. RXFP3 can potentially 

enhance DNA repair, thus explaining our observed 

accelerated decrease in ATM, H2AX and BRCA1 

phosphorylation, while PRKDC phosphorylation is 

increased. This proposal is supported by the research of 

Riabinska, et al. [191] which demonstrated that in ATM-

defective cells, PRKDC offers a backup mechanism for 

failed DSB repair through HR, using NHEJ. Their 

research was further reinforced by the early embryonic 

lethality of ATM+PRKDC-KO mice [192], while animals 

only lacking one of the two proteins are viable [193, 194]. 

This direct effect of RXFP3 stimulation and expression on 

the activation of PRKDC and the NHEJ DNA repair is 

supported by minimal PRKDC phosphorylation alteration 

in response to DNA damage caused by CPT (Figure 9B, 

9C). While the overall effect of RXFP3 system activation 

upon PRKDC expression and phosphorylation, also 

supports our acquired information displayed in Figure 9, 

using co-IP we further demonstrated that activated 

PRKDC (pPRKDC) interacts with RXFP3 

(Supplementary Figure 4C). This interaction supports our 

theory depicted in Figure 10B, where we suggested that 

RXFP3 interacts with PRKDC and allows its activation, 

in addition to the activation of ATM thus facilitating 

DNA damage repair. As can also be seen, the RXFP3 

sequence (Supplementary Figure 1) contains three 

potential phosphorylation sites, two for ATM and one for 

PRKDC. Interestingly, however, the phosphorylation sites 

mentioned in Supplementary Figure 1 are located at the 

extracellular region of the receptor. This indicates that this 

GPCR is potentially available in the cell in a usual 

‘outside-out’ conformation, but also in a novel ‘outside-

in’ conformation. It may thus be very important to explore 

further, through receptor mutation, as performed 

previously for GIT2 [11]. 

 

Given our demonstration of a potential role for RXFP3 in 

controlling aging-associated disease we further tested the 

potential validity of our contention at an unbiased, mass 

analytical level. To this end we employed a recently 

demonstrated technique of reverse-database analysis 
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using LSI [195]. As such, we first created a database of 

proteins, extracted from the entire human genome (via 

PubMed Central text mining using GeneIndexer), 

explicitly and implicitly associated with input 

interrogator terms covering the majority of age-

associated disease conditions (Supplementary Table 25), 

termed the ‘Disease Continuum’ (Figure 11A). To 

identify potential therapeutic targets that could interact 

and potentially control this ‘Disease Continuum’ in a 

multidimensional manner we isolated the proteins within 

this continuum most strongly associated with a battery of 

terms linked to central nervous system function, energy 

metabolism and GPCR-focused signaling 

(Supplementary Table 26). Ranking the Cosine Similarity 

scores of the resultant factors that were prominent in the 

disease continuum and the ‘Therapeutic Interrogators’ 

(Figure 11B) we found that, based on a correlation 

ranking probability score (p<0.001, ***) there were 37 

specific protein targets demonstrating a number of 

correlations within the therapeutic interrogators that was 

greater than the 99% (representing only 0.67% of the 

input ‘Disease Continuum’ dataset). The top three ranked 

multidimensional proteins that could represent effective 

age-related disease interdiction targets were, arginine 

 

 
 

Figure 10. RXFP3 in DNA damage response and repair. (A) With DNA damage in the form of a double strand break (DSB), the cell has 

several mechanisms to respond and thus repair itself. The damage is recognized by the MRE11-RAD50-NBS1 complex (MRN complex), which 
recruits and activates ATM (Ataxia Telangiectasia Mutated), which is autophosphorylated. ATM, in turn phosphorylates multiple damage-
associated proteins. H2AX (a variant of the histone H2A family) phosphorylation (generating γ-H2AX) allows for the recruitment of MDC1 
(Mediator of Damage Checkpoint protein 1), also a phosphorylation substrate of ATM. Phosphorylated MDC1 serves as a scaffold for the 
recruitment of other proteins required for the activation of BRCA1 by ATM, thus promoting cell cycle arrest and DNA repair. BRCA1, in turn, 
then interacts with multiple proteins, i.e. p53, RAD50, RAD51, ATM, NSB1 and BRCA2, to modulate DNA repair, transcription, and the cell 
cycle. Phosphorylation of BRCA1 by ATM activates DNA repair through homologous recombination, in cooperation with BRCA2 and RAD51. 
Additionally, BRCA1 recruits the MRN-complex to the sites of DNA damage. ATM furthermore phosphorylates the aging keystone GIT2 
promotes the repair of DNA damage via the stabilization of repair factor BRCA1, in the repair complex. GIT2 then allows the formation of a 
nuclear DSB focus dependent on H2AX, ATM, and MRE11. Also GIT2 is a strong interactor of the cell cycle checkpoint protein p53 and PARP1. 
PARPs play a pivotal role in DNA damage detection and repair, by the formation of ADP-ribose ribosylation complexes, allowing the 
recruitment of DDR proteins to the damaged DNA. After the DNA has been repaired, γ-H2AX is dephosphorylated by PP2A, a phosphatase. 
(B) Cells exploit two major DSB repair pathways, i) ATM-dependent homologous recombination (HR), and ii) PRKDC-mediated Non-
homologous end joining (NHEJ). In the absence of a functional ATM, it seems cells are able to rely on functional PRKDC signaling for their 
survival, thus using the NHEJ pathway as a backup pathway for DSB repair [191]. 
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Figure 11. Unbiased analysis of the potential role for RXFP3 in controlling age-related disorders. To test the validity of our 

hypothesis in an unbiased manner, we used reverse-database analysis using latent semantic indexing platform GeneIndexer. (A) We started 
by creating a database of proteins, associated with input interrogator terms of the majority of age-related disorders, which we termed the 
‘Disease Continuum’. (B) We next tried to identify a potential therapeutic target for these diseases, a GPCR in particular. To do so we 
investigated the Disease continuum protein dataset with GPCR-related terms, to create the ‘Therapeutic continuum’. (C) The proteins were 
ranked according to the cosine similarity scores, and based on a correlation ranking probability score (p<0.001, ***) 37 specific proteins were 
identified demonstrating a large amount of correlation within the therapeutic interrogators greater than the 99th percentile. The top three 
ranked multidimensional proteins that could represent effective age-related disease targets were, AVPR1B, MAS1 and RLN3, the cognate 
ligand for the RXFP3. 



www.aging-us.com 11288 AGING 

vasopressin receptor 1B (AVPR1B), MAS1 proto-

oncogene, GPCR (MAS1) and RLN3, the cognate 

ligand for the RXFP3 (Figure 11C). It is interesting to 

note that the MAS1 [196] and arginine vasopressin 

receptors [197] have recently been implicated in age-

related disorder amelioration. In this context, using an 

unbiased multidimensional approach it is tantalizing to 

anticipate that therapeutic modulation of the RXFP3 

may also hold significant promise for the attenuation of 

multiple age-related diseases. 

