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INTRODUCTION 
 

Clear cell renal cell carcinoma (ccRCC) is the most 

common subtype of renal cell carcinoma (RCC), 

accounting for approximately 80% to 90% of cases [1]. 

CcRCC has also more malignant characteristics and 

worse prognosis, and is responsible for most RCC-

related deaths [2]. According to the latest global cancer 

statistics released in 2018, each year approximately 

403,000 people are diagnosed with RCC and 175,000 

patients die from the disease [3]. Patients with RCC  

 

typically undergo surgical treatment, and improved 

surgical methods have contributed to favorable overall 

prognosis [4]. However, uncontrolled tumor progression 

and death will still occur in approximately 30% of RCC 

patients despite initial curative surgery [2]. Thus, more 

effective systemic treatments for RCC patients are 

needed to improve outcomes. 

 

Targeted therapy agents, including VEGF receptor and 

mTOR inhibitors, can significantly improve survival in 

RCC patients with metastasis [5, 6]. However, many 
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ABSTRACT 
 

Immune status affects the initiation and progression of clear cell renal cell carcinoma (ccRCC), the most 
common subtype of renal cell carcinoma. In this study, we identified an immune-related, five-gene signature 
that improves survival prediction in ccRCC. Patients were classified as high- and low-risk based on the signature 
risk score. Survival analysis showed differential prognosis, while principal component analysis revealed 
distinctly different immune phenotypes between the two risk groups. High-risk patients tended to have 
advanced stage, higher grade disease, and poorer prognoses. Functional enrichment analysis showed that the 
signature genes were mainly involved in the cytokine-cytokine receptor interaction pathway. Moreover, we 
found that tumors from high-risk patients had higher relative abundance of T follicular helper cells, regulatory T 
cells, and M0 macrophages, and higher expression of PD-1, CTLA-4, LAG3, and CD47 than low-risk patients. This 
suggests our gene signature may not only serve as an indicator of tumor immune status, but may be a 
promising tool to select high-risk patients who may benefit from immune checkpoint inhibitor therapy. 
Multivariate Cox regression analysis showed that the signature remained an independent prognostic factor 
after adjusting for clinicopathological variables, while prognostic accuracy was further improved after 
integrating clinical parameters into the analysis. 
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RCC patients do not have targetable mutations. The 

emergence of immune checkpoint targets, such as 

programmed death-1 (PD-1) and programmed death-

ligand-1 (PD-L1) provides another therapeutic strategy 

for metastatic RCC [7], perhaps more compelling than 

targeted therapy agents [8], which emphasizes the 

importance of the tumor immune status on the outcome 

of RCC patients. Indeed, various components of the 

tumor immune microenvironment have been shown to 

be essential during cancer initiation and progression [9]. 

Chevrier et al. [10] revealed that immune cell 

composition in the tumor microenvironment was 

associated with ccRCC patients’ survival. Ghatalia et al. 

[11] showed that T cell infiltration was associated with 

the recurrence of ccRCC following surgery. However, 

actionable immune-related biomarkers for ccRCC 

patients remain to be comprehensively explored 

regarding their prognostic potential. 

 

The current classification system for RCC patients to 

estimate prognosis is mainly based on pathological 

stages [12]. However, this approach may be insufficient 

to distinguish patients with high risk of tumor 

progression. A number of studies have proposed gene 

expression signature assays to estimate survival in 

ccRCC patients [13–15]. However, only a few have 

systematically investigated the immune-related 

phenotype in ccRCC and its relationship with prognosis. 

Therefore, a more accurate classification system based 

on a comprehensive list of immune-related genes 

(IRGs) is deeply needed to improve prognosis accuracy 

and direct clinical practice. 

 

In this study we used multiple gene expression datasets 

to develop and validate a five-IRG signature for ccRCC. 

We evaluated the correlation between the IRG signature 

and clinical characteristics and discussed possible 

mechanisms through which the risk signature may 

impact ccRCC development. Finally, we integrated the 

IRG signature with clinical factors to build a prognostic 

nomogram, which allowed improved prognosis 

assessment of ccRCC patients. 

 

RESULTS 
 

Identification of differently expressed IRGs in ccRCC 

 
We analyzed 109 paired tumor and adjacent normal 

tissue samples from ccRCC patients available in the 

Gene Expression Omnibus (GEO) database and 

identified 2,128 differently expressed genes (DEGs), of 

which 1,036 were up-regulated and 1,092 were down-

regulated. From 72 paired specimens in The Cancer 

Genome Atlas (TCGA), we further identified 4,629 

DEGs, including 2,174 up-regulated and 2,455 down-

regulated transcripts. Overlapping DEGs between GEO 

and TCGA datasets (756 up-regulated and 746 down-

regulated transcripts) were next extracted (Figure 1B) 

and intersected with an IRG set composed of lists 

combined from ImmPort and InnateDB databases. A 

total of 326 differentially expressed IRGs was thus 

obtained (Figure 1C and Supplementary Table 1). 

