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INTRODUCTION 
 
More than 20 million people in the world suffer from a 
progressive neurodegenerative disorder, Alzheimer's 
disease (AD) [1, 2], which is the leading cause of 
dementia. The symptoms of the disease begin with mild 
memory difficulties and develop towards cognitive 
impairment, personality change and language impairment 
as the condition deteriorates [3]. So far, no effective 
treatment can cure AD. In addition, the long-term care of 
AD patients puts heavy economic burden to families and  

 

society. Epidemiological studies suggest that age, family 
history and the genetics are the three risk factors for AD 
[4–6]. Among them, age is the most important factor, 
most AD patients are over 65 years old [7, 8]. Moreover, 
cardiovascular disease, education, social and cognitive 
engagement and traumatic brain injury are also factors 
affecting the incidence of AD [9]. It has been found that 
genetic mutations of presenilin 1 (PSEN1), presenilin 2 
(PSEN2), the epsilon 4 allele of the apolipoprotein E 
(APOE) and amyloid precursor protein (APP) on 
chromosomes 1, 14, 19 and 21 cause AD [10, 11].  
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ABSTRACT 
 
Our previous studies revealed RBM8A may play a role in various progressive neurological diseases. The present 
study aimed to explore the role of RBM8A in Alzheimer's disease (AD). RBM8A is significantly down-regulated in 
AD. Interestingly, 9186 differentially expressed genes are overlapped from comparisons of AD versus control and 
RBM8A-low versus RBM8A-high. Weight gene correlation analysis was performed and 9 functional modules were 
identified. Modules positively correlated with AD and RBM8A-low are significantly involved in the RAP1 signaling 
pathway, PI3K−AKT signaling pathway, hematopoietic cell lineage, autophagy and APELIN signaling pathway. 
Fifteen genes (RBM8A, RHBDF2, TNFRSF10B, ACP1, ANKRD39, CA10, CAMK4, CBLN4, LOC284214, NOVA1, PAK1, 
PPEF1, RGS4, TCEB1 and TMEM118) are identified as hub genes, and the hub gene-based LASSO model can 
accurately predict the occurrence of AD (AUC = 0.948). Moreover, the RBM8A-module-pathway network was 
constructed, and low expression of RBM8A down-regulates multiple module genes, including FIP200, Beclin 1, 
NRBF2, VPS15 and ATG12, which composes key complexes of autophagy. Thus, our study supports that low 
expression of RBM8A correlates with the decrease of the components of key complexes in autophagy, which could 
potentially contribute to pathophysiological changes of AD. 
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In addition, several RNA-binding proteins (RNPs) have 
been identified to be strongly linked with neuro-
degenerative diseases, such as amyotrophic lateral 
sclerosis (ALS) [12, 13]. It is worth noting that other 
RNPs, including the exon junction complex (EJC), also 
have been found to play a prominent role in 
neurodevelopment [14]. EJC consists of four core 
proteins (EIF4A3, MAGOH, RBM8A and MLN51) [15, 
16], of which RNA-binding motif protein 8A (RBM8A) 
is an RNP that is involved in nonsense mediated RNA 
decay (NMD) and RNA splicing [17, 18]. Studies have 
shown that high expression of RBM8A leads to 
increased anxiety-like behavior, abnormal social 
interaction and reduced immobile time [19]. Previously, 
we found that RBM8A regulates many genes related to 
neurodegenerative and neuropsychiatric disorders [20], 
but the role RBM8A in the progress of AD remains 
unclear.  
 
To further explore the potential mechanism of R8M8A in 
AD, we conducted a comprehensive modular exploration. 
We found that the low expression of RBM8A may lead to 
the decrease of the components of key complexes 
(FIP200, Beclin 1, NRBF2, VPS15 and ATG12) in 
autophagy-pathway, which are associated with autophagy 
disorder and may contribute to the risk of AD. 
 