 

Taken together, our findings suggest that RXFP3, may 

be involved in oxidative stress and DNA damage stress 

response, in addition to its role in corticotropin stress 

response [21, 198]. This involvement of GPCRs in 

DDR has only recently been observed [195], and it 

appears that the receptor systems have long been 

developed alongside DDR systems to act as stress 

sensors, as appears to be the case for RXFP3, i.e. 
oxidative stress, DNA damage and potentially age-

related stress. When we combine this information with 

its expressional and functional relationship and 

association with GIT2 [9, 10, 12, 13], it appears that we 

may be able to target RXFP3, and as such control GIT2 

and potentially treat or even prevent age-related 

disorders such as neurodegeneration. Future research 

should focus on further unraveling the relationship 

between GIT2 and RXFP3 so that RXFP3-targeted 

therapeutics can be designed. 

 

MATERIALS AND METHODS 
 

Cell culture, transfection and treatment 

 

Human HEK293 (CRL 1573) were obtained from 

ECACC and propagated at 37oC with 5% CO2 ambient 

tension, according to the approved culture protocols 

defined for these cell lines. Human neuronal SH-SY5Y 

(CRL-2266) were obtained from ATCC and again 

propagated according to the published protocols of the 

disseminating organization. Murine hypothalamic 

neuronal cells, GT1-7 cells were obtained from Pamela 

Mellon (San Diego, California, USA [199]). All cell 

lines were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM; Sigma-Aldrich) with 10% fetal 

bovine serum (FBS)-containing propagation media, 

supplemented with 1% Penicillin/Streptomycin 

antibiotics as previously described [200]. 

 

For the interactomic experiments, we used SILAC 

(Stable isotope labeling of amino acids in cell culture), 

in order to label our proteins/peptides prior to 

experimentation. As such this technique allows us to 

analyze a very small amount of peptides using mass 

spectrometry. Customized DMEM media, without 

arginine and lysine were purchased from AthenaES. 

This medium was supplemented with ‘medium’ (L-

lysine-U-13C6 (K6), L-arginine-U-13C6 (R6)) and 

‘heavy’ (L-lysine-U-13C6-15N2 (K8), L-arginine-U-13C6-
15N4 (R10)), respectively (Cambridge Isotope 

Laboratories [201], and with dialyzed FBS and 1% 

antibiotics. To engender at least 90% of protein 

labeling, cells were cultured in SILAC medium for at 

least five passages. The ‘medium’ and ‘heavy’ 

conditions were compared to avoid non-labeled peptide 

errors [201]. Dependent on prevailing growth rates, the 

cells were passaged on a regular basis. 

 

One day prior to transfection, 3×106 cells were seeded 

into 10cm plates to obtain a 50–80% cell confluence the 

day of the transfection. Cells were counted using a Luna 

II Automated Cell Counter (Invitrogen-Life 

Technologies). The cDNAs for a hemagglutinin 

(3xHA)-tagged human RXFP3 receptor (obtained from 

the Missouri S&T cDNA Resource Center: 

https://www.cdna.org) and an empty plasmid 

(pcDNA3.1+: Invitrogen-Life Technologies) were 

transfected into the cells with Lipofectamine® 3000, 

using the manufacturers’ instructions. To investigate the 

effect of differential receptor overexpression on 

downstream proteins, we transfected the cells with a 

range of cDNA concentrations (0.5, 1, 2, 5, and 10 µg). 

To induce oxidative stress, cells were treated with 100 

nM hydrogen peroxide (H2O2/peroxide) for 90 minutes. 

DNA damage was caused using 1 µM Camptothecin 

(CPT) for 3, and 24 hours, dependent on the 

experiment.  

 

Investigation of the ability of RXFP3 to accelerate 

DDR, we initially overexpressed RXFP3 compared to 

E.V. (5μg) after which we stressed the cells with 10μM 

of CT, cells were extracted using RIPA 1% SDS 

(150mM NaCl, 50mM Tris, 0.5% Sodium 

deoxycholate, 1% NP-40) 1% SDS (sodium dodecyl 

sulphate). To assess whether stimulation of RXFP3 

using its endogenous ligand RLN3 might have a 

possible protective ability, we pre-stimulated the cells 

with 100 nM of RLN3. We administered two 

stimulation points, 1 and 2 hours prior to stressing the 

cells with 10 µM CPT for 3 hours. As a control, an 

equal amount of TFA was used, which we used to 

dissolve RLN3. This experiment was repeated in 

reverse, where cells were stressed prior to RLN3 

stimulation. 

 

Cellular protein extraction  

 

For generic low-definition cellular protein extraction, 

following a described cellular treatment, cells were 

washed three times with ice-cold PBS and scraped from 

dishes in the presence of either RIPA 0.1% or 1% SDS 

supplemented with phosphatase Inhibitor Cocktail 

https://www.cdna.org/
https://www.cdna.org/
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(PhosSTOP, Roche Diagnostics) and protease inhibitor 

cocktail (complete mini, Roche Diagnostics), dependent 

on the experiment. To generate differential cell fraction 

protein extracts, cells were first washed as monolayers 

with ice-cold PBS and then subjected to a detergent 

dependent fractionation process using a Q proteome 

extraction kit (Qiagen) according to the manufacturers’ 

instructions. Before eventual analytical use, protein 

quantification of generated cellular lysates was 

performed using a standard colorimetric protein assay, 

i.e. the Bio-Rad RC DCTM assay (Bio-Rad).  
 
iTRAQ sample preparation 

 
The protein concentrations were assessed a second time 
after trichloroacetic acid (TCA) precipitation overnight 

at 4°C using 1/3 volume of TCA, to ensure correct 
protein levels. For each sample 100 µg of protein was 
reduced using 5mM Tris-2-(carboxyethyl)-phosphine 
hydrochloride solution (TCEP; Pierce Biotechnology) 
and cysteine blocking was performed with 2mM methyl 
methanethiosulphonate (MMTS) solution (Sigma-

Aldrich). Each sample containing 100μg proteins, was 
digested using 10μg trypsin (Promega) at 37°C 
overnight. Samples were then labelled using iTRAQ 
reagents (ABSciex) before being pooled into one 
mixture. The following iTRAQ labels were used for the 
transfected cells: iTRAQ labels 113 was used for the 

transfected cells with the pcDNA3.1+ empty plasmid; 
iTRAQ labels from 114 to 118 were used to label the 
differentially transfected cells with RXFP3 (114-
0.5μg_RXFP3-HA, 115-1μg_RXFP3-HA, 116-
2μg_RXFP3-HA1, 117-5μg_RXFP3-HA, 118-
10μg_RXFP3-HA). After labelling, the samples were 

pooled, dried down and dissolved with SCX buffer prior 
to SCX chromatography. 
 