Principal component analysis (PCA) of these IRGs 

showed varying distribution patterns, indicating distinct 

immune phenotypes in normal tissue and tumor samples 

both in GEO (Supplementary Figure 1A) and TCGA 

datasets (Supplementary Figure 1B). As expected, Gene 

Ontology (GO) analysis results revealed that 

inflammatory and immune pathways were most 

significantly enriched with these IRGs. On GO analysis, 

“inflammatory response”, “extracellular space”, and 

“receptor activity” were the most significant terms 

among biological processes, cellular components, and 

molecular functions, respectively (Supplementary Table 

2). The top 20 GO terms are presented in Supplementary 

Figure 2A. Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analysis revealed that “cytokine-cytokine 

receptor interaction” was the pathway most significantly 

enriched with the differentially expressed IRGs 

(Supplementary Figure 2B). Protein Analysis Through 

Evolutionary Relationships (PANTHER) pathway 

analysis revealed that immune-related pathways, such as 

interleukin signaling pathway, inflammation mediated 

by chemokine and cytokine signaling pathway, B cell 

activation, and T cell activation, were associated with 

these differentially expressed IRGs (Supplementary 

Table 3). Additional results from disease ontology (DO) 

analysis confirmed that this IRG set was associated with 

immune status and showed also involvement in kidney 

disease (Supplementary Table 4). The top 15 most 

significantly enriched diseases are presented in 

Supplementary Figure 2C. 

 

Identification of hub IRGs 
 

We next imported the identified IRGs into the STRING 

database to create a protein-protein interaction (PPI) 

network, thus obtaining 47 hub genes defined by a 

connectivity degree > 20 and an interaction score > 0.7. In 

line with the above GO analysis results, GO analysis of 

these hub genes revealed that “inflammatory response”, 

“extracellular space”, and “chemokine activity” were the 

terms most significantly enriched (Supplementary Table 

5). Figure 2A shows the top 20 GO terms related to the 

hub IRGs. On KEGG pathway analysis “chemokine 

signaling pathway” was the most frequently enriched 

process (Figure 2B), and highly concordant results were 

obtained for diverse immune-related pathways after data 

analysis using the PANTHER algorithm (Supplementary 

Table 6). Meanwhile, DO analysis results (Supplementary 

Table 7) confirmed the association of these hub IRGs with 

kidney disease (Figure 2C).  
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Identification of a five-IRG signature in the TCGA 

discovery set 
 

We used the least absolute shrinkage and selection 

operator (LASSO) Cox regression model to identify the 

most valuable prognostic IRGs based on their 

association with patient survival in our TCGA 

discovery set (Supplementary Figure 3). Five IRGs, 

namely SHC1, IRF7, KDR, JAK3, and CXCL5 were 

thus selected (see detailed information in 

Supplementary Table 8). Univariate Cox analysis 

results for these IRGs are shown in Table 1. All five 

IRGs were up-regulated and correlated negatively with 

patient survival (P < 0.05) except for KDR, which 

showed a positive relationship. The same results were 

obtained on Kaplan-Meier (K-M) analyses 

(Supplementary Figure 4A). The prognostic value of 

these 5 genes was further validated in the Gene 

Expression Profiling Interactive Analysis (GEPIA) 

database. Here, consistent results were obtained, except 

for SHC1 (Supplementary Figure 4B). The relative 

expression of each gene in our IRG signature was 

further verified by qRT-PCR in 35 paired 

ccRCC/normal specimens collected at our institution. 

Results corroborated significantly higher expression in 

tumor samples (Supplementary Figure 5), in agreement 

with the database validation approach. 

 

Based on the respective expression levels, we then 

established the following risk score formula: 

 

Risk score = (0.08995984 * SHC1) + (0.05754872 * 

IRF7) + (-0.13910054 * KDR) + (0.01889022 * JAK3) 

+ (0.02791388 * CXCL5) 

 

The C-index of the risk score in the TCGA discovery 

set was 0.666 (95% confidence interval [CI], 0.603-

0.729; Figure 1D). Using X-tile software, the optimum

 

 
 

Figure 1. Flow chart of the study design and identification of differentially expressed genes (DEGs). (A) Flow chart of our 

research project. (B) Using gene expression data of 109 pairs of normal and tumor tissues from Gene Expression Omnibus and 72 paired 
samples from The Cancer Genome Atlas (TCGA) database, 756 up-regulated and 746 down-regulated DEGs were identified and extracted 
from the two databases. (C) These DEGs were intersected with a gene set including 2103 immune-related genes (IRGs), and 326 differently 
expressed IRGs were identified. (D) Harrell's concordance index of the five-gene signature in the TCGA discovery, validation, and entire sets, 
and in the E-MTAB-3267 dataset. 
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cut-off value to distinguish high-risk (n = 130) from 

low-risk (n = 127) patients was 0.135 (Supplementary 

Figure 6A). High-risk patients showed poorer 

prognosis, while low-risk patients had better overall 

survival (Figure 3A, left panel). Time-dependent 

receiver operating characteristic (ROC) analysis was 

performed to evaluate the accuracy of the five-gene 

signature in predicting patient survival. The area under 

the curve (AUC) was 0.753 at 1 year, 0.686 at 3 years, 

and 0.637 at 5 years (Figure 3A, middle panel). K-M 

analysis corroborated that high-risk patients had a 

significantly lower survival rate than low-risk cases (P 
< 0.001, Figure 3A, right panel). 