RESULTS 
 
Identification of differentially expressed gene in AD 
 
Using the workflow shown in Figure 1, we found that 
compared to control samples, RBM8A is significantly 
down-regulated in AD, P= 1.620e-19 and logFC (fold 
change) = -0.078 (Figure 2A), suggesting that low 
expression of RBM8A is associated with AD. There 
were 15267 DEGs in AD compared to control samples, 
of which 7346 were up-regulated and 7921 were down-
regulated (Figure 2B, Supplementary Table 1). 
Moreover, compared to RBM8A-high group, there were 
13691 DEGs in RBM8A-low samples, of which 7128 
were up-regulated and 6563 were down-regulated 
(Figure 2C, Supplementary Table 2). There were 9186 
genes were commonly up-regulated or down-regulated 
in both AD/control and RBM8A-low/high groups. 
These genes may be AD-related genes that correlate 
with RBM8A expression. The 25 most up-regulated and 
25 down-regulated genes in AD were visualized in a 
heatmap (Figure 2D). 
 
Module associated with AD 
 
To identify the key module most associated with AD, 
WGCNA was performed using the expression profile of 
AD-related genes associated with RBM8A level. A total 
of ten modules were identified (Figure 3A). The brown 

module is positively correlated with AD (correlation 
coefficient = 0.69, P = 3E-67; Figure 3B), while the 
turquoise module is negatively correlated with AD 
(correlation coefficient = -0.69, P = 3E-66; Figure 3B). 
According to GS > 0.7 and MM > 0.9, fifteen genes are 
identified as hub genes (RBM8A, RHBDF2, 
TNFRSF10B, ACP1, ANKRD39, CA10, CAMK4, 
CBLN4, LOC284214, NOVA1, PAK1, PPEF1, RGS4, 
TCEB1 and TMEM118). The correlation analysis 
shows that RBM8A strongly correlates with hub genes 
(Figure 3C). Furthermore, module function enrichment 
analysis shows that brown module genes (Figure 3D) 
are significantly involved in biological processes related 
to regulation of vesicle − mediated transport, while 
turquoise module (Figure 3D) genes are significantly 
enriched in biological processes of response to peptide, 
regulation of vesicle−mediated transport, response to 
nutrient levels, gland development. The brown module 
(Figure 3E) is significantly involved in Hematopoietic 
cell lineage and PI3K-AKT signaling pathway, while 
turquoise module (Figure 3E) is significantly involved 
in Rap1 signaling pathway, MAPK signaling pathway, 
Autophagy-animal, Apoptosis and Apelin signaling  
 

 
 

Figure 1. The workflow of the present study. 
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pathway. In addition, we extract the genes that interact 
with RBM8A in the modules based on STRING 
database. According to the pathway which these genes 
are significantly involved in, we finally constructed an 
RBM8A-module-pathway global regulation network 
(Supplementary Figure 1). This network showed that 
RBM8A indirectly regulates pathways related to AD by 
regulating interacting module genes.  
 
Verification of biological processes and key 
pathways in AD 
 
Gene Set Enrichment Analysis showed that compared to 
control samples, biological processes such as adherent 
junction assembly, astrocyte differentiation, intrinsic 
apoptotic signaling pathway by p53 class mediator are 
significantly enriched in AD (Figure 4A). Similarly, 
compared to RBM8A-high, biological processes, such as 
Adherents junction assembly, Astrocyte differentiation, 

Intrinsic apoptotic signaling pathway by p53 class 
mediator were significantly enriched in RM8A-low 
(Figure 4B). Moreover, the Apoptosis, Hematopoietic cell 
lineage, MAPK signaling pathway, and Wnt signaling 
pathway were significantly involved in AD (Figure 4C). 
Similarly, apoptosis, hematopoietic cell lineage, MAPK 
signaling pathway and Wnt signaling pathway are also 
significantly over-represented in RBM8A-low samples 
(Figure 4D). Furthermore, we found that low expression 
of RBM8A affects many modular genes, including 
FIP200, Beclin 1, NRBF2, VPS15 and ATG12. These 
genes are involved in key complexes encoding autophagy 
pathways, which may be a potential mechanism for low 
expression of RBM8A to promote AD (Figure 4E). 
 