SILAC sample preparation 

 
RXFP3 interactomes, extracted using RIPA 0.1% SDS, 

were isolated by immunoprecipitation using anti-HA 
bound beads (Sigma-Aldrich) overnight on an end-over-
end shaker, after which the bound proteins were 
extracted using 100µl of 150mM Glycine-HCl buffer 
(pH 2.5). The samples were continuously vortexed for 5 
minutes, then centrifuged. The supernatants, containing 

the proteins, were immediately transferred to a new tube 
containing 40µl neutralizing buffer (1M Tris, pH 8). 
Proteins were then precipitated overnight at 4°C using 
TCA, after which the pellet was washed with acetone 
and resuspended in 60µl resolubilization buffer (6M 
Urea, 2M ThioUrea, 10% SDS in 50mM TEAB). Equal 

amounts of proteins from ‘medium’ and ‘heavy’ 
conditions were mixed to prepare the SILAC mix. The 
sample was then reduced (TCEP), cysteine blocking 
was performed (MMTS), and the proteins were digested 
with trypsin (see section iTRAQ sample preparation).  

Strong cation exchange chromatography separation 

(SCX) 

 
The pooled samples were diluted 10-fold with HPRP 

buffer A (5mM KH2PO4 in 5% acetonitrile at pH 3.0), 
to reduce sample complexity during the LC-MS/MS 
analysis. These were then separated using a 1mm x 
150mm polysulfoethyl aspartamide column (Dionex). 
The column was eluted with a gradient: 0 to 25 minutes 
60% HPRP buffer B (5mM KH2PO4 at pH 3.0 in 5% 

acetonitrile containing 0.5M NaCl), 25 to 45 minutes 
100% HPRP buffer B and 25 to 45 minutes 100% 
HPRP buffer A. For each sample, 40 fractions were 
eluted and then pooled into 10 fractions. These fractions 
were then diluted before being loaded into the C18 
column. 

 
Nano-LC-MS/MS analysis 

 
The mass spectrometric analysis of the iTRAQ samples 
was performed using a nano-LC column (Dionex 
ULTIMATE 3000) coupled online to a Q Exactive™-

Plus Orbitrap (ThermoScientific), the SILAC samples 
were analyzed using our Orbitrap Fusion™ Tribrid™ 
(ThermoScientific). Peptides were loaded onto a 75μm 
× 150mm, 2μm fused silica c18 capillary column, and 
mobile phase elution was performed using buffer A 
(0.05% formic acid, 99.5% Milli-Q water) and buffer B 

(0.05% formic acid in 80% acetonitrile/ Milli-Q water). 
The peptides were eluted using a gradient from 4% 
buffer B to 90% buffer B over 45 min at a flow rate of 
0.3μl/min. The LC eluent was directed to an ESI source 
for Orbitrap analysis. The mass spectrometer was set to 
perform data dependent acquisition in the positive ion 

mode for a selected mass range of 350-1800 m/z for 
quantitative expression difference at the MS1 (70000 
resolution) level followed by peptide backbone 
fragmentation with normalized collision energy (NCE) 
of 32, and identification at the MS2 level (17500 
resolution). The raw data was analyzed using Thermo 

Fisher Proteome Discoverer 2.0, the software was 
connected to a Sequest HT search engine (Thermo 
Fisher Scientific) using UNIPROT/SWISSPROT 
annotated database. Each protein was assigned a 
confidence score (0% to 100%) based on the confidence 
scores of its constituent peptides based on unique 

spectral patterns. Proteins were only identified from the 
recovery and measurement of one peptide (from MS2) 
that is identified with a 99% confidence. 
 
Bioinformatic analyses 

 

We applied a multidimensional informatic approach to 

the analysis of our proteomic and interactomic data. To 

facilitate the specific separation of complex datasets, we 

employed the Venn diagram platforms, VennPlex, 

VENNTURE [202, 203] and interactivenn 
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(http://www.interactivenn.net/). To generate unbiased 

outputs, we employed the latent semantic indexing 

(LSI)-based informatic platform Textrous! [17] to create 

de novo signaling descriptions from selected datasets 

that facilitate a more nuanced appreciation of high-

dimensionality receptor signaling paradigms [17]. From 

Textrous!-based natural language processing analyses 

wordclouds were generated with WordCloud 

(https://www.wordclouds.com/). To extract both word 

and phrase frequencies from our Textrous! output we 

employed the Frequency Counter application from 

WriteWords (http://www.writewords.org.uk/word_ 

count.asp). Furthermore, Enrichr (http://amp.pharm. 

mssm.edu/Enrichr/#) was employed to analyze the 

significantly relevant related pathways and 

diseases/ontologies, identified using Gene Ontology 

(GO).  

 

In addition, we created interactomes of several 

important players in oxidative stress (G3BP1, SIRT1, 

and SOD1) and DNA damage (PRKDC, H2AFX, 

MDM2, MDC1, TP53, BRCA1) response in silico, 

using the freely available BioGRID 

(https://thebiogrid.org/). As a control for this 

experiment we made an additional list of proteins 

unrelated to these stress responses (Non-stress; i.e. 
CNTRL, CRP, LONP2). 