 

Validation of the five-IRG signature 
 

The prognostic value of the five-IRG signature was 

further evaluated in three validation sets (TCGA 

internal validation set, TCGA entire set, and the E-

MTAB-3267 dataset). We calculated the risk score for 

each patient using the same formula. Patients in 

TCGA internal and entire sets were classified into 

high-risk and low-risk groups with the cut-off value 

(0.135) used in TCGA discovery set. Patients in the E-

MTAB-3267 dataset were divided into two groups 

with a cut-off value of 0.448 (Supplementary Figure 

6B) determined using X-tile software. The C-indexes 

of risk scores in TCGA internal, TCGA entire, and E-

MTAB-3267 sets were 0.686 (95% CI, 0.623-0.749), 

0.677 (95% CI, 0.634-0.720), and 0.591 (95% CI, 

0.481-0.701), respectively (Figure 1D). Consistent 

with the results from the TCGA discovery set, high-

risk patients in the three validation sets had poorer 

prognosis than those in the low-risk group (Figure 

3B–3D, left panel). The ROC curves of the five-gene 

signature in the three validation sets showed good 

performance (Figures 3B–3D, middle panel). Survival 

analysis in the three validation sets confirmed lower 

survival rate in the high-risk groups (Figures 3B–3D, 

right panel). 

 

Association with clinicopathological factors and sub-

group analysis 
 

Results of the correlation analysis between clinical 

factors and our IRG signature’s risk score is shown in 

Table 2. The risk score of the signature was correlated 

with gender (P < 0.001), stage (P < 0.001), and grade 

 

 
 

Figure 2. Functional enrichment of 47 immune-related hub genes. (A) Top 20 most significant Gene Ontology (GO) terms identified 

by GO analysis. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis. FDR < 0.01 indicated significant enrichment. (C) Top 15 most 
significant disease ontology (DO) terms identified by DO analysis.  
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Table 1. Univariate Cox analysis of the association of the five immune-related genes (IRGs) with overall survival in 
the TCGA discovery set (n = 257). 

Gene name HR 95% CI P value 

SHC1 1.9220 1.317-2.806 <0.001 

IRF7 1.4807 1.178-1.861 <0.001 

KDR 0.7343 0.633-0.852 <0.001 

JAK3 1.4136 1.152-1.735 <0.001 

CXCL5 1.1115 1.040-1.189 0.002 

Abbreviations: HR, hazard ratio; CI, confidence interval; IRGs, immune-related genes. 
 

(P < 0.001), but not with age (P = 0.347). Indeed, we 

found that male gender, advanced stage, high grade, and 

high-risk patients tended to have higher risk score (P < 

0.05, Supplementary Figure 7). Subgroup analysis was 

performed to further assess whether the five-IRG 

signature had prognostic value for survival within specific 

clinical parameters. The results showed that the our risk 

signature was still a powerful tool for predicting survival 

in younger (age < 65) and older (age ≥ 65) patients, male 

or female patients, low (Fuhrman grade 1 & 2) or high 

(Fuhrman grade 3 & 4) grade patients, and advanced 

disease stage (stage III & IV) patients (P < 0.05, 

Supplementary Figure 8). In the subgroup of early stage 

(stage I & II), the prognosis of the high-risk group also 

tended be poorer than the low-risk group, although this 

difference did not reach significance (P = 0.056). Overall, 

the risk score based on our IRG signature was able to 

predict overall survival independently of specific clinical 

factors in ccRCC patients. 

 

Distinct immune phenotypes characterize high-risk 

and low-risk ccRCC patients 
 

Considering the distinct prognosis in high-risk and low-

risk ccRCC patients, we sought to explore whether 

phenotypic differences in immune cell populations are 

found upon segregation of cases based on our IRG 

signature’s specific risk score. PCA based on the 47 hub 

IRGs (Figure 4A) and the 326 differentially expressed 

IRGs (Figure 4B) showed different distribution patterns, 

indicating remarkably different immune phenotypes for 

high- and low-risk groups. Gene Set Enrichment 

Analysis (GSEA) was also performed to explore 

whether immunological pathways differ between risk 

groups. As expected, significant alterations in 

immunological pathways were detected in high-risk 

patients, compared with low-risk ones (Figure 4C). 

Enriched pathways and processes in tumors from  

high-risk ccRCC patients included primary 

immunodeficiency, intestinal immune network for IgA 

production, cytokine-cytokine receptor interaction, 

complement and coagulation cascades, Nod-like 

receptor signaling pathway, and cell cycle. 

Immune landscapes differ between low-risk and 

high-risk ccRCC patients 
 

To assess whether the five-IRG signature could 

accurately reflect the status of the tumor immune 

microenvironment, we estimated infiltration rates for 22 

immune cell types in ccRCC patients through 

CIBERSOFT algorithm, and investigated potential 

differences between the low- and high-risk groups. As 

shown in Figure 5A, the distribution of immune cell 

types varied within and between groups, suggesting that 

the immune landscape in ccRCC cases might be an 

inherent feature of each individual. 

 

The relative proportions of the 22 immune cell types 

were weakly to moderately correlated with risk 

classification (Figure 5B). Patients in the high-risk 

group had significantly higher representation of CD8 T+ 

cells, T follicular helper cells, regulatory T cells 

(Tregs), and M0 macrophages, and significantly lower 

abundance of natural killer (NK) cells, plasma cells, 

dendritic cells, mast cells, and eosinophils (P < 0.05, 

Figure 5C), indicating a weakened immune phenotype 

in high-risk patients. These data suggest that the five-

IRG signature could serve as an indicator of immune 

status in ccRCC. 

