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INTRODUCTION 

The microbiota-gut-brain axis integrates neural, 
hormonal and immunological signaling between the gut 
and brain, and has a profound effect on mammalian 
growth and health throughout life [1, 2]. However, 
systematic linkage of the two distant organs and the 
physiological and pathological impacts of the 
microbiota-gut-brain axis on growth and health remain 
largely unclear. Extensive research is required to 
validate existing routes of bidirectional communication, 

to identify new connections, and to illuminate the 
relevant molecular mechanisms. In previous studies, 
we found that alterations of gut microbiota and 
transcriptomes of the small intestine and brain are 
accompanied by changes in the concentrations of Aβ1-42 
in the hippocampal CA1 region [3]. Furthermore, 
probiotics of fructo-oligosaccharides from natural herbs 
could modulate these interactions between gut ecology 
and brain physiology [3], indicating that the gut 
microbiota and brain interact with each other. However, 
additional evidence is needed, particularly clinical 
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ABSTRACT 

Our pre-experiments found that the brain circRNA sequence profiles and gut microbiota in AD-like mice were 
changed, as circNF1-419 could enhance autophagy to ameliorate senile dementia in AD-like mice, so we 
conclude that there might some connections between circRNA and gut microbiome. Therefore, we use the 
over-expressed circNF1-419 adeno-associated virus (AAV) animal system with the aim of identifying possible 
connections. Our results showed that over-expression of circNF1-419 in brain not only influenced the 
cholinergic system of brain, but also changed the gut microbiota composition as the Candidatus Arthromitus, 
Lachnospiraceae FCS020 group, Lachnospiraceae UCG-006, and [Eubacterium] xylanophilum group, and the 
intestinal homeostasis and physiology, and even the gut microbiota trajectory in new born mice. These findings 
demonstrate a link between circRNA and gut microbiome, enlarge the ‘microbiome- transcriptome’ linkage 
library and provide more information on gut-brain axis. 
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sample support, and the mechanism remains poorly 
understood and requires further investigation.  
 
Research increasingly suggests that diet and lifestyle are 
important factors for human health. A vast array of 
paradigms have confirmed that many common diseases 
are more or less related to obesity, such as sleep apnea 
[4], infertility [5], diabetes [6], hypertension [7], coronary 
heart disease [8], liver disease [9, 10], osteoporosis [11], 
cancers [12, 13], and even Alzheimer’s disease (AD) 
[14]. Weight management is therefore particularly 
important for keeping healthy. In traditional concepts, 
body weight (or more accurately, body fat) is considered 
to be regulated by the central nervous system (CNS). 
However, recent studies have confirmed that symbiotic 
microorganisms also play an important role regarding 
fluctuations in energy status [15–18], and fecal 
microbiota transplantation could influence acute feeding 
behavior and long-term energy homeostasis [19, 20]. 
Within this symbiotic interaction, a clear understanding 
of who drives decisions about when, how much, what 
and why is lacking. 
 
Circular RNA (circRNA) is a type of single-stranded 
RNA which, unlike the better known linear RNA, forms 
a covalently closed continuous loop, i.e., in circular RNA 
the 3′ and 5′ ends normally present in an RNA molecule 
have been joined together [21]. This feature confers 
numerous properties to circRNAs, many of which have 
only recently been identified. As circRNAs do not have 
5′ or 3′ ends, they are resistant to exonuclease- mediated 
degradation and are presumably more stable than most 
linear RNAs in cells. CircRNAs have been categorized as 
noncoding RNA, but more recently, they have been 
shown to encode proteins [22–24]. Like many other 
alternative noncoding isoforms, the biological functions 
of most circRNAs are unclear, however they have 
benefited from the development of high-throughput 
sequencing technology, which has enabled large-scale 
studies on circRNAs in recent years. Subsequent studies 
revealed that the expression of circRNAs is 
developmentally regulated, tissue- and cell-type specific, 
and shared across the eukaryotic tree of life [25–27]. 
CircRNAs are emerging as a heterogeneous class of 
molecules involved in modulating gene expression by 
regulating transcription and protein and miRNA 
functions. Studies have shown that in the brain, where 
the level of circRNA is significantly higher, some 
circRNAs consist mainly of portions of the multi-exon 
5′ untranslated region (5′UTR), suggesting that 
functions of these multi-exon 5′UTR of genes and/or 
circRNA is new [28]. Increasing numbers of circRNAs 
function in the brain, including circPDE4B [29], 
circRNA-0044073 [30], and circHIPK3 [31], as well as 
in heart failure [32, 33], human cancer (Josh N, et al.) 
[34] and other diseases [35], suggesting that circRNAs 

are crucial functional molecules in mammals. Thus, 
studying the roles of circRNAs on the gut-brain axis is 
important. A forward chemical genetic screen revealed 
gut microbiota metabolites that modulate host 
physiology [36], and circRNAs were found to be 
degraded by RNase L when induced by poly(I:C) or 
infected by virus (Liu Y, et al.).  
 
From these findings, we concluded that the gut 
microbiome may influence the expression of circRNAs, 
but experimental evidence for this is lacking. In our 
recent study, we showed that circNF1-419 could regulate 
autophagy in over-expressing circNF1-419 transfected 
astrocytes, likely through PI3K-I/Akt-AMPK-mTOR and 
PI3K-I/Akt-mTOR signaling pathways. And an AAV 
packaging system (virus titer 1 ×1 012) over-expressing 
circNF1-419 in vivo showed autophagy enhancing 
activity by binding Dynamin-1 and AP2B1, delaying 
senile dementia by regulating aging markers (p21, 
p35/25, p16) and inflammatory factors (IL-6, IL-10, NF-
κB), and by reducing the expression of AD marker 
proteins Tau, p-Tau, Aβ1-42, and APOE in SAMP8 mice 
[37]. Therefore in this study, we subjected data on the gut 
microbiota and circRNA sequences of brain tissues from 
AD-like mice to choice-based conjoint analysis. In 
addition, from the preventive medicine perspective, 
considering the effects of diet on health and the causes 
and processes of chronic disease formation, we also 
focused on the influence of circRNAs in the brain to the 
gut and gut microbiome. We aimed to identify more 
associations between gut microbiota and brain circRNAs. 
We also aimed to enlarge the ‘microbiome-trans-
criptome’ linkage library, which would provide more 
information on the interplay between gut and brain in 
order to aid in the identification of potential therapeutic 
markers and mechanistic solutions to complex problems 
commonly encountered in pathology, toxicology, and 
drug development studies.  
 