LASSO model is a potential predictive marker of AD 
 
We extracted the expression profile of hub genes to 
construct LASSO model (Figure 5A). Using the LASSO

 

 
 

Figure 2. Differential expression gene analysis. (A) RBM8A is down-regulated in AD (P= 1.620e−19, 310 AD patients and 157 normal 
people's postmortem prefrontal cortex samples are contained). (B) Volcano plot of the AD-control, red represents up-regulated genes, blue 
represents down-regulated genes, and black represents no significantly differentially expressed genes. (C) Volcano plot of the RBM8A-
low/high, blue represents down-regulated genes, and black represents no significantly differentially expressed genes. (D) A heatmap of 25 
most up-regulated and 25 most down-regulated genes.  
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method, 8 genes were identified with non-zero 
regression coefficients, and the value of lambda.min = 
0.04013996. The genes based model index was created 
as the following formula: index =RBM8A*(-
2.38668779488564) + RHBDF2*2.00115481990953 + 
TNFRSF10B*0.817520478917702 + ACP1*(-3.41028 
393841058) + ANKRD39*(-0.279104767589027) + 
CA10*(-0.988480656766608) + CBLN4*(-0.70290303 
609009) + PPEF1*(-1.67911758870231). ROC curve 
analysis (Figure 5B) indicated that the AUC of the 8-
gene-based model was 0.948 in the training set and 
0.947 in the test set, which suggesting LASSO model 
may be used as a biomarker of AD. It was further 
validated in a test set and a validation set (GSE5281 and 
GSE48350) with AUC= 0.947 and AUC = 0.948, 
respectively (Figure 5C). Furthermore, we found that 

RBM8A is down-regulated in AD (Figure 5D) and in 
several brain regions (Figure 5E) of patients in 
GSE5281 and GSE48350. This indicated that RBM8A 
and its related hub genes were highly associated with 
AD, and they could serve as biomarkers for further test. 
 
DISCUSSION 
 
Alzheimer's disease is the most common form of 
dementia, affecting more than 50 million people 
worldwide. Despite decades of research, no drugs can 
effectively treat Alzheimer's disease. In previous studies, 
we found that RBM8A regulates many risk genes 
associated with neurodegenerative / neuropsychiatric 
disorders and many important functional processes that 
are critical for early neurodevelopment [20]. Therefore, 

 

 
 

Figure 3. Weighted correlation network analysis. (A) Recognition module, each module was given an individual color as identifiers, 
including 10 different modules. (B) Correlation heat map of gene modules and phenotypes, the red is positively correlated with the 
phenotype, blue is negatively correlated with the phenotype. (C) The correlation between RBM8A and hub genes, red indicates negative 
correlation and blue indicates positive correlation (D) Biological processes of module genes, the significance of enrichment gradually 
increases from blue to red, and the size of the dots indicates the number of differential genes contained in the corresponding pathway. (E) 
KEGG pathways analysis of module genes. The significance of enrichment gradually increases from blue to red, and the size of the dots 
indicates the number of differential genes contained in the corresponding pathway. 
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Figure 4. Result of Gene Set Enrichment Analysis. (A) Biological processes enriched in AD. (B) Biological processes enriched in RBM8A-
low. (C) KEGG pathways enriched in AD. (D) KEGG pathways enriched in RBM8A-low. (E) Potential mechanism of low expression of RBM8A 
associated with AD, blue indicates the down-regulated gene and red indicates the up-regulated gene. 
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we further explore the regulatory mechanism of RBM8A 
on AD. In the present study, we first found that RBM8A 
was generally down-regulated in AD patients, suggesting 
that low expression of RBM8A may promote AD. 
According to WGCNA, a total of nine modules associated 
with AD were identified. Moreover, according to GS > 
0.7 and MM > 0.9, fifteen genes were identified as hub 
genes, including RBM8A, RHBDF2, TNFRSF10B, 
ACP1, ANKRD39, CA10, CAMK4, CBLN4, 