 

We also evaluated the correlation between the IRG 

signature’s risk score and the expression of T-cell 

markers, including CD4 and CD8A, and immune 

checkpoint genes such as PD-1 and its ligands (PD-L1, 

PD-L2), cytotoxic T-lymphocyte associated protein 4 

(CTLA-4), lymphocyte-activation gene 3 (LAG3), and 

CD47. We found that the risk score was positively 

correlated with the expression of CD4, CD8A, PD-1, 

CTLA-4, LAG3, and CD47, and negatively correlated 

with PD-L1 expression (P < 0.05, Supplementary 

Figure 9). Next, we contrasted these findings in low- 

and high-risk ccRCC patients. In strong agreement with 

the risk classification derived from our five-IRG 

signature, we found that CD4, CD8A, PD-1, CTLA-4, 

LAG3, and CD47 were significantly overexpressed in 

high-risk patients, compared to low-risk ones (P < 0.05; 
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Figure 3. Validation of the prognostic risk signature. Left panel: Distribution of the risk signature based on survival status. High-risk and 

low-risk patients were distributed above and below the x-axis, respectively. Pink and green colors indicate dead and alive patients, respectively. 
Middle panel: Time-dependent ROC curves were performed to evaluate the accuracy of the risk signature. Right panel: Kaplan-Meier survival 
curves were performed to assess patients’ prognosis. (A) TCGA discovery set. (B) Validation set. (C) Entire set. (D) E-MTAB-3267.  
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Table 2. Association between risk score of the five-IRG signature and patients' clinical characteristics. 

Variables 
Entire TCGA set 

n (%) 

Risk score 
P value 

Low High 

Age (mean ± SD, years) 60.5 ± 12.2 59.9 ± 12.7 61.0 ± 11.7 0.347 

Gender    4.777e-05 

Male 337 (65.6) 135 (40.1) 202 (59.9)  

Female 177 (34.4) 105 (59.3) 72 (40.7)  

Stage    1.008e-09 

I 258 (50.2) 155 (60.1) 103 (39.9)  

II 54 (10.5) 21 (38.9) 33 (61.1)  

III 120 (23.3) 47 (39.2) 73 (60.8)  

IV 82 (16.0) 17 (20.7) 65 (79.3)  

Grade    1.066e-10 

G1 13 (2.5) 11 (84.6) 2 (15.4)  

G2 224 (43.6) 133 (59.4) 91 (40.6)  

G3 204 (39.7) 83 (40.7) 121 (59.3)  

G4 73 (14.2) 13 (17.8) 60 (82.2)  

 

Figure 6). These data further suggest the presence of an 

immunosuppressive tumor microenvironment in high-

risk patients, which might help explain their poor 

prognosis. 

 

Improved prognostic prediction through integrative 

analysis of the IRG signature and clinicopathological 

factors 
 

To assess whether inclusion of clinicopathological factors 

could increase the prognostic accuracy of our five-IRG 

signature’s risk score, patients’ age, gender, Fuhrman 

grade, and stage were accessed to perform univariate and 

multivariate Cox analyses in the discovery, validation, and 

entire TCGA sets. Tumor grade and stage were defined 

according to the Fuhrman classification system and the 7th 

edition American Joint Committee on Cancer TNM 

classification, respectively [16]. Regression analysis 

results are shown in Table 3. The multivariate analysis 

showed that the risk score based on the IRG signature was 

an independent prognostic factor in the discovery set 

(hazard ratios (HR): 3.964; 95% CI: 1.852-8.486; P < 

0.001), the validation set (HR: 3.957; 95% CI: 1.727-

9.067; P = 0.001), and the entire TCGA set (HR: 3.896; 

95% CI: 2.228-6.813; P < 0.001). Additionally, we found 

that age (HR: 1.030; 95% CI: 1.015-1.044; P < 0.001), 

grade (HR: 1.269; 95% CI: 0.999-1.612; P = 0.051), and 

stage (HR: 1.653; 95% CI: 1.124-2.432; P = 0.011) were 

independent prognostic factors in the entire set. 

 

Based on the results of multivariate analysis of the 

entire set, C-indexes and Akaike information criterions 

(AICs) were calculated to evaluate the power of 

selected parameters, i.e. risk score, age, grade, and stage 

(Table 4). The combination of the five-IRG risk score 

with clinical factors had a higher C-index (0.772; 95% 

CI: 0.737-0.807) and a lower AIC than the risk score or 

the clinical factors alone. This indicated that combining 

our IRG risk score with clinical variables can improve 

prognostic accuracy for ccRCC. To provide a 

quantitative method to predict survival probability of 

ccRCC patients after surgery, we constructed a 

nomogram integrating the risk score of the IRG 

signature and clinical factors (Figure 7A). Calibration 

plots indicated that the nomogram showed good 

performance for predicting 1-year, 3-year, and 5-year 

survival probabilities (Figure 7B). 

 

DISCUSSION 
 

Considering the importance of the immune 

microenvironment in neoplastic development [17], 

developing meaningful gene signatures to monitor the 

immune status of patients is significant not only to 

identify reliable prognostic biomarkers but, if correctly 

applied, to enable selection of patients at high-risk of 

recurrence who might benefit from additional therapy. 