RESULTS AND DISSCUSSION 
 
Gut microbiota plays an important role in the 
circRNA sequences in AD-like mice  
 
To understand the network of circRNAs acting on  
the microbiome-gut-brain axis, the gut microbiota 
(Supplementary Figure 1A–1B), serum metabolites 
(Supplementary Figure 2A–2B), and circRNA sequences 
of brain tissues (Supplementary Table 1) from 8-month-
old APP/PS1 mice were subjected to choice-based 
conjoint analysis. The interactions of gut microbiota and 
metabolites are shown in Figure 1A–1B, which revealed 
that Adlercreutzia (Actinobacteria), Streptococcus, 
Lactobacillus, Ruminococcus and Prevotella may  
be the key bacteria regulating serum metabolites  
such as L-acetylcarnitine, 11-beta-hydroxyandrosterone-RET
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Figure 1. The combined data analysis between gut microbiome and serum metabolome of APP/PS1 mice. (A) The Spearman 
correlation coefficient for each metabolite type and each bacterial genus, see also Supplementary Figure 1A–1B and Supplementary Figure 
2A–2B. (B) Serum metabolome and genera. Red and blue indicate positive and negative correlations, see also Supplementary Figure 1A–1B 
and Supplementary Figure 2A–2B. Hub nodes with the most connections are highlighted in red. Data are presented as the means of more 
than 6 independent experiments. RET
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3-glucuronide, phosphatidylethanolamine and phosphorus 
esters. With the gut microbiota and serum metabolite 
changes, there were 501 differentially expressed 
circRNAs in the model group (fold change > 1.50,  
p < 0.05 vs normal C57 mice, Figure 2A) up-regulated, 
and 624 circRNAs down-regulated, including chr14_ 
84532875_ 84533695_+ (Pcdh17), chr1_140425193_ 
140450304_+ (Kcnt2), chr8_94047272_ 94055344_+ 
(Ogfod1), chr3_158104428_ 158148699_- (Lrrc7), 
chr10_62633977_ 62643372_- (Ddx50), chr12_6960 
3476_69607412_- (Sos2), chr12_85028770_85030887_+ 
(Ylpm1), chr10_93208172_93218089_+ (Cdk17), chr11_ 
79546971_79551134_+ (NF1), and chr6_52609145_ 
52630349_- (Hibadh); more details are shown in 
Supplementary Table 1, (PRJNA553830). 
 
Given that the function of most circRNAs is unknown, 
the mRNA sequence was concurrently analyzed to offer 
an alternative explanation. Using RNA-sequencing, 347 
genes were up-regulated and 507 genes were down-
regulated (fold change > 1.50, p < 0.05, Figure 2B) in 
brain tissues dissected from APP/PS1 double transgenic 
mice. The networks of Ingenuity Canonical Pathways 
(IPA) data showed that the diseases and functions of 
cellular movement, cell death and survival might be 
regulated by molecules in a network including 26s 
Proteasome, AGT, ALB, BCR (complex), BLNK, CA3, 
CASP1, CCND2, CD4, CDT1, CENPF, DAPK1, DIO2, 
DSP, EGR1, Focal adhesion kinase, FST, HGF, IgG, 
KDELR3, KIF22, LBX1, LY9, MAPK12, MMP19, 
NEU4, NOD2, P38 and MAPK, PRNP, RIN1, S100A8, 
S100A9, SDC1 and ST14; cell-to-cell signaling and 
interaction, nervous system development and function, 
cellular function and maintenance might be regulated by 
molecules in a network including Akt, Alp, CAMK2A, 
CAMK2N1, CCKBR, CHRM3, CLEC7A, CSF2RB, 
CYBB, EPHA4, ERK, FGF7, FLT3, FOSL2, Growth 
hormone, IL23, IRX1, KCNA5, KLF10, MAPK, MGLL, 
MIA, MMD, NPY, PLK2, PPP1R1B, RAG1, RGS4, 
RORC, SNCA, SPARC, STAT5a/b, TLR2, VEGF, 
WNT9A mRNAs (Supplementary Figure 3). Additional 
studies are needed in this area.  
 
GO (gene ontology) enrichment analysis of differentially 
expressed circRNAs showed that they mainly influenced 
synaptic transmission, post-synapse, positive regulation 
of neurogenesis, single-organism behavior, protein 
serine/threonine kinase activity, histone modification, 
regulation of GTPase activity, and neuron death. KEGG 
enrichment analysis showed that they mainly influenced 
MAPK, Rap1, cAMP, glutamatergic synapse, neuro-
trophin and Rap1 signaling pathways. Reactome 
enrichment analysis of differentially expressed circRNAs 
showed that they mainly influenced developmental 
biology, signaling by Rho GTPases, neuronal system, 
signaling by NGF, axon guidance, signaling by EGFR, 

transmission across chemical synapses, NGF signaling 
via TRKA from the plasma membrane, organelle 
biogenesis and maintenance, and signaling by FGFR1~4. 
Bioinformatics analyses of circRNA and mRNA 
annotation, functional classification, functional enrich-
ment and cluster analyses showed that the changes of gut 
microbiota and serum metabolites could influence the 
circRNA sequences and function. This conclusion 
requires additional evidence, particularly clinical sample 
support, and the mechanism remains poorly understood 
and needs further investigation. 
 