 

Next, we used GEN3VA (GENE Expression and 

Enrichment Vector Analyzer; http://amp.pharm.mssm. 

edu/gen3va/), which is based on GEO (gene expression 

omnibus; https://www.ncbi.nlm.nih.gov/geo/), a web-

based system enabling the integrative analysis of 

amassed collections of gene expression signatures 

identified and extracted from GEO. Allowing us to 

extract specific disease signatures, which we can 

compare to our own data. We have extracted the 

following signatures: i) Aging (found in GEN3VA 

under the name “Model of cerebral aging and 

Alzheimer's disease: temporal cortex”), ii) 

schizophrenia (in GEN3VA “Schizophrenia: 

postmortem superior temporal cortex”) and iii) aortic 

aneurysm (“Abdominal aortic aneurysm”). The latter 

was used as a control to assess whether the protein 

overlap is specific and this does not occur with non-

aging-related datasets (Data sets found in 

Supplementary Table 4). 

 

Lastly, LSI platform GeneIndexer (https://geneindexer. 

com/) was used to investigate the association of our 

protein set with our own input of interrogator terms. 

Here we used age-related and age-unrelated terms, i.e. 
Aging: Neurodegeneration, Cognitive impairment, 

Senescence, Parkinson's Disease, Amyotrophic lateral 

sclerosis, Alzheimer's Disease (Figure 8A); and non-

Aging: Tuberculosis, Spina Bifida, Asthma, Tourette 

syndrome, ADHD, Achondroplasia (Figure 8B). The 

use of this LSI allows us to use natural language 

processing for data extraction, identifying hidden 

connections between the proteins and the interrogation 

terms. The GeneIndexer database holds more than 1.5 

million Medline abstracts, which correspond to over 

21.000 mammalian genes. This program extracts all 

gene-to-word relationships from the literature using 

LSI. Here a cosine similarity score larger than 0.2 

typically specifies an explicit association, while a score 

lower than 0.2 indicates an implied relationship, a cutoff 

score was set at 0.1. 

 

For advanced network-based analysis we employed the 

NetworkAnalyst (https://www.networkanalyst.ca/) 

application that is designed to serve as a visual analytics 

platform for comprehensive gene expression profiling 

and meta-analysis. NetworkAnalyst allows for the 

creation, and eventual informatics interrogation, of 

multiple network types. Multiple types of protein 

interaction database are available for interactome 

enrichment analysis including the IMEx (International 

Molecular Exchange Consortium) consortium (http:// 

www.imexconsortium.org/), STRING (https:// string-

db.org) and the CCSB-associated Rolland Interactome 

(http://interactome.dfci.harvard.edu/H_sapiens/: [204]). 

 

Immunoblot, immunoprecipitation, and 

immunocytochemistry 

 

To validate the proteomic data, the experiments were 

replicated and analyzed using immunoblotting with a 

standard protocol (Supplementary Figure 4C, 4D). In 

short, all samples separated on 4%–12% SDS-PAGE 

(Life Technologies), transferred to PVDF membrane 

(Amersham) and blocked using 5% BLOTTO milk. 

Primary antibodies for immunoblots: GIT2 (Bethyl), 

RXFP3 (LSBio), HA-tag, phospho-BRCA1 

(ThermoScientific), G3BP1 (Santa Cruz 

Biotechnology), Actin (Sigma Aldrich), PARP1, 

EIF4a1, γ-H2AX, PHB (GeneTex), XPOI (Atlas 

Antibodies), phospho-ATM (Rockland), DDB1, 

phospho-PRKDC OSSA (Abcam), Src (Cell Signaling 

technology). The membrane was then incubated with 

species appropriate secondary antibodies conjugated to 

horseradish peroxidase (HRP), immune complexes were 

then identified using enhanced chemiluminescence 

(ECL, GE Healthcare) and an Amersham imager 680 

system. WB quantification was performed with GE-

ImageQuant TL and Image J software, using red 

ponceau staining as a loading control. 

 

SILAC data was validated using a standard co-

immunoprecipitation protocol coupled to 

immunoblotting, where the proteins were extracted 

from the anti-HA affinity beads through resuspension in 

http://www.interactivenn.net/
http://www.interactivenn.net/
https://www.wordclouds.com/
https://www.wordclouds.com/
http://www.writewords.org.uk/word_count.asp
http://www.writewords.org.uk/word_count.asp
http://www.writewords.org.uk/word_count.asp
http://www.writewords.org.uk/word_count.asp
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
https://thebiogrid.org/
https://thebiogrid.org/
http://amp.pharm.mssm.edu/gen3va/
http://amp.pharm.mssm.edu/gen3va/
http://amp.pharm.mssm.edu/gen3va/
http://amp.pharm.mssm.edu/gen3va/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://geneindexer.com/
https://geneindexer.com/
https://geneindexer.com/
https://geneindexer.com/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://www.imexconsortium.org/
http://www.imexconsortium.org/
http://www.imexconsortium.org/
http://www.imexconsortium.org/
http://interactome.dfci.harvard.edu/H_sapiens/
http://interactome.dfci.harvard.edu/H_sapiens/
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Laemmli buffer (DTT and LDS 2x), after which the 

samples were analyzed using immunoblotting (see 

above). Immunostaining was performed according to a 

standard protocol. Briefly, cells were fixed in 4% 

paraformaldehyde, for at least 20 min and no longer 

than 24h at room temperature. Non-specific labeling 

was blocked with 5% goat serum (1:500 dilution; Dako, 

Heverlee, Belgium) for 1 h, primary antibodies were 

incubated for 1 h (1:500 dilution) and secondary 

antibodies for 30 min at room temperature. Nucleus 

staining was performed with DAPI (Invitrogen), after 

which cells were mounted with Dako fluorescent 

mounting medium (Dako, Heverlee, Belgium) and 

examined with confocal microscopy LSM 700 (Zeiss). 

 

Murine tissue RT-PCR 

 

GIT2KO gene-trap animals [205] based on a standard 

C57BL/6 background, initially obtained from Duke 

University (Richard Premont, Durham, NC) were bred 

at the National Institute on Aging under NIH protocol 

numbers, 432-LCI-2015 and 433-LCI-2015, according 

to approval of the Institutional Review Board. All 

animal studies performed were approved according to 

the guidelines of the NIA Animal Care and Use 

Committee. Mice were maintained in a 12h light/dark 

cycle on an ad libitum regular diet. The RNeasy Mini 

kit (Qiagen) was used for cellular mRNA extraction 

from multiple tissues derived from wild type (C57Bl6) 

and GIT2KO mice. Reverse transcription was 

performed using proprietary kits (Life Technologies, 

Carlsbad CA). Genes were normalized to GAPDH. RT-

PCR was performed using the ABI Prism 7300 

Sequence Detector (Applied Biosystems, Carlsbad CA). 
 