In the present study we validated a prognostic signature, 

based on five-IRGs, which proved to be a reliable 

indicator of tumor immune status and could identify 

ccRCC patients with unfavorable prognosis. Moreover, 

our prognostic signature can further stratify ccRCC 

patients sharing specific clinicopathological factors 

(e.g., age, gender, disease grade and stage) into 

subgroups with different survival outcomes. Integrating 

these findings, we constructed a nomogram, 

incorporating the IRG signature’s risk score and clinical 

characteristics, that showed good performance for 

predicting survival in patients with ccRCC. 
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Several gene signatures representative of tumor immune 

status have been proposed, with potential clinical 

applicability in several cancers [18–20]. Although a few 

studies have addressed the immune microenvironment 

in ccRCC, and put forward immune gene-related panels 

with prognostic potential [21, 22], the impact of the 

local immune status in ccRCC progression and 

prognosis prediction remains to be fully explored. 

Association analyses combining our IRG signature’s 

risk score and clinicopathological parameters revealed 

that a higher risk score was more strongly correlated 

with advanced stage, higher grade and poorer prognosis. 

This is consistent with higher risk scores reflecting an 

immunosuppressive tumor microenvironment that 

contributes to tumor progression and recurrence. 

Noteworthy, we further demonstrated that the IRG 

 

 
 

Figure 4. Principal component analysis (PCA) and gene set enrichment analysis (GSEA). (A) PCA based on 47 immune-related hub 

genes (IRGs) showing distinct immune phenotypes in high- and low-risk patient groups. (B) Distribution patterns for the two risk groups based 
on 326 differentially expressed IRGs. (C) GSEA results showing significant enrichment of immune-related phenotype in high-risk patients. 
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Figure 5. Immune landscapes in high-risk and low-risk patients. (A) Relative proportions of 22 immune cell types in high- and low-risk 

patients. (B) Correlation matrix of relative proportions of the 22 immune cell types. (C) Box plots showing differential immune cell infiltration 
status between high- and low-risk patients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
 

 
 

Figure 6. Expression of T-cell and immune checkpoint markers in low-risk and high-risk patients. Group differences were 

assessed by Wilcoxon test. 
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Table 3. Univariate and multivariate Cox regression analysis for predicting overall survival of ccRCC patients. 

Factor 

TCGA discovery set TCGA validation set Entire set 

Univariate Multivariate Univariate Multivariate Univariate Multivariate 

HR 

(95% CI) 
P-value 

HR 

(95% CI) 
P-value 

HR 

(95% CI) 
P-value 

HR 

(95% CI) 
P-value 

HR 

(95% CI) 
P-value 

HR 

(95% CI) 
P-value 

Risk 

score 

6.526 

3.253-13.090 
<0.001 

3.964 

1.852-8.486 
<0.001 

8.696 

4.538-16.660 
<0.001 

3.957 

1.727-9.067 
0.001 

7.714 

4.799-12.400 
<0.001 

3.896 

2.228-6.813 
<0.001 

Age 
1.021 

1.002-1.039 
0.028 

1.012 

0.9918-1.033 
0.243 

1.032 

1.014-1.051 
<0.001 

1.045 

1.024-1.067 
<0.001 

1.027 

1.014-1.040 
<0.001 

1.030 

1.015-1.044 
<0.001 

Grade 
2.111 

1.568-2.841 
<0.001 

1.230 

0.865-1.749 
0.249 

2.471 

1.856-3.290 
<0.001 

1.368 

0.995-1.881 
0.054 

2.267 

1.846-2.785 
<0.001 

1.269 

0.999-1.612 
0.051 

Stage 
1.723 

1.419-2.098 
<0.001 

1.490 

1.197-1.854 
<0.001 

2.082 

1.733- 2.500 
<0.001 

1.840 

1.488-2.274 
<0.001 

1.874 

1.641-2.140 
<0.001 

1.653 

1.124-2.432 
0.011 

Gender 

(male vs 

female) 

0.729 

0.466-1.142 
0.167 

0.765 

0.477-1.227 
0.266 

1.248 

0.800-1.946 
0.329 

0.906 

0.576-1.426 
0.671 

0.960 

0.701-1.315 
0.800 

0.927 

0.670-1.283 
0.294 

Bold values stand for P < 0.1. 
 

Table 4. Comparison of the predictive power of the prognostic models in the entire TCGA set (n = 514). 

Factor Overall survival 

C-index 95% CI AIC 

Age 0.585 0.540-0.630 1880.50 

Grade 0.671 0.630-0.712 1836.55 

Stage 0.729 0.690-0.768 1806.80 

Risk score 0.677 0.634-0.720 1834.55 

Risk score + age + stage 0.769 0.734-0.804 1759.15 

Age + grade + stage 0.757 0.724-0.798 1779.03 

Risk score + age + grade + stage 0.772 0.737-0.807 1757.51 

Abbreviations: C-index, Harrell's concordance index; CI, confidence interval; AIC, Akaike information criterion. 
 

signature remained an independent prognostic factor on 

multivariate analysis, after adjusting for 

clinicopathological variables. Cancer initiation and 

progression is often linked to a pro-inflammatory 

environment [23, 24]. Accordingly, dysregulated 

cytokine expression has been shown to contribute to the 

pathogenesis of RCC [25–27]. The five IRGs in our 

novel ccRCC signature encode cytokines or cytokine 

receptors with active participation in angiogenesis, 

chemotaxis, and inflammatory processes [23]. 