In order to understand the connections between the gut 
microbiota and brain function, an additional experiment 
was carried out using fecal microbiota transplantation. 
Fecal samples were collected from 8-month-old APP/PS1 
mice, PBS was added and the bacterial solution was 
concentrated immediately by centrifugation. C57 mice (9 
months old) were treated with the bacterial solution by 
enema, for 3 weeks, after the mixture of antibiotics 
according to the method of de Groot PF, et al. [59]. 
Microbiome analysis of the 16S rRNA genes was 
performed after 3 months. Gut microbiota from the 
APP/PS1 mice settled in the normal mice (Figure 2C–
2E), influenced the intestinal microenvironment (Figure 
2F, H&E of intestine), and up-regulated the expression of 
Tau and Aβ1-42 (Figure 2F) in the hippocampus. Together 
these results and those of our previous study 
demonstrating that the most highly abundant gut 
microbiota were correlated with the level of Aβ1-42 [3], 
led us to summarize that the gut microbiota have some 
interactions with the circRNA sequences of the brain in 
AD-like mice, and targeting the gut microbiota might be 
a feasible and effective strategy for ameliorating the 
symptoms or even delaying the progression of AD. Thus 
the gut microbiota plays an important role in the 
progression of AD.  
 
CircNF1-419 changes the intestinal physiology and 
gut microbiota in SAMP8 mice 
 
Recently, a report demonstrated that avian leucosis 
virus targets circ-Vav3 and then sponges gga-miR-375 
to promote epithelial-mesenchymal transition [38], 
indicating that a microorganism could directly influence 
the formation, expression and function of circRNAs, 
and the mysterious of circRNA is suggested in 
increasing numbers of studies [30, 38, 39]. In order to 
verify these, the expression level of circRNAs was 
examined by qRT-PCR in AD-like mice (PCR primers 
are listed in Table 1). The circRNAs of circ_zfyve1-504, 
circ_zcchc11-811, circ_zfp652-1147, circ_zfp236-1257, 
circNF1-419 and circ_zranb1-1575 were differentially 
expressed (Figure 3A), suggesting that these circRNAs 
may be related to AD. We then over-expressed 
circNF1-419 and circ_0001239 in the animal brain RET
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Figure 2. (A) Differentially expressed circRNAs in the APP/PS1 double transgenic mice brain samples (fold change > 1.50, p < 0.05 vs normal 
C57 mice, n=3). (B) Differentially expressed mRNAs in the APP/PS1 double transgenic mice brain samples (fold change > 1.50, p < 0.05 vs 
normal C57 mice, n=3). (C) Rarefaction curves based on OTU. The structure at the (D) phylum and (E) genus levels. (F) Histopathological 
changes in the brain identified using H&E staining and biomarker expression of Tau and Aβ1-42 using immunohistochemical methods after 
fecal microbiota from six months APP/PS1 mice transplantated into 9 months old C57 mice, (n≥6). RET
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Table 1. PCR primers. 

Primer name Sequence (5′->3′) Product size (bp) 

β-actin β-actin-F1: GCTTCTAGGCGGACTGTTAC 
β-actin-R1: CCATGCCAATGTTGTCTCTT 100 

Circ-Zfyve1 Circ-Zfyve1-F1: 5′- tcagcttctgggttctggtaaca-3′ 
Circ-Zfyve1-R1: 5′- gtgtgtgagactttccatcacc-3′ 123 

Circ-Zranb1 Circ-Zranb1-F2: 5′- gttattaagcacaagatctgc-3′ 
Circ-Zranb1-R2: 5′- gctgcttgctgagataccttt-3′ 135 

Circ-Zcchc11 Circ-Zcchc11-F1: 5′- cagcagatgatttgatttgc-3′ 
Circ-Zcchc11-R1: 5′- atattcttctttggttcatg-3′ 159 

Circ-Zfp652 Circ-Zfp652-F1: 5′- agcacatgaacgttactcac-3′ 
Circ-Zfp652-R1: 5′- cttggagcatcttgtctgaatg-3′ 131 

Circ-Zfp236 Circ-Zfp236-F3: 5′- tccccgttcctacctggcca-3′ 
Circ-Zfp236-R3: 5′- cgggctcagacagttccaga-3′ 140 

mmu_circ_0000705 circ_0000705-F1: 5′-tcaagatgaagtcgttcccac-3′ 
circ_0000705-R1: 5′-acattctctctcggtgcttg-3′ 143 

mmu_circ_0000705 circ_0000705-F2: 5′-gaacatgtgcgcatggtggac-3′ 
circ_0000705-R2: 5′-gctgtcgtgggaacgacttc-3′ 164 

mmu_circ_0008590 circ_0008590-F1: 5′-caggggcaggatcagaacgc-3′ 
circ_0008590-R1: 5′-ctgtctcgttcgttcctccac-3′ 160 

mmu_circ_0008590 circ_0008590-F2: 5′-cgtccgccaagtcatcagat-3′ 
circ_0008590-R2: 5′-cttgtcggtgcgttctgatc-3′ 141 

mmu_circ_0012931 circ_0012931-F1: 5′-tccacttgttaagatacctc-3′ 
circ_0012931-R1: 5′-gcaagagtagatacataattcc-3′ 168 

mmu_circ_0012931 circ_0012931-F2: 5′-tatgaacatcatcacaggtc-3′ 
circ_0012931-R2: 5′-gcataactaatctgaggtatctta-3′ 226 