Statistical analyses 

 

In each histogram or figure, data represent the means ± 

SEM (standard error of the mean). Statistical analyses 

(Student’s t-test) were performed using GraphPad Prism 

version 7.0 (GraphPad Software, San Diego, CA, USA). 

Significance level is indicated in each figure as *p ≤ 

0.05; **p ≤ 0.01; ***p ≤ 0.001. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

Supplementary Figure 1. Analysis of the RXFP3 amino acid structure indicates a potential role in the DNA damage response. 
(A, B) Amino acid structure of RXFP3. (A) RXFP3 represented as a heptahelical snake extracted from GPCRdb (www.GPCRdb.org), and (B) as 
an amino acid sequence. Visualized in both A and B are the predicted extracellular (blue), transmembrane (red), and intracellular (green) 
domains. Further investigation into the different motifs in the sequence indicates the absence of the typical “DRY” or Asp-Arg-Tyr motif 
responsible for receptor conformation change after ligand activation, instead a “TRY” or Thr-Arg-Tyr motif (Black) is present. In addition, we 
identified two phosphorylation sites for Ataxia Telangiectasia Mutated (ATM), with typical motif: Sx, in this case SQ or Ser-Gln (Pink), and one 
phosphorylation site for DNA protein kinase C (DNA-PK also known as PRKDC); with typical SxQ motif, in this case SLQ or Ser-Leu-Gln (Yellow). 
Potential phosphorylation sites were identified using Scansite (https://scansite4.mit.edu) and InterProScan (http://www.ebi.ac.uk/interpro/ 
interproscan.html). 
  

http://www.gpcrdb.org/
http://www.gpcrdb.org/
https://scansite4.mit.edu/
https://scansite4.mit.edu/
http://www.ebi.ac.uk/interpro/interproscan.html
http://www.ebi.ac.uk/interpro/interproscan.html
http://www.ebi.ac.uk/interpro/interproscan.html
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Supplementary Figure 2. Flowchart of the quantitative proteome Bioinformatic pipeline. For the bioinformatics analysis of our 
quantitative proteomics data of the different receptorsomes of RXFP3 obtained through our constellation experiment, we have used the 
following investigative techniques organized in a flowchart. (A) First we isolated the proteins unique to each overexpression level of RXFP3 
(0.5 µg, Red; 1 µg, yellow; 2 µg, green; 5 µg, blue; 10 µg, purple), and analyzed each level individually using the PPI-hub function of Enrichr. 
As such we performed a protein-protein interaction pattern analysis of the constellation perturbagens, where we focused specifically on DNA 
damage response proteins in order to investigate which overexpression level shows the clearest relationship to DNA damage repair. (B) Next, 
we used latent semantic indexing to create a theoretical dataset for ‘GIT2 signaling’ (760 proteins, yellow), by overlapping the genes 
extracted from GeneIndexer significantly correlated to interrogator terms related to ‘Cell Signaling’ (3381 proteins, Red) and ‘GIT2’ (3339 
proteins, green). This theoretical GIT2 signaling dataset was then compared to the different overexpression levels of RXFP3, where we found 
that the 5 µg dataset was the most reminiscent of GIT2 signaling. To further interrogate the role of this 5 µg dataset, we compared the full 
datasets of 5 µg and 0.5 µg overexpression with (C) Gene Ontology, which allowed us to extract the significantly associated molecular 
functions, associated with the dataset, and (D) latent sematic indexing tool Textrous! which allows us to extract the words and noun-phrases 
significantly associated to the entire gene list of each dataset. These words and noun-phrases were then organized in a word cloud which 
correlates word frequency with word size and writewords, which allows us to identify the most re-occurring phrases. 
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Supplementary Figure 3. Expression level-independent RXFP3 associated proteins. Through InteractiVenn 

(www.interactivenn.net), we were able to investigate the unique and overlapping proteins for the RXFP3 constellation experiment. 12 
proteins were significantly altered across each of the RXFP3 overexpression levels, i.e. PRR14L, SCYL1, CCDC9, NEK7, HIST1H3A, ATPIF1, 
CDCA2, PAGR1, POTEKP, MTMR1, ZCCHC3, and MEPCE. These proteins show involvement in energy metabolism regulation, DNA damage 
associated with aging, and cell senescence. Using a heatmap we are able to show the protein expression of each protein, where green is 
downregulation and red is upregulation. Certain proteins were contra-regulated in the different overexpression levels and cellular fractions, 
and are therefore neither upregulated nor downregulated (yellow). 

 

http://www.interactivenn.net/
http://www.interactivenn.net/
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Supplementary Figure 4. Molecular Analyses of stress-associated damage and protein-protein interaction. (A) Validation of 
mass spectrometry data (RXFP3 0.5 and 5 µg overexpression) through immunoblotting, testing: SRC, G3BP1, OSSA, DDB1, and HA (RXFP3), 
with Red Ponceau as a loading control. (B) Validation of interactomics experiment using co-immunoprecipitation. (C) DNA damage validation 
after oxidative stress and camptothecin, using the DNA damage responder γ-H2AX as a marker, indicating the 90 minute exposure of 100 nM 
H2O2 can cause a possibly survivable amount of DNA damage, while 3 h of 1 µM camptothecin elicits a larger amount of DNA damage. (D) 
Confocal microscopy was used to investigate the expression of RXFP3 (green), where we see that RXFP3 expression can overlap with the 
mitotic spindle (blue) during mitosis, indicating a role in cell cycle control. 
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Supplementary Figure 5. Flowchart of the interactome Bioinformatic pipeline. To further elucidate the role of RXFP3 we have 