Accordingly, functional enrichment analysis of 

differentially expressed IRGs in ccRCC specimens 

showed that these genes are mainly involved in 

chemokine signaling pathways and cytokine-cytokine 

receptor interactions. On the other hand, GSEA showed 

significant alterations in immunological pathways in 

high-risk ccRCC patients, compared to low-risk ones. 

Therefore, along with previous studies, our study 

supports a consistent correlation between activation of 

inflammatory pathways, remodeling of the immune 

microenvironment, and ccRCC development. 

 

Among the five IRGs, mechanistic studies of KDR, 

JAK3, and CXCL5 actions in ccRCC have been 

reported. In contrast, the impact of SHC1 and IRF7 

dysregulation in ccRCC remains unclear. KDR 

(VEGFR-2) is overexpressed in many solid tumors and 

has been established as an important clinical biomarker 

and a key drug target in cancer research [28]. 

Surprisingly, the role of KDR in our signature was 
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protective, which was further validated in the GEPIA 

database. This finding deserves further scrutiny, given 

the success of multiple VEGF receptor inhibitors in 

improving the prognosis of ccRCC [29]. JAK3, a 

cytoplasmic tyrosine kinase, is involved in the response 

to certain cytokines and is crucial for the function and 

survival of T cells [30, 31]. A role for JAK3 in the 

development and progression of ccRCC has been 

established [32]. Likewise, CXCL5 is overexpressed in 

ccRCC [33, 34], and based on its involvement in 

angiogenesis, tumor growth, and metastasis [35] has 

been deemed an important biomarker and a critical 

adjunct antiangiogenic therapy target [34]. The SHC1 

gene encodes an adaptor protein that functions as a 

central regulator of various tyrosine kinase signaling 

pathways, and was proposed as a key mediator of breast 

cancer by promoting immune suppression [36]. Also, 

overexpression of SHC1 was correlated with low 

survival in stage IIA colon cancer [37]. In accordance 

with our data, a previous study indicated that SHC1, in 

association with dysregulated integrin expression, might 

be a prognostic predictor of survival in ccRCC [38]. 

Therefore, experimental verification of the role of 

SHC1 in ccRCC is clearly needed. IRF7, a central 

activator of the interferon type 1 immune response, has 

oncogenic properties and was shown to both influence 

tumor growth and malignant transformation in diverse 

tumor types [39] and to regulate myeloid-derived 

suppressor cell development in cancer [40]. A recent 

report identified IRF7 as a DEG in ccRCC [41], 

however, our work is the first to reveal its predictive 

potential as a ccRCC survival marker.  

 

Tumor immune escape is an indispensable step to evade 

antitumor immune responses during cancer progression 

[42]. Several immunosuppressive mechanisms may be 

involved in the process, such as overrepresentation of 

immunosuppressive cells (e.g., Tregs) and increased 

 

 
 

Figure 7. Nomogram and calibration plots for prediction of patients’ survival in the entire TCGA set. (A) Nomogram combining 

the five-IRG risk signature with clinical factors for prediction of 1-year, 3-year, and 5-year survival rates. (B) Calibration plots showing high 
predictive accuracy of the nomogram. 
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expression of immunosuppressive molecules (e.g., 

PD-1, CTLA-4, LAG3, and CD47) in the tumor 

microenvironment. In this study, we characterized the 

immune cell infiltration landscapes in low-risk and 

high-risk ccRCC patients, and correlated our IRG 

signature with the expression of T-cell markers, i.e. 

CD4 and CD8A, and immune checkpoint genes 

including PD-1, PD-L1, PD-L2, CTLA-4, LAG3 [43], 

and CD47 [44]. Interestingly, these analyses 

evidenced a more immunosuppressive 

microenvironment in high-risk ccRCC patients, as 

they tended to have more T follicular helper cells, 

Tregs, and uncommitted (M0) macrophages, and 

lower abundance of NK cells, plasma cells, dendritic 

cells, mast cells, and eosinophils than low-risk 

patients. Our analysis further indicated that PD-1, 

CTLA-4, LAG3, and CD47 expression levels were 

also generally higher in high-risk ccRCC patients. 

These results might help explain the poor prognosis of 

high-risk patients, and suggest that our IRG signature 

may help identify those that overexpress the above 

markers and might hence benefit from immune 

checkpoint inhibitor therapies. 

 

Previous studies confirmed that CD4+ T-cells can 

differentiate into distinct subsets with opposite 

functions, including blocking CD8+ T-cell activation 

and NK cell killing, recognizing cancer antigens, and 

aiding CD8+ T-cells in tumor immune responses [19, 

45]. In this study, we found that high-risk ccRCC 

patients also tended to have more CD4+ and CD8+ T-

cell infiltration rates than low-risk patients. This 

would suggest that the antitumor effects of high T-cell 

infiltration are counterbalanced by strong 

immunosuppressive pathways activated by 

overexpressed immune checkpoint proteins [46, 47]. 

Nevertheless, further studies are clearly needed to 

identify possible molecular interactions between the 

IRGs in our signature and cellular and molecular 

mediators of tumor immune status in ccRCC. 

 

In summary, we identified a gene signature for ccRCC 

based on five differentially expressed IRGs, which could 

serve as an indicator for tumor immune status and to 

classify patients into two groups with distinctly different 

prognoses. In addition, we integrated the IRG signature 

with clinical factors to establish a composite prognostic 

nomogram for estimation of ccRCC patients’ prognosis 

that may be a promising tool to guide clinical practice. 