chr10:108583875-108691063 chr10:108583875-108691063-F1: 5′-tgggtggcttatctttccgc-3′ 
chr10:108583875-108691063-R1: 5′-gaaggtagtatactcacatggg-3′ 211 

chr10:108583875-108691063 chr10:108583875-108691063-F2: 5′-ttcatagcaagagaaactgg-3′ 
chr10:108583875-108691063-R2: 5′-ttggttcaagcggaaagata-3′ 139 

chr15:39566944-39616510 chr15:39566944-39616510-F1: 5′-actcagccaaaccgtgctat-3′ 
chr15:39566944-39616510-R1: 5′-ctagtagcttcatatgatcgac-3′ 170 

chr15:39566944-39616510 chr15:39566944-39616510-F2: 5′-tgctcactggagaagaatga-3′ 
chr15:39566944-39616510-R2: 5′-tctatatccatagcacggtt-3′ 172 

chr4:43091229-43115160 chr4:43091229-43115160-F1: 5′-ctgccgcccagtgtttaaat-3′ 
chr4:43091229-43115160-R1: 5′-gaccatgatggaatgtgtagac-3′ 159 

chr4:43091229-43115160 chr4:43091229-43115160-F2: 5′-actaaaatattcagtgtgtaactt-3′ 
chr4:43091229-43115160-R2: 5′-tatgtgttaaatttaaacactg-3′ 175 

β-actin β-actin-F1: AGGGAAATCGTGCGTGACAT 
β-actin-R1:GAACCGCTCATTGCCGATAG 150 

Cir- SIRT1-623 Cir- SIRT1-623-F3: GAGCAGGTTGCAGGAATCCA 
Cir- SIRT1-623-R3:  ACAAAAGTATATGGACCTGA 136 

Cir- SIRT1-395 Cir- SIRT1-395-F2: TTCAAGTTTGCAAAGGTCCA 
Cir- SIRT1-395-R2: AATCTGCCACAGTGTCATAT 137 

Cir-CTGF-212 Cir-CTGF-212-F1: CTAGAGGAAAACATTAAGCCT 
Cir-CTGF-212-R2: ACAGGTCTTAGAACAGGCG 116 

rno_circ_003172 rno_circ_003172-F2: GTCCACACTCCGGGATGAG 
rno_circ_003172-R2: AGCTCGTCCTTCACTGCGC 165 

rno_circ_002671 rno_circ_002671-F1: CCACCAACAGATTCAGGAA 129 RET
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rno_circ_002671-R1: CTCTTGAGTATCTGGTTCTG 

rno_circ_002276 rno_circ_002276-F1: ACAAGAAGCTTGCTCAGGTC 
rno_circ_002276-R1: ATGTTCTGTGGCTCCTTGCT 163 

rno_circ_001216 rno_circ_001216-F2: GGTGCCTCCAAGGAGGTG 
rno_circ_001216-R2: ACACACCGCCATGCAGTACTC 171 

rno_circ_001215 rno_circ_001215-F2: GCGGTGCCTCCAAGGTTCC 
rno_circ_001215-R2: ACGGCCTTCTTGTCAGCTTTGG 217 

rno_circ_000987 rno_circ_000987-F2: CTGGTGTCAAGTAAGGTATT 
rno_circ_000987-R2: TGAATAGAAGGGTACATCTG 181 

rno_circ_NF1-419 rno_circ_NF1-419-F2: AGTCGAATTTCTACAAGCTTC 
rno_circ_ NF1-419-R3: AGCTTCTCCAAATATCCTCAT 179 

 

using an adeno-associated virus (AAV) system, with the 
aim of identifying possible connections. 
 
First, we utilized our previous designed AAV viral 
transduction system with RNA interference (sicircNF1-
419) and separately an over-expressing circNF1-419 
(sscircNF1-419) (Supplementary Figure 4). Two 
microliters of the AAV packaging system (virus titer 1 
× 1012) were injected into the cerebral cortex of SAMP8 
mice. Statistical analysis of the 16S rRNA gene 
sequencing data showed that sscircNF1-419 can 
significantly change the gut microbiota composition of 
the SAMP8 mice 7 weeks after infection – the relative 
abundance of Bacteroidetes, Actinobacteria, 
Deferribacteria and Cyanobacteria were increased 
(Figure 3B, p < 0.05 vs SAMP8 group) at the phylum 
level, and the relative abundance of Bacteroides, 
Alloprevotella, Lactobacillus, Lachnoclostridium and 
Ruminiclostridium 9 were changed (Figure 3B, p < 0.05 
vs SAMP8 group) at the genus level. Previous studies 
indicated that people who eat plenty of protein and 
animal fats have predominantly Bacteroides bacteria, 
while for those who consume more carbohydrates, 
Prevotella species dominate, which is due to the fact 
that the main sources of energy for Bacteroides species 
in the gut are complex host-derived and plant glycans 
[40]. Studies have revealed that the presence of 
Prevotella in the human gastrointestinal tract is 
inversely correlated with Parkinson’s disease [41, 42], 
and members of the family Lachnospiraceae could 
protect against colon cancer in humans by producing 
butyric acid with the functions of anti-inflammation and 
immunomodulation [43]. Histopathological obser-
vations showed that circNF1-419 could improve the 
damage of intestinal tissues in SAMP8 mice and 12-
month-old mice (Figure 4A), expression of AChE and 
AMP, CHRNB1 and CHRNA1 in the brain were 
improved (Figures 4C–4D), and expression of NF-κB 
p65 was activated (Figure 19B, p < 0.05). This all 
indicated that circNF1-419 in the brain could improve 
the central cholinergic system and improve intestinal 
physiology in AD-like mice.  