continued by investigating it interacting proteins in three different conditions, (A) i) Control (Red, 47 proteins), ii) Oxidative stress (Ox stress, 
Green; 145 proteins), and iii) DNA damage (Blue, 193 protein). Initially, we started the interactome analysis by isolating the unique proteins 
to each condition, and analyzing them with textrous, word clouds and write words, similar to what we have described in Supplementary 
Figure 2D. (B) For further analysis we also created a ‘stress’ dataset (turquoise) where we have combined the oxidative stress and DNA 
damage interactomes. (C) The network analyst platform was used to assess the potential of these proteins to create a dynamic physical 
network. In order to do so, we employed both non-tissue specific (generic) and hypothalamic-specific datasets, to generate interaction 
networks for both KEGG pathway enrichment (grey arrow) and Gene Ontology (GO; white arrow). These datasets we then overlapped with 
our experimentally generated RXFP3 interactome after DNA damage and Oxidative stress. (D) We then performed a comparative interactome 
analysis, by investigating the overlap of the interacting proteins of several DNA damage-related (PRKDC, H2AFX, MDC1, TP53, BRCA1), and 
oxidative stress-related (G3BP1, SIRT1, SOD1) proteins, with our control and ‘stress’ interactome dataset (as described in B). As a control for 
the specificity of the overlap, we also extracted the interacting proteins of several proteins which are unrelated to DNA damage response and 
oxidative stress (other; CNTRL, CRP, LONP2). (E) to further elaborate a role for RXFP3 in aging, we compared our datasets (Control and Stress) 
to several aging related disease signatures extracted from GEN3VA, to establish the specificity of this overlap we also used several control 
signatures such as aortic aneurysm, which are not age-related. (F) Lastly, we used latent semantic indexing tool GeneIndexer to interrogate 
our control and stress dataset with age-related (Aging) and –unrelated terms (Non-Aging). GeneIndexer associates our dataset with these 
interrogation terms and expresses significance with a cosine similarity score.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–26 

 

Supplementary Table 1. Proteins selectively affected by the RXFP3 constellation. In an unbiased manner we discovered 

the proteomic ‘constellation’ perturbagen response to ascending expression levels of RXFP3 expression (0.5, 1, 2, 5, 10 µg of cDNA 
expressed). Protein extracts were investigated as a multiplex using quantitative proteomics through iTRAQ labelling with each 
RXFP3 expression level compared ratiometrically to the proteomic response effects to empty vector ectopic expression. The ratios 
were then normalized using a Log2 transformation, allowing us to identify the significantly up- and downregulated proteins. 

 

Supplementary Table 2. Enrichr-based PPI Hub Protein enrichment analysis (0.5 µg RXFP3). Hub Protein-Protein 

Interaction enrichment analysis was performed using the Enrichr (http://amp.pharm.mssm.edu/Enrichr/) functional annotation 
suite with the 0.5 µg perturbagen level of RXFP3 expression. For each enriched target PPI hub protein the overlap protein identity 
from the input dataset with the Enrichr-curated hub data (Overlap), the probability of PPI hub enrichment (P-value), cumulated Z-
score (Z-score), Combined ranking score (Combined Score) and the protein identities from the input dataset that overlap with the 
Enrichr-curated PPI Hub dataset (Proteins) are detailed. 

 

Supplementary Table 3. Enrichr-based PPI Hub Protein enrichment analysis (1.0 µg RXFP3). Hub Protein-Protein 

Interaction enrichment analysis was performed using the Enrichr (http://amp.pharm.mssm.edu/Enrichr/) functional annotation 
suite with the 1.0 µg perturbagen level of RXFP3 expression. For each enriched target PPI hub protein the overlap protein identity 
from the input dataset with the Enrichr-curated hub data (Overlap), the probability of PPI hub enrichment (P-value), cumulated Z-
score (Z-score), Combined ranking score (Combined Score) and the protein identities from the input dataset that overlap with the 
Enrichr-curated PPI Hub dataset (Proteins) are detailed. 

 

Supplementary Table 4. Enrichr-based PPI Hub Protein enrichment analysis (2.0 µg RXFP3). Hub Protein-Protein 

Interaction enrichment analysis was performed using the Enrichr (http://amp.pharm.mssm.edu/Enrichr/) functional annotation 
suite with the 2.0 µg perturbagen level of RXFP3 expression. For each enriched target PPI hub protein the overlap protein identity 
from the input dataset with the Enrichr-curated hub data (Overlap), the probability of PPI hub enrichment (P-value), cumulated Z-
score (Z-score), Combined ranking score (Combined Score) and the protein identities from the input dataset that overlap with the 
Enrichr-curated PPI Hub dataset (Proteins) are detailed. 

 

Supplementary Table 5. Enrichr-based PPI Hub Protein enrichment analysis (5.0 µg RXFP3). Hub Protein-Protein 

Interaction enrichment analysis was performed using the Enrichr (http://amp.pharm.mssm.edu/Enrichr/) functional annotation 
suite with the 5.0 µg perturbagen level of RXFP3 expression. For each enriched target PPI hub protein the overlap protein identity 
from the input dataset with the Enrichr-curated hub data (Overlap), the probability of PPI hub enrichment (P-value), cumulated Z-
score (Z-score), Combined ranking score (Combined Score) and the protein identities from the input dataset that overlap with the 
Enrichr-curated PPI Hub dataset (Proteins) are detailed. 

 

Supplementary Table 6. Enrichr-based PPI Hub Protein enrichment analysis (10 µg RXFP3). Hub Protein-Protein 

Interaction enrichment analysis was performed using the Enrichr (http://amp.pharm.mssm.edu/Enrichr/) functional annotation 
suite with the 10.0 µg perturbagen level of RXFP3 expression. For each enriched target PPI hub protein the overlap protein identity 
from the input dataset with the Enrichr-curated hub data (Overlap), the probability of PPI hub enrichment (P-value), cumulated Z-
score (Z-score), Combined ranking score (Combined Score) and the protein identities from the input dataset that overlap with the 
Enrichr-curated PPI Hub dataset (Proteins) are detailed. 

 

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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Supplementary Table 7. Cellular Signaling theoretical data set. Biomedical text word items, i.e. Gene Symbols, associated 

with generic ‘Cellular Signaling’ extraction terms are represented. All proteins identified possess a Cosine Similarity score of 
association with the interrogator term of >0.1. 

 

Supplementary Table 8. GIT2 theoretical data set. Biomedical text word items, i.e. Gene Symbols, associated with generic 

‘GIT2’ linked extraction terms are represented. All proteins identified possess a Cosine Similarity score of association with the 
interrogator term of >0.1. 

 

Supplementary Table 9. Concatenated GIT2 signaling theoretical data set. Biomedical text word items, i.e. Gene Symbols, 

associated with both GIT2 and Cellular Signaling extraction terms are represented. Hence the concatenation of GIT2 with Cell 
Signaling protein sets results in the theoretical ‘GIT2-Signaling’ dataset. All proteins identified possess a Cosine Similarity score of 
association with the interrogator term of >0.1. 

 

Supplementary Table 10. Canonical Signaling Pathway Analysis of theoretical GIT2-Signaling dataset. Ingenuity 

Pathway Analysis was employed to generate a Canonical Signaling Pathway appreciation of the molecular nature of the theoretical 
GIT2-Signaling dataset created using latent semantic association analysis.  