Limitations of our study lay in its retrospective nature, and 

the need to define the molecular mechanisms by which 

the IRGs in our signature impact ccRCC onset, 

progression, and outcome. Notwithstanding, besides 

aiding current prognostic efforts, we hope that the data 

presented will serve to formulate clinical studies aimed at 

developing novel therapeutic strategies for ccRCC. 

MATERIALS AND METHODS 
 

Study design and data collection 

 

A flow chart of the study design is shown in Figure 1A. 

Raw data from mRNA expression microarrays profiling a 

total of 109 ccRCC and matched normal tissue samples 

were analyzed. The corresponding datasets included 

GSE53757 (72 pairs), GSE36895 (23 pairs), and 

GSE66270 (14 pairs), all downloaded from the GEO 

database (http://www.ncbi.nlm.nih.gov/geo/). The three 

GEO datasets were produced using the Affymetrix 

Human Genome U133 Plus 2.0 Array platform 

(Affymetrix, Santa Clara, CA, USA). Expression data of 

72 paired ccRCC and adjacent normal tissue samples in 

TCGA database were obtained from UCSC Xena 

(https://xenabrowser.net/). The GEO and TCGA datasets 

were used to identify DEGs, thus increasing DEG 

detection reliability. IRG lists were downloaded from the 

ImmPort database (https://immport.niaid.nih.gov) [48] 

and the InnateDB database (https://www.innatedb.com/) 

[49], which provided a total of 1534 and 1378 human 

IRGs, respectively. After removal of duplicate genes, a 

combined gene set that included 2103 unique genes 

(Supplementary Table 9) was used to screen hub IRGs. 

 

To construct an IRG signature, gene expression data of all 

ccRCC samples, and their associated clinical and survival 

information, were download from UCSC Xena. Criteria 

for study inclusion were: (1) Repeated tumor samples in 

the same patient were removed. (2) Patients with 

unknown survival status and follow-up information, and 

those who died within a follow-up period of 30 days were 

excluded. (3) Patients with unknown disease stage or 

grade were excluded. Finally, 514 patients meeting the 

inclusion criteria were randomly divided into two groups, 

the discovery set (n = 257) and the internal validation set 

(n = 257). The discovery set was used to establish an IRG 

signature to predict patients’ prognosis, while the internal 

validation set and the entire TCGA set were used for 

internal validation. The E-MTAB-3267 dataset from 

ArrayExpress database (https://www.ebi.ac.uk/ 

arrayexpress/), which includes 53 ccRCC samples, was 

used for external validation. Detailed information is 

presented in Supplementary Table 10. 

 

Data preprocessing 
 

For the three GEO datasets, Robust Multi-array 

Averaging (RMA) and the ComBat algorithm were used 

for background correction, data normalization, and to 

remove batch effects. Then, we carried out PCA and 

generated a heat map to visualize expression patterns 

and correction effects (Supplementary Figure 10); 

normalization was sequentially applied. For E-MTAB-

3267 microarray data, RMA background correction and 

http://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
https://immport.niaid.nih.gov/
https://www.innatedb.com/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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normalization were performed for processed signals. 

The “affy’’ R package and Affymetrix annotation files 

were used, respectively, to summarize and annotate the 

probes. For TCGA datasets, gene expression values 

were presented as the log2(x+1) transformed RSEM-

normalized counts. 

 

Collection of clinical samples  

 

A total of 35 matched tumor/normal tissue specimens 

were collected from ccRCC patients after surgery at 

The First Affiliated Hospital of Anhui Medical 

University (Hefei, China). All patients signed 

informed consent forms. Histological diagnosis of 

ccRCC was confirmed by two pathologists. Samples 

were immediately frozen in liquid nitrogen and stored 

at -80°C until RNA extraction. The study was 

approved by the Ethics Committee of Human 

Research of The First Affiliated Hospital of Anhui 

Medical University (No. PJ2019-14-22). 

 

Reverse-transcription and qRT-PCR 

 

Total RNA from ccRCC tissues was extracted using 

Trizol Reagent BD (Invitrogen, Carlsbad, CA). The 

reverse transcription reactions were performed using a 

PrimeScriptTM RT reagent kit (Takara, Kusatsu, Japan) 

according to the manufacturer’s instructions, and qRT-

PCR was prepared at a final volume of 20 µl using a 

SYBR Green Mix (Takara, Kusatsu, Japan) with 

primers synthesized by Sangon Biotech (Sangon, 

Shanghai, China). The reactions were measured on an 

ABI7500 platform (Thermo, Massachusetts, USA). The 

2−ΔΔCT method was used to determine relative gene 

expression levels, and GAPDH was used as an internal 

control to normalize the data. Each reaction was 

performed in triplicate. The primers used for these 

reactions are presented in Supplementary Table 11. 

 

Screening of differentially expressed IRGs  
 

Differentially expressed mRNAs between tumor and 

adjacent normal tissue samples were screened by the 

“limma” package of R software 3.4.2 (https://www.r-

project.org/). |log2 fold change| > 1 and false discovery 

rate (FDR) < 0.05 were set as the cut-off criteria. 

Overlapping DEGs in paired samples from GEO and 

TCGA datasets, characterized by upregulation and 

downregulation, were extracted and intersected with an 

IRG set to obtain differentially expressed IRGs. 