CircNF1-419 changes the gut microbiota genetic 
trajectory in newborn KM mice 
 
To elucidate how circNF1-419 in the brain influences 
the gut microbiota, we hypothesized that new dis-
coveries could be found via monitoring the colonization 
of gut microbiota in newborn KM mice. Two 
microliters of the AAV (over-expressing circNF1-419) 
packaging system (virus titer 1 × 1012) were injected 
into the cerebral cortex of 2-week-old KM mice, 
whose mother was fed with standard diet or the HSHF 
diet.  
 
Histopathological observations showed that circNF1-419 
could improve the damage of intestinal tissues in mice fed 
with the HSHF diet (Figure 4A). 16S rRNA gene 
sequencing revealed that the relative abundance of 
Bacteroidetes, Actinobacteria, Deferribacteria and 
Cyanobacteria were changed (p < 0.05 vs normal group, 
Figure 4B) at the phylum level, and the relative abundance 
of Bacteroidales S24-7 group, Lachnospiraceae NK4A136 
group, Alistipes, Alloprevotella, Lachnospiraceae, 
Bacteroides, Desulfovibrio, Lactobacillus, Roseburia and 
Helicobacter were changed (p < 0.05 vs normal group, 
Figure 4C) at the genus level 8 weeks after infecting with 
the AAV. The expression of AChE and AMP, CHRNB1 
and CHRNA1 were improved (Figure 3E, p < 0.05). 
Additional findings were that interference of circNF1-419 
aggravates some initial bacteria imbalance, including 
increasing the abundance of Actinobacteria, 
Deferribacteres, Proteobacteria while decreasing the 
Firmicutes (Figure 4B–4C), and circNF1-419 could 
improve these changes. This indicated that the gut 
microbiota had notable correlation with the host, and this 
certainly included the circRNAs.  
 
Association analysis of circNF1-419, intestinal 
transcriptome and gut microbiota 
 
To understand how circNF1-419 influences the gut 
microbiota, we integrated analysis of the association 
between gut microbiota (Figure 3B and 4C) and RET
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Figure 3. CircRNA NF1-419 influences the gut microbiota composition and cholinergic system. (A) The circRNAs of circ_zfyve1-
504, circ_zcchc11-811, circ_zfp652-1147, circ_zfp236-1257, circNF1-419 and circ_zranb1-1575 by reverse transcription polymerase chain 
reaction in Ganoderma lucidum extractions (LZ) (oral LZ of 50 mg/[kg·d]) and Hericium erinaceus extractions (HE) (oral HE of 50 mg/[kg·d]) RET
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treated SAMP8 mice brain samples lasting 24 weeks. (B) Over expression of circNF1-419 in brain could change the gut microbiota at phylum 
(a) and genus level (b) of SAMP8 mice, see also in Supplementary Figure 8. (C) Expression of the proteins AChE, AMP, CHRNA1 and CHRNB1 in 
the brain tissues of SAMP8 mice after infection of over-expressing circNF1-419 AAV. (D) Expression of the proteins AChE, AMP, CHRNA1 and 
CHRNB1 in the brain tissues of 12-month-old mice after infection of over-expressing circNF1-419 AAV. (E) Expression of the proteins AChE, 
AMP, CHRNA1 and CHRNB1 in the brain tissues of 2-month-old mice after infection of over-expressing circNF1-419 AAV. Data are presented 
as the means ± SD of more than 8 independent experiments, and more than 3 independent experiments in Western bolting. *p <0.05 and **p 
<0.01 vs. the model group by one-way ANOVA, followed by the Holm-Sidak test. 
 

differential expression mRNAs of the small intestine 
tissue (Supplementary Figure 5A–5B) on the circNF1-419 
treated SAMP8 and KM mice. As shown in Figure 3, 
circNF1-419 in the brain mainly influences the  
bacteria Candidatus Arthromitus, Lachnospiraceae 
FCS020 group, Lachnospiraceae UCG-006, and 
[Eubacterium] xylanophilum group, and the mRNAs of 
Gal3st1 (galactose-3- O-sulfotransferase 1), Gamt 
(guanidinoacetate methyltransferase), Gpr62 (G protein-
coupled receptor 62), and Opalin (oligodendrocytic 
myelin paranodal and inner loop protein). The relative 
abundance of those bacteria shown in Figures 3B and 4C, 
and the expression of mRNAs shown in Supplementary 
Figure 5A–5B, indicated that circNF1-419 in the brain 
plays a role on multiple targets in the intestine, but how 
circNF1-419 influences these mRNAs and the gut 
microbiota still needs considerable work on their 
metabolomics, signaling pathways and electrophysiology. 
 
The mRNAs of brain tissue showed that the expression 
of GABRA1, GABRA6, St6galnac4, St8sia5, Pde9a, 
Tmem132a, Tmem163, Tmem62 and Tmem63c (Figure 
5A and 5B) were up-regulated after over-expressed 

circNF1-419 in brain, which indicated that the central 
immune system were activated, in other words that 
circNF1-419 could activated central immune to improve 
the symptoms of AD, but need much more further study. 
And the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment of 16S functional gene prediction 
analysis using PICRUSt also showing altered signaling 
pathways (Figure 5C) and the network (Figure 5D). 
Although the function and signaling pathway need much 
more studies.  
 