 

Supplementary Table 11. RXFP3 interacting proteins. Interacting proteins of RXFP3 in control conditions, after oxidative 

stress (H2O2) and DNA damage (CPT). The list termed ‘stress’ are all the proteins of oxidative stress and DNA damage combined, 
without duplicates. 

 

Supplementary Table 12. NetworkAnalyst-based Gene Ontology analysis of the RXFP3 interactome stabilized in the 
presence of peroxide cellular perturbation (hypothalamic database). The proteins consistently associated with the RXFP3 

receptor following exposure to hydrogen peroxide were analyzed using a human hypothalamic tissue database derived from 
DIFFERENTIALNET (http://netbio.bgu.ac.il/diffnet/). For the most stringent analysis process we employed a Zero Order Network 
approach. Gene Ontology (Biological Process) annotation was performed on all identified nodes using the built-in Gene Ontology 
analysis module of NetworkAnalyst (https://www.networkanalyst.ca). For each significantly-populated Gene Ontology term group 
(p<0.05) the total number of proteins associated with that group (Total), the expected (Expected) number of identified proteins 
from a random data sample (Hypergeometric test based), the actual number of GO term-populating proteins from the experimental 
dataset (Hits), the enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 13. NetworkAnalyst-based Gene Ontology analysis of the RXFP3 interactome stabilized in the 
presence of CPT cellular perturbation (hypothalamic database). The proteins consistently associated with the RXFP3 

receptor following exposure to CPT were analyzed using a human hypothalamic tissue database derived from DIFFERENTIALNET 
(http://netbio.bgu.ac.il/diffnet/). For the most stringent analysis process we employed a Zero Order Network approach. Gene 
Ontology (Biological Process) annotation was performed on all identified nodes using the built-in Gene Ontology analysis module of 
NetworkAnalyst (https://www.networkanalyst.ca). For each significantly-populated Gene Ontology term group (p<0.05) the total 
number of proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data 
sample (Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 14. NetworkAnalyst-based Gene Ontology analysis of the RXFP3 interactome stabilized in the 
presence of peroxide cellular perturbation (generic database). The proteins consistently associated with the RXFP3 receptor 

following exposure to hydrogen peroxide were analyzed using a generic human tissue database derived from IMEx 
(https://www.imexconsortium.org/). For the most stringent analysis process we employed a Zero Order Network approach. Gene 

http://netbio.bgu.ac.il/diffnet/
http://netbio.bgu.ac.il/diffnet/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://netbio.bgu.ac.il/diffnet/
http://netbio.bgu.ac.il/diffnet/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.imexconsortium.org/
https://www.imexconsortium.org/
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Ontology (Biological Process) annotation was performed on all identified nodes using the built-in Gene Ontology analysis module of 
NetworkAnalyst (https://www.networkanalyst.ca). For each significantly-populated Gene Ontology term group (p<0.05) the total 
number of proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data 
sample (Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 15. NetworkAnalyst-based Gene Ontology analysis of the RXFP3 interactome stabilized in the 
presence of CPT cellular perturbation (generic database). The proteins consistently associated with the RXFP3 receptor 

following exposure to CPT were analyzed using a generic human tissue database derived from IMEx 
(https://www.imexconsortium.org/). For the most stringent analysis process we employed a Zero Order Network approach. Gene 
Ontology (Biological Process) annotation was performed on all identified nodes using the built-in Gene Ontology analysis module of 
NetworkAnalyst (http://www.networkanalyst.ca). For each significantly-populated Gene Ontology term group (p<0.05) the total 
number of proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data 
sample (Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 16. NetworkAnalyst-based KEGG pathway analysis of the RXFP3 interactome stabilized in the 
presence of peroxide cellular perturbation (generic database). The proteins consistently associated with the RXFP3 receptor 

following exposure to hydrogen peroxide were analyzed using a generic human tissue database derived from IMEx 
(https://www.imexconsortium.org/). For the most stringent analysis process we employed a Zero Order Network approach. KEGG 
signaling pathway annotation was performed on all identified nodes using the built-in KEGG Pathway analysis module of 
NetworkAnalyst (http://www.networkanalyst.ca). For each significantly-populated KEGG Pathway (p<0.05) the total number of 
proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data sample 
(Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 17. NetworkAnalyst-based KEGG pathway analysis of the RXFP3 interactome stabilized in the 
presence of peroxide cellular perturbation (hypothalamic database). The proteins consistently associated with the RXFP3 

receptor following exposure to hydrogen peroxide were analyzed using a human hypothalamic tissue database derived from 
DIFFERENTIALNET (http://netbio.bgu.ac.il/diffnet/). For the most stringent analysis process we employed a Zero Order Network 
approach. KEGG signaling pathway annotation was performed on all identified nodes using the built-in KEGG Pathway analysis 
module of NetworkAnalyst (http://www.networkanalyst.ca). For each significantly-populated KEGG Pathway (p<0.05) the total 
number of proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data 
sample (Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 18. NetworkAnalyst-based KEGG pathway analysis of the RXFP3 interactome stabilized in the 
presence of CPT cellular perturbation (generic database). The proteins consistently associated with the RXFP3 receptor 

following exposure to CPT were analyzed using a generic human tissue database derived from IMEx 
(http://www.imexconsortium.org/). For the most stringent analysis process we employed a Zero Order Network approach. KEGG 
signaling pathway annotation was performed on all identified nodes using the built-in KEGG Pathway analysis module of 
NetworkAnalyst (http://www.networkanalyst.ca). For each significantly-populated KEGG Pathway (p<0.05) the total number of 
proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data sample 
(Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 19. NetworkAnalyst-based KEGG pathway analysis of the RXFP3 interactome stabilized in the 
presence of CPT cellular perturbation (hypothalamic database). The proteins consistently associated with the RXFP3 

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.imexconsortium.org/
https://www.imexconsortium.org/
http://www.networkanalyst.ca/
http://www.networkanalyst.ca/
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https://www.imexconsortium.org/
http://www.networkanalyst.ca/
http://www.networkanalyst.ca/
http://netbio.bgu.ac.il/diffnet/
http://netbio.bgu.ac.il/diffnet/
http://www.networkanalyst.ca/
http://www.networkanalyst.ca/
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http://www.imexconsortium.org/
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receptor following exposure to CPT were analyzed using a human hypothalamic tissue database derived from DIFFERENTIALNET 
(http://netbio.bgu.ac.il/diffnet/). For the most stringent analysis process we employed a Zero Order Network approach. KEGG 
signaling pathway annotation was performed on all identified nodes using the built-in KEGG Pathway analysis module of 
NetworkAnalyst (http://www.networkanalyst.ca). For each significantly-populated KEGG Pathway (p<0.05) the total number of 
proteins associated with that group (Total), the expected (Expected) number of identified proteins from a random data sample 
(Hypergeometric test based), the actual number of GO term-populating proteins from the experimental dataset (Hits), the 
enrichment P value (P.Value) as well as the enrichment FDR are given (FDR). 