LOC284214, NOVA1, PAK1, PPEF1, RGS4, TCEB1 
and TMEM118. Among them, DNA methylation changes 
of RHBDF 2 may play a role in the onset of AD [21], and 
NOVA1 also plays a significant role in neurological 
disorders [22], indicating that these genes are strongly 
correlated with AD. Furthermore, we found RBM8A 
shows high correlation with hub genes, which suggested 
that changes in RBM8A expression may lead to changes 
in these genes.  

 

 
 

Figure 5. A model for predicting AD and verification of differential expression of RBM8A. (A) LASSO model. (B) ROC curves analysis of 
train set (GSE33000). (C) ROC curves analysis of test set (GSE3300) and validation (GSE5281 and GSE48350) (D) RBM8A is down-regulated in AD 
(P= 2.965e-06, 157 AD patients and 247 normal samples are contained). (E) RBM8A is down-regulated in various brain regions. EC: entorhinal 
cortex, HIP: hippocampus, MTG: medial temporal gyrus, PC: posterior cingulate, SFG: superior frontal gyrus, VCX: primary visual cortex. 



www.aging-us.com 11679 AGING 

We further explored the biological processes and 
pathways related to AD. Functional enrichment analysis 
showed that modules with a strong correlation with AD 
significantly involved in biological processes related to 
response to peptide, response to nutrient levels, 
regulation of vesicle-mediated transport and gland 
development, and significantly involved in the Wnt 
signaling pathway, Rap1 signaling pathway, MAPK 
signaling pathway, autophagy and apoptosis. GSEA also 
showed the Wnt signaling pathway, MAPK signaling 
pathway and apoptosis are enriched in AD and RBM8A-
low group. Furthermore, based on the STRING database, 
we extracted genes that interacted with RBM8A in each 
module. Because of the interaction, changes in the 
expression of RBM8A correlates with the expression of 
these genes. According to the KEGG pathway, using the 
genes that are enriched in the module with RBM8A, a 
global regulatory network of RBM8A-module gene-
pathway was constructed. Through this network, 
RBM8A can regulate pathways by regulating module 
genes directly or indirectly (Supplementary Table 1). 
Many pathways have been confirmed to relate to AD. For 
example, down-regulation of canonical Wnt/beta-catenin 
pathway is associated with AD [23, 24]. The Wnt 
dysfunction results in Aβ production and aggregation in 
vitro, which promotes AD [25]. Apoptosis was also 
found to be significantly associated with AD [26]. In 
our study, we found the Rap1 signaling pathway, MAPK 
signaling pathway and autophagy were associated with 
AD. Moreover, mounting evidence has implicated 
defective autophagy in the pathogenesis of several major 
neurodegenerative diseases, particularly AD [27–29]. 
The impairment in the autophagy-lysosome system not 
only promotes the production of amyloid beta-peptide in 
Alzheimer's disease (AD), but also interferes with the 
conversion of other AD-related molecules [30].  
 
Our study identified an interesting finding that the 
down-regulation of RBM8A expression resulted in the 
down-regulation of FIP200, Beclin 1, NRBF2, VPS15, 
eIF2α and ATG12. Among them, FIP200 is a 
component of the ULK-Atg13-FIP200 complex and is 
also required for autophagosome formation in 
mammalian cells [31, 32]. Beclin 1 is a novel Bcl-2-
homology (BH)-3 domain only protein [33]. It interacts 
with several cofactors to regulate the lipid kinase Vps-
34 protein and promotes formation of Beclin 1-Vps34-
Vps15 core complexes to initiate autophagy. Many 
studies showed, Beclin 1 dysfunction has been implicated 
in many disorders, including cancer and neuro-
degeneration [34]. Inhibition of Beclin 1 function will 
impair autophagy and promote AD pathology [31]. In 
addition, studies have shown that NRBF2 (nuclear 
receptor binding factor 2) is a key component / regulator 
of the PtdIns3K and is involved in APP-CTFs homeo-
stasis in an AD cell model [35]. ATG12 is a ubiquitin-like 