Circular RNA circ_0001239 changes the gut 
microbiota genetic trajectory in mice  
 
Additionally, we designed another AAV viral 
transduction system with RNA over-expressing 
mmu_circ_0001239 (ZCCHC11, Supplementary Figure 
6). The function of this circRNA in the brain was 
unknown but its expression was increased in the 
APP/PS1 and SAMP8 mice (Figure 4A). Two microliters 
of the AAV packaging system (virus titer 1 × 1012) were 
injected into the cerebral cortex of 7-day-old mice. After 
3 months continuous infection, the gut microbiota 

 

 
 

Figure 4. CircNF1-419 changes the gut microbiota genetic trajectory in newborn KM mice. (A) Intestinal physiology changes after 
infection of over-expressing circNF1-419 AAV. (B) Heatmap of gut microbiota in fimo at phylum level after infection of over-expressing 
circNF1-419 AAV in young mice. (C) Heatmap of gut microbiota in fimo at genus level after infection of over-expressing circNF1-419 AAV in 
young mice. Data are presented as the means ± SD of more than 8 independent experiments. *p <0.05 and **p <0.01 vs. the model group by 
one-way ANOVA, followed by the Holm-Sidak test. RET
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Figure 5. Association analysis of circNF1-419, intestinal transcriptome and gut microbiota. Influences on the expression of 
GABRA1, GABRA6, St6galnac4, St8sia5, Pde9a (A), Tmem132a, Tmem163, Tmem62 and Tmem63c (B) in brain tissues. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment of 16S functional gene prediction analysis using PICRUSt also showing altered signaling pathways (C) 
and the network (D). Data are presented as the means of more than 8 independent experiments, see also in Supplementary Figure 4. RET
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Figure 6. Circ0001239 changes the gut microbiota genetic trajectory in new born mice. (A) The alpha diversity (A) and beta 
diversity (B) of the gut microbiota when the circ0001239 over expressed in brain, see also in Supplementary Figure 6. (C) The ternary phase 
diagram showed that the most of the bacteria were closed to the circ_0001239 group. (D) The relative abundance of different bacteria when 
the circ0001239 over expressed in brain (LDA < 3.5). Data are presented as the means ± SD of 8 independent experiments. *p <0.05 and **p < 
0.01 vs. the model group by one-way ANOVA, followed by the Holm-Sidak test. RET
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Figure 7. Effects of over expressing circ_0001239 on KM mice brain. (A) Nile red (red) and DAPI (blue) staining of BV2 cells bearing 
ss-ctrl or ss-circ0001239. Representative of three independent experiments. (B) MiRNA levels in over expressing circ_0001239 KM mice brain 
samples. Representative of three independent experiments. (C) Differently expressed mRNA in over expressing circ_0001239 KM mice brain 
samples. Representative of three independent experiments. RET
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composition was detected using 16S rRNA gene 
sequencing. The results revealed that circ_0001239 can 
change the alpha diversity (Figure 6A) and beta diversity 
(Figure 6B) of the gut microbiota. The ternary phase 
diagram showed that the most of the bacteria were  
closed to the circ_0001239 group (Figure 6C), and the 
relative abundance of different bacteria is shown in 
Figure 6D (LDA < 3.5), for example increases in the 
Lachnospiraceae NK4B4 group, Lachnospiraceae and 
Lactobacillus, which indicated that over-expression of 
circ_0001239 in the brain could change the genetic 
trajectory of the gut microbiota. 
 
The miRNA and mRNA sequences of brain tissues from 
the circ_0001239-treated mice showed that expression 
of mmu-miR-452-5p, let-7j and miR-205-5p were down-
regulated (Figure 7A, |log2(FC)|≥1, FDR≤0.05) 
compared to the control, and there were 10 mRNAs up-
regulated while seven were down-regulated (Figure 7B). 
Most previous studies on miR-452-5p [44, 45], let-7 [46, 
47] and miR-205-5p [48, 49] focused on cancers. KEGG 
analysis of the mRNA sequences indicated that over-
expression of circ_0001239 in the brain mainly 
influences the ribosome and proteoglycans in cancer 
pathways, suggesting that circ_0001239 has the sponge 
miRNA function and mediates a series of chain reactions 
in the brain, then influences gut function and 
microbiome engraftment from their parent.  
 
CONCLUSIONS 
 
This study revealed that the gut microbiome could 
influence the expression of some circRNAs in the brain, 
and reverse experiments indicated that over-expression of 
some circRNAs in the brain can influence the gut 
microbiota composition and their heredity to the 
descendant. As, over-expression of circNF1-419 in the 
brain using an AAV viral transduction system, altered the 
gut microbiota structure and intestinal homeostasis. 
These results are the first demonstration of a link between 
circRNAs and the gut microbiome. They enlarge the 
‘microbiome-transcriptome’ linkage library, providing 
more information on the interplay between gut and brain 
to aid in the identification of potential therapeutic 
markers and mechanistic solutions to complex problems 
commonly encountered in pathology, toxicology, and 
drug development studies. Additional studies will be 
required on these complex interaction systems. 
 
MATERIALS AND METHODS 
 
Animals 
 
Male SAMP8 mice (5 months old, mean body weight 20 
± 5 g) were purchased from Beijing HFK Bioscience Co., 
LTD (Certificate No: SCXK [Jing] 2014-0004), and adult 

KM mice (18-22 g, 16 female and 8 male, 8 weeks old) 
were obtained from Center of Laboratory Animal of 
Guangdong Province, SCXK [Yue] 2008-0020, SYXK 
[Yue] 2008-0085). All the mice pair-housed in plastic 
cages in a temperature-controlled (25 ± 2°C) colony 
room with a 12/12-h light/dark cycle. The animals had 
free access to food and water. All experimental protocols 
were approved by the Center of Laboratory Animals of 
the Guangdong Institute of Microbiology. All efforts 
were made to minimize the number of animals used. All 
animals were allowed to acclimate for at least 1 week 
prior to the initiation of the experiments.  
 
Then, SAMP8 mice were randomly allocated into 3 
groups of 8 animals each: SAMP8 model group, 
sscircNF1-419-OV-AAV infected group, and 
sicircNF1-419-OV-AAV infected group, two μl of the 
AAV packaging system (virus titer 1 × 1012) were 
injected into the cerebral cortex.  
 