 

Supplementary Table 20. BioGRID interactomes for DNA damage response, and oxidative stress. To investigate the role 

for RXFP3 in oxidative stress and DNA damage response, we compared its interacting proteins in different conditions to the 
interacting proteins of several well-known DNA damage response and oxidative stress-related proteins, which we extracted from 
the freely available BioGRID database (https://thebiogrid.org/). As a control we used proteins which are so far known not to play a 
role in these processes. DNA damage response/repair: BRCA1, MDM2, PRKDC, TP53, MDC1, H2AFX; Oxidative stress: G3BP1, SOD1, 

SIRT1; Control/Non-stress: CNTRL, CRP, LONP2. 

 

Supplementary Table 21. GEN3VA disease signature lists. To investigate the potential role for RXFP3 in aging, we extracted 

three disease signatures from GEN3VA (GENE Expression and Enrichment Vector Analyzer; http://amp.pharm.mssm.edu/gen3va/): 
‘Aging’(found in GEN3VA under the name “Model of cerebral aging and Alzheimer's disease: temporal cortex”), ‘Schizophrenia’ (in 
GEN3VA “Schizophrenia: postmortem superior temporal cortex”) and ‘Aortic aneurysm’ (in GEN3VA “Abdominal aortic aneurysm”) 
the latter of which is used as a control, to assure the protein overlap between the GEN3VA signatures and our own RXFP3 
interactome dataset is specific. GEN3VA is a web-based system enabling the integrative analysis of a collective of gene expression 
signatures identified and extracted from GEO. Allowing us to extract specific disease signatures, which we can compare to our own 
data.  

 

Supplemetary Table 22. GeneIndexer interrogation of RXFP3 ‘control’ interactome.  

 

Supplementary Table 23. GeneIndexer interrogation of RXFP3 ‘control’ interactome. Latent Semantic Indexing (LSI)-

based informatic platform GeneIndexer (https://geneindexer.com/) is able to measure the degree of association of biomedical gene 
symbol identifiers of proteins with input interrogator concept terms through unbiased Cosine Similarity Score analysis. We cross-
interrogated the obtained RXFP3   interactome dataset, with the following age-related syntactic concepts (Aging): 
Neurodegeneration (ND), Cognitive impairment (CI), Senescence (S), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS), 
Alzheimer's Disease (AD); and non-age-related terms (non-Aging): Tuberculosis (TB), Spina Bifida (SB), Asthma (A), Tourette 
syndrome (TS), ADHD, Achondroplasia (AP). GeneIndexer extracts all gene-to-word relationships from the literature using LSI, which 
we then averaged per interrogator term and per interrogator group, i.e. ‘Aging’ vs. ‘non-Aging’. Here a cosine similarity score larger 
than 0.2 typically specifies an explicit association, while a score lower than 0.2 indicates an implied relationship, a cutoff score was 
set at 0.1.  

 

Supplementary Table 24. RXFP3 constellation TOP 15 and contra-regulated proteins. TOP15 up (red) and down (green) 

regulated proteins, after 0.5 µg and 5 µg of RXFP3 overexpression. In addition, we have noted the contra-regulated proteins, which 
were upregulated in on cellular fraction, while being downregulated in another. Molecular function and Biological processes were 
identified using Uniprot (https://www.uniprot.org). 

 

Supplementary Table 25. Disease continuum. To assess the potential role of RXFP3 in controlling aging-associated diseases, 

we employed an entirely unbiased analysis. We created a database of proteins, extracted from the entire human genome, explicitly 
and implicitly associated (via PubMed Central text mining using GeneIndexer (https://geneindexer.com/)) with input interrogator 
terms covering the majority of age-associated disease conditions. We termed this dataset of disease-associated proteins the 
‘Disease Continuum’. Abbreviations are as follows: Alzheimer’s disease (AD); Amyotrophic Lateral Sclerosis (ALS); Liver disease (LD); 
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Diabetes mellitus (DM); Dementia (D); Chronic obstructive pulmonary disease (COPD); Stroke (S); Chronic Kidney Disease (CKD); 
Frontotemporal dementia (FTD); Frontotemporal lobar degeneration (FTLD); Huntington’s disease (HD); Chronic Heart Failure (CHF); 
Mild cognitive impairment (MCI); Neurodegeneration (N); Parkinson’s disease (PD); Cancer (C). 

 

Supplemetary Table 26. Therapeutic continuum. To identify potential therapeutic targets that could interact and potentially 

control the ‘Disease Continuum’ listed in Supplementary Table 25 in a multidimensional manner we investigated the proteins within 
this continuum with interrogators most strongly associated with battery of terms linked to central nervous system function, energy 
metabolism and GPCR-focused signaling (via PubMed Central text mining using GeneIndexer (https://geneindexer.com/): 1) GPCR , 
2)gpcr, 3) G protein-coupled receptor, 4) G protein coupled receptor, 5) heptahelical, 6) G protein, 7) receptor, 8) target, 9) 
therapeutic, 10) serpentine, 11) seven transmembrane, 12) brain, 13) cortex, 14) hippocampus, 15) central nervous system, 16) 
CNS, 17) diabetes, 18) energy, 19) metabolism, 20) glucose, and 21) mitochondria). Ranking the Cosine Similarity scores of the 
resultant factors that were prominent in the disease continuum and the ‘Therapeutic Interrogators’ we found that, based on a 
correlation ranking probability score (p<0.001, ***) there were 37 specific protein targets demonstrating a number of correlations 
within the therapeutic interrogators that was greater than the 99% percentile (representing only 0.67% of the input ‘Disease 
Continuum’ dataset). The top three proteins that could represent effective targets against age-related diseases were, AVPR1B 
(arginine vasopressin receptor 1B), MAS1 (MAS1 proto-oncogene, G protein-coupled receptor) and RLN3, the cognate ligand for the 
RXFP3. 

https://geneindexer.com/
https://geneindexer.com/