molecule that is activated by the E1-like enzyme ATG7, 
transferred to the E2-like conjugating enzyme ATG10, 
and ultimately attached to ATG5 [36]. This process is 
required for the early steps of autophagy [37]. The activity 
of the conserved ATG12-ATG5-ATG16 complex is 
essential for autophagosome formation [38]. All these 
genes are important components of unc-51 like kinase 
(UIK) complex and phosphatidylinositol 3-kinase 
(PI3K) complex, and participate in regulating auto-
phagy [39]. Our study reveals the interaction of RBM8A 
with the autophagy pathway by affecting these six genes, 
suggesting that low expression of RBM8A may contribute 
to autophagy disorder and AD by down-regulating these 
genes.  
 
In addition, the expression profile of hub genes was 
extracted to construct LASSO model, of which 8 genes 
were identified with non-zero regression coefficients. 
Among these 8 genes, some of these genes have been 
previously reported to be associated with AD. For 
example, RBM8A is an RNA binding protein that has 
differential expression in Alzheimer's disease [40], and 
DNA methylation on RHBDF 2 gene may have a role in 
the onset of AD [36, 41], the increase of CBLN4 may be 
a potential therapy for AD [42]. ROC curve analysis 
showed that in both training set and test set, the LASSO 
model has a high AUC value and may be served as a 
biomarker of AD. This is also verified in an independent 
dataset. Furthermore, we also found that RBM8A is con-
sistently down-regulated in various brain regions of AD 
patients, which further support that the low expression of 
RBM8A contributes to the pathogenesis of AD.  
 
Our study proves that bioinformatics analysis can reveal 
some important insights into molecular pathways 
underlying AD. However, the potential key pathways 
and genes are based on bioinformatics tools and 
molecular experiments should follow to further validate. 
It remains to be tested to what extent downregulation 
of RBM8A in AD patients contributes to AD 
development. 
 
CONCLUSIONS 
 
Low expression of RBM8A may correlate with the 
decrease of the components of key complexes (FIP200, 
Beclin 1, NRBF2, VPS15 and ATG12) in autophagy 
pathway, which underlie potential novel mechanism 
contributes to autophagy disorders and AD. 
 
MATERIALS AND METHODS 
 
Data processing 
 
In the Gene Expression Omnibus database (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) [43], we selected 

https://www.ncbi.nlm.nih.gov/geo/
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three data sets related to AD for analysis. Among them, 
the GSE33000 based on GPL4372 platform includes 
310 AD patients and 157 normal people's postmortem 
prefrontal cortex samples were used to explore the 
potential involvement of RBM8A in AD. In addition, 
the GSE5281 includes 87 AD patients and 74 normal 
people's brain tissue samples, and the GSE48350 
includes 80 AD patients and 173 normal people's brain 
tissue samples, which both based on GPL570 were 
used to verify the differential expression of RBM8A in 
AD patients. The normalizeBetweenArrays function in 
the limma package [44] was used to normalize gene 
expression profiles in GSE33000, while the justRMA 
function in Affy package was used to normalize the 
data in GSE5281 and GSE48350. Moreover, impute 
package (http://bioconductor.org/packages/impute/) 
was used to supplement missing data, and ComBat 
function in the sva package [45] was used to merge 
GSE5281 and GSE48350 data sets and remove the 
batch effect. The workflow of the present study was 
shown in Figure 1. 
 