The female KM mice were randomly allocated into 2 
groups of 8 animals each, one fed with high sugar & fat 
diet, and the other fed with standard diet. A month later, 
the female mice were randomly re-allocated into groups 
of 2 animals each and one male mice, keep feeding the 
original diet to the end of pregnancy, then all the mice 
fed with standard diet. After births one week, two μl of 
the AAV packaging system (virus titer 1 × 1012) were 
injected into the brain. 
 
Balb/c mice were obtained from the Center of 
Laboratory Animals of Guangdong Province of China, 
(SCXK [Yue] 2008-0020, SYXK [Yue] 2008-0085), 
conventional breeding to 12 months old, two μl of the 
AAV packaging system (virus titer 1 × 1012) were 
injected into the cerebral cortex. 
 
Histopathology and immunostaining 
 
The brain, colon tissues were removed and fixed in the 
4% paraformaldehyde at pH 7.4 for further pathological 
observation. These tissue samples were made into 
paraffin sections after drawing materials, fixation, 
washing, dehydration, transparency, dipping in wax, 
and embedding. Obesity related parameters or other 
related pathologic changes were measured. The brains 
of animals were dissected. A total of four brains from 
each group were fixed in 4% paraformaldehyde solution 
and prepared as paraffin sections. Sections were stained 
with hematoxylin-eosin (H&E).  
 
Microbiome analysis  
 
Fresh intestinal content samples were collected before the 
fasting of the rats for 12 hour and stored at -80 °C. 
Microbial DNA isolated from the samples, with total RET
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masses ranging from 1.2 to 20.0 ng, were stored at -20 
°C. The microbial 16S rRNA genes were amplified using 
the forward primer 5′-ACTCCTACG GGAGGCAGCA-
3′ and the reverse primer 5′-GGA CTACHVGGGTWT 
CTAAT-3′, and the rat forward primer 5′-CCTAYGGGR 
BGCASCAG-3′ and reverse primer 5′-GGACTACN 
NGGGTATCTAAT-3′. Each amplified product was 
concentrated via solid-phase reversible immobilization 
and quantified by electrophoresis using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). After NanoDrop quantification of DNA 
concentration, each sample was diluted to a concentration 
of 1×109 molecules/μl in TE buffer and pooled. 20μl of 
the pooled mixture was sequenced on an Illumina MiSeq 
sequencing system (Illumina Inc, San Diego, CA, USA) 
according to the manufacturer’s instructions. 
 
Metabolomic analysis 
 
After the water maze testing, the serum was acquired. 
80 μL serum were added into 240 μL of cold mixture 
methanol with acetonitrile (2:1, v/v), and 10 μL internal 
tagging standard (L-2-chlorine-phenylalanine, 0.3 
mg/mL, dissolved in methanol) were added, vortex after 
2 min, then extracted using ultrasonic extraction method 
for 5 min. After 20 min standing at -20 °C, centrifuge 
for 10 min at low temperature (14000 prm, 4 °C), 200 
μL of supernatant loaded into a sample bottle with 
lining tube for LC - MS analysis (Waters UPLC I-class 
system equipped with a binary solvent delivery manager 
and a sample manager, coupled with a Waters VION 
IMS Q-TOF Mass Spectrometer equipped with an 
electrospray interface (Waters Corporation, Milford, 
USA). LC Conditions: Column: Acquity BEH  
C18 column (100mm × 2.1mm i.d., 1.7µm; Waters, 
Milford, USA). Data analysis as described previously 
(Han, et al.). 
 
RNA isolation and sequencing 
 
Total RNA was isolated using Qiazol and miRNeasy 
Kits, including additional DNase I digestion. Then 
remove the ribosomal RNA using Ribo-ZeroTM 
Magnetic Gold Kit, enzymatic degradation of linear 
RNA using Rnase R enzyme. Add fragmentation buffer 
to be fragments, synthesize the first chain of cDNA with 
six bases random hexamers, then the buffer, dNTPs, 
RNase H and DNA polymerase I to synthesize the 
second chain of cDNA. Purification uing QiaQuick 
PCR kit and elution using EB buffer after terminal 
repairing, processing bases A, add sequencing joint. For 
next generation sequencing, 0.5 μg ribosomal RNA-
depleted RNA was fragmented and primed. The 
sequencing libraries were constructed using Illumina 
TruSeq RNA Sample Preparation Kits and were 
sequenced by Illumina HiSeqTM 2500 flowcell. 

The bioinformatics analysis of RNA annotation, 
functional classification, functional enrichment and 
cluster analyses were performed [47, 50, 51]. 
 
Computational analysis of circRNAs 
 
The reads were first mapped to the latest UCSC 
transcript set using Bowtie2 version 2.1.0 [52] and the 
gene expression level was estimated using RSEM 
v1.2.15 [53]. For lincRNA expression analysis, we used 
the transcripts set form Lncipedia (http://www. 
lncipedia.org). TMM (trimmed mean of M-values) was 
used to normalize the gene expression. Differentially 
expressed genes were identified using the edgeR 
program [54]. Genes showing altered expression with p 
< 0.05 and more than 1.5 folds changes were considered 
differentially expressed. The pathway and network 
analysis were performed using Ingenuity (IPA). IPA 
computes a score for each network according to the fit of 
the set of supplied focus genes. These scores indicate the 
likelihood of focus genes to belong to a network versus 
those obtained by chance. A score > 2 indicates a <= 
99% confidence that a focus gene network was not 
generated by chance alone. The canonical pathways 
generated by IPA are the most significant for the 
uploaded data set. Fischer’s exact test with FDR option 
was used to calculate the significance of the canonical 
pathway. 
 