Gene set enrichment analysis 
 
Gene Set Enrichment Analysis (GSEA) [46, 47] was 
used to screen biological process (BP) GO term and 
KEGG pathways that may be related to AD in 
GSE33000 datasets. GSEA analysis uses GSEA2-2.2.4 
(Java) version for analysis. The c5.bp.v6.2.symbols.gmt 
and c2.cp.kegg.v6.2.symbols.gmt datasets in MsigDB 
V6.2 database [48] were used as reference gene sets and 
GSEA analysis was performed according to default 
parameters. P < 0.05 was considered significant. 
 
Identification of differentially expressed genes 
(DEGs) 
 
Differential expression analysis was performed using the 
limma package [44, 49, 50] in R. We selected the median 
expression level of RBM8A as the cutoff point to 
dichotomize patients into RBM8A-high and RBM8A-
low expression groups. The DEGs between AD and 
control, and between RBM8A-high and RBM8A-low 
were identified using lmFit and eBayes functions in 
limma package. P < 0.05 adjusted by the false discovery 
rate (FDR) was considered as significant.  
 
Weight gene correlation network analysis (WGCNA) 
 
We extracted the expression profile of those genes 
which are commonly up-regulated or down-regulated in 
both AD/control and RBM8A-low/high to perform 
WGCNA [51] in GSE33000. At the first, hclust 
function was used to hierarchical clustering analysis. 
Then, the soft thresholding power value was screened 
during module construction by the pickSoftThreshold 

function. Candidate power (1 to 30) was used to test the 
average connectivity degrees of different modules and 
their independence. A suitable power value was selected 
if the degree of independence was > 0.8. The WGCNA 
R package was used to construct co-expression net-
works (modules); the minimum module size was set to 
30 and each module was assigned a unique color label. 
In addition, the clusterProfiler package [32] in R was 
used to perform functional enrichment analyses for 
these functional modules. 
 
Identification of hub gene and construction of 
RBM8A-module-pathway network  
 
In WGCNA, gene significance (GS) is defined as the 
correlation a gene with phenotype. Module membership 
(MM): MM(i) = cor(x i, ME) is defined to measure the 
importance of a gene in the module. In this study, a 
gene with GS > 0.7 and MM > 0.9 was defined as hub 
gene among the candidate gene modules. In addition, 
according to the STRING database (https://STRING-
db.org/), [53], DEGs that interact with RBM8A were 
extracted. The correlation of the DEGs interacting with 
RBM8A and the hub genes was to explore. After that, a 
RBM8A-module-pathway global regulation network 
was constructed. Then, cytoscape software [54] was 
used to network visualization. 
 
Construction of LASSO model and receiver 
operating characteristic (ROC) curve analysis 
 
Least absolute shrinkage and selection operator 
(LASSO) has strong predictive value and low 
correlation and applied to select the best features for 
high-dimensional data [55, 56]. In order to distinguish 
AD from control, we extracted the expression profile of 
hub genes to construct LASSO model by glmnet 
package (https://CRAN.R-project.org/package=glmnet). 
A model index for each sample was created using the 
regression coefficients from the LASSO analysis to 
weight the expression value of the selected genes with 
the following formula: index = ExpGene1*Coef1 + 
ExpGene2*Coef2 + ExpGene3*Coef3+. … 
 
The "Coef" is the regression coefficient of gene and is 
derived from the LASSO Cox regression, and "Exp" 
indicates the expression values of the gene. Then, 
GES33000 data set were randomly assigned to the 
training set (70%) and test set (30%). In order to 
evaluate the ability of LASSO model to identify AD, 
pROC package [57] was used to conduct ROC curve 
analysis in the training set and test set. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 

 
 

 

 
 

Supplementary Figure 1. RBM8A-module-pathway network. Red represents high expression of genes, blue represents low expression 
of genes. 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 
Supplementary Table 1. Differentially expressed genes in AD compared to control samples. 
Supplementary Table 2.  Differentially expressed genes in RBM8A-low group compared to RBM8A-high group 