For circRNA expression analysis, the reads were to 
mapped genome using the STAR [55] and DCC [56] 
was used to identify the cirRNA and to estimate the 
circRNA expression. TMM (trimmed mean of M-
values) was used to normalize the gene expression. 
Differentially expressed genes were identified using the 
edgeR program. miRanda [57] was used to predict the 
miRNA target of the circRNA. R was used to generate 
the figure. 
 
CircRNA verification by quantitative real-time 
polymerase chain reaction (qRT-PCR) 
 
To validate the reliability of high-throughput RNA 
sequencing and to explore the expression of circRNAs 
during aging, the expression levels of circRNAs were 
examined by qRT-PCR. With reference to Memczak’s 
method [58], two sets of primers for each circRNA were 
designed using Primer Express software version 5.0 
(Table 1): an outward-facing set which was expected to 
amplify only the circRNA, and an opposite-directed set 
to amplify the linear form. 
 
Total RNA was extracted (TRIzol® Reagent, Life 
technologies), digested using RNase R, and purified. 
cDNA was synthesized using a Geneseed® II First 
Strand cDNA Synthesis Kit (Geneseed, USA). RET
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Outward-facing primers were designed to amplify the 
fragment across the junction from cDNA, then the 
fragment was sequenced by Sangon Biological 
Engineering Company (Shanghai China). QRT-PCR 
was performed using Geneseed® qPCR SYBR® Green 
Master Mix (Geneseed, USA), and PCR-specific 
amplification was conducted with an ABI 7500 
(Applied Biosystems, USA). The expression of 
circRNAs was defined based on the threshold cycle 
(Ct), and relative expression levels were calculated via 
the 2-ΔΔCt method. GAPDH served as an internal 
standard control with all reactions performed in 
triplicate.  
 
Western bloting analysis  
 
Global brain tissue was dissected from treated mice 
(purchased from the Beijing HFK Bioscience Co., LTD 
[Certificate No: SCXK (Jing) 2014-0004]) and proteins 
extracted with radioimmunoprecipitation assay (RIPA) 
lysis buffer (Thermo ScientificTM T-PERTM Tissue 
Protein Extraction Reagent, 78510). The proteins were 
separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and transferred onto polyvinylidene 
fluoride membranes. After blocking with 5% nonfat dry 
milk in Tris-buffered saline (20 mM Tris-HCl, 500 mM 
NaCl, pH 7.4) with 0.2% Tween-20 (Aladdin, T104863), 
the membranes were probed with antibodies overnight at 
4°C, followed by incubation with a horseradish 
peroxidase-conjugated goat anti-mouse (Servicebio, 
G2211-1-A) or goat anti-rabbit (Servicebio, G2210-2-A) 
IgG secondary antibody (1:2000). The antibodies were as 
follows; anti-Abeita A4, -APOE, -BACE1, -p53 (abcam, 
66064), -p16 (Affinity, AF0228), -p21, -p-Tau-396, -
TNF-α (abcam, 9739), -p-Tau-202, obtained from 
Affinity as well as GAPDH (CST, 2118L) and β-Actin 
(CST, 4970S). Band intensity was quantified using 
ImageJ software (NIH). 
 
Statistical analysis 
 
All data are described as the means ± standard 
deviations (SD) of at least three independent 
experiments. The significant differences between 
treatments were analyzed by one-way analysis of 
variance (ANOVA) test at p < 0.05 using statistical 
package for the social sciences (SPSS, Abacus 
Concepts, Berkeley, CA, USA) and Prism 5 (GraphPad, 
San Diego, CA, USA) software. 
 
Ethics approval 
 
The animal protocols used in this work were approved 
by the Institutional Animal Care and Use committee of 
the Center of Laboratory Animals of the Guangdong 
Institute of Microbiology. 

Study limitations 
 
There are several strengths with this study, but there  
are also limitations. For example, the study lacks a  
rescue test with single bacteria, so we have not 
identified the one-on-one contact between circNF1-419 
and single bacteria, and therefore could not find  
the signaling pathway or linking ligament. Using 
targeted strains in germ-free mice with multi-omics 
studies to reveal the interaction of circNF1-419 on  
the microbiome-gut-brain axis, or using knock-out 
circNF1-419 mice are needed in the future for positive 
validations. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1A. Heatmap of gut microbiota in 10-month-old AD-like mice. Data are presented as the means of more 
than 8 independent experiments.  
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Supplementary Figure 1B. Heatmap of gut microbiota in 10-month-old AD-like mice. Data are presented as the means of more 
than 8 independent experiments. RET
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Supplementary Figure 2A. Heatmap of serum metabolites in 10-month-old AD-like mice. Data are presented as the means of 
more than 8 independent experiments. 
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Supplementary Figure 2B. Heatmap of serum metabolites in in 10-month-old AD-like mice. Data are presented as the means of 
more than 8 independent experiments. RET
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Supplementary Figure 3. The networks of Ingenuity Canonical Pathways (IPA) analysis of differentially expressed mRNAs in 
the APP/PS1 double transgenic mice brain samples (n=3) RET

RAC
TE

D



www.aging-us.com 284 AGING 

 
 

Supplementary Figure 4. AAV viral transduction system with RNA interference (sicircNF1-419-AAV, A–B) and separately an over-expressing 
circNF1-419 (sscircNF1-419-AAV, C–D) RET
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Supplementary Figure 5. Differential expression mRNAs of the small intestine tissue on the circNF1-419 treated SAMP8 (A) and KM mice 
(B). Data are presented as the means of 3 independent experiments. 
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Supplementary Figure 6. AAV viral transduction system with RNA over-expressing mmu_circ_0001239 
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Supplementary Table 
 
Please browse Full Text version to see the data of Supplementary Table 1. Different expression of circRNAs in the 
brain of APP/PS1 mice (control vs model group, Foldchange > 1.50, p < 0.01). 
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