 

Identification of hub IRGs 
 

The differentially expressed IRGs were imported into 

the STRING database (https://string-db.org/) to 

construct a PPI network. Genes with a connectivity 

degree of > 20 and interaction score > 0.7 in the PPI 

were defined as hub genes for further analysis. 

 

Construction and validation of an IRG signature 
 

After identifying hub IRGs, we performed LASSO Cox 

regression analysis [50] in the TCGA discovery set to 

select the best gene model for predicting prognosis in 

ccRCC patients. LASSO Cox regression analysis was 

performed using the R package “glmnet” and the optimal 

values of penalty parameters were determined by 10-fold 

cross-validation. Subsequently, we performed univariate 

Cox regression and survival analysis for the selected 

genes, and their prognostic values for overall survival were 

further validated using the GEPIA database 

(http://gepia.cancer-pku.cn/) based on available ccRCC 

data [51]. The IRG risk score model for each patient was 

determined by a linear combination of gene expression 

weighted by the regression coefficient from LASSO Cox 

regression analysis [52, 53]. Then, we used X-tile software 

version 3.6.1 (Yale University, New Haven, CT, USA) 

[54] to select the optimum cut-off value for the risk score 

of the IRG signature based on the patients’ survival 

information in the TCGA discovery set. This cut-off value 

was next used to divide patients into high- and low-risk 

groups.  

 

To assess the predictive accuracy of the IRG signature, 

Harrell's concordance index (C-index) was calculated and 

time-dependent ROC analysis was performed. The AUC 

at different cut-off times was calculated using the 

“survival ROC” package in R [55]. K-M survival curves 

were used to assess survival differences between high- 

and low-risk groups using the “survminer” package in R. 

PCA was performed to assess gene expression patterns. 

 

Estimation of relative abundance of immune cell 

types 
 

The CIBERSORT algorithm (https://cibersort.stanford. 

edu) [56], an approach to quantify the relative abundance 

of immune cell types based on specific gene expression 

profiles, was used to assess the distribution (normalized to 

1) of 22 immune cell types in ccRCC samples from 

TCGA. Moreover, the P-value, correlation coefficient and 

root mean squared error were also presented to evaluate 

the accuracy of the results in each patient. A total of 500 

ccRCC Patients with P-value < 0.05 were retained, and 

were then used to compare immune cell composition 

between low-risk and high-risk patients.  

 

Gene enrichment analysis 
 

The Database for Annotation, Visualization and Integrated 

Discovery (DAVID; https://david.ncifcrf.gov/) [57] was 

used to perform GO and KEGG pathway analysis with the 

https://www.r-project.org/
https://www.r-project.org/
https://string-db.org/
http://gepia.cancer-pku.cn/
https://david.ncifcrf.gov/tools.jsp
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cut-off criterion of FDR < 0.01. PANTHER 

(http://pantherdb.org) was also used to performed pathway 

analysis [58]. Moreover, we performed DO analysis using 

the “cluster Profiler” package in R with the cut-off criteria 

of P < 0.05 and Q < 0.05. 

 

Gene set enrichment analysis (GSEA) 
 

According to the risk score of the IRG signature, 514 

ccRCC samples downloaded from TCGA were divided 

into high- and low-risk groups. To compare immune 

phenotypes between the two groups and to unmask 

potential functions of gene signature members, GSEA 

(http://software.broadinstitute.org/gsea/index.jsp) was 

carried out. The annotated gene set list c2.cp.kegg. 

v5.2.symbols.gmt was selected as the reference gene 

set. FDR < 0.25 and a nominal P < 0.01 were 

considered as cut-off criteria. 

 

Nomogram construction and validation 
 

A nomogram integrating the IRG signature and various 

clinicopathological factors was established for 

predicting patients’ prognosis using the “rms” package 

in R [59]. Calibration curves were established to assess 

the accuracy of the nomogram. The C-index and AIC, 

representing the effect of prognosis factors, were 

calculated and compared to assess the predictive 

accuracy of the model. 

 

Statistical analysis 
 

Boxplots and PCA plots were generated using the 

“ggplot2” package in R. The heat map was generated 

using the “pheatmap” package in R. Student’s t test 

was used to compare subgroups and paired data. 

Pearson’s chi-square test was applied to analyze 

differences between the discovery and validation sets 

and the association between the risk score and clinical 

parameters. Pearson’s correlation test was used to 

analyze the correlation between the IRG signature and 

the expression of immune checkpoint genes. K-M 

survival curves were compared using log-rank test. 

Univariate Cox regression was conducted to estimate 

the HR for different factors. Multivariate Cox 

regression was performed to determine independent 

factors. All statistical analyses were conducted on R 

software. P < 0.05 was considered significant. 
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Principal component analysis highlighting different immune phenotypes in normal and ccRCC tissue 
samples. (A) Samples from the GEO database. (B) Samples from the TCGA database. 
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Supplementary Figure 2. Functional enrichment of 326 differentially expressed IRGs. (A) Top 20 most significant Gene Ontology 

(GO) terms. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis. FDR < 0.01 indicated significant enrichment. (C) Top 15 most 
significant disease ontology (DO) terms identified by DO analysis. 
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Supplementary Figure 3. LASSO Cox regression model. (A) Plot of LASSO coefficient profiles. (B) Plot of partial likelihood deviance for 

the 47 immune-related hub genes in the TCGA discovery set. 
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Supplementary Figure 4. Kaplan-Meier analysis of the 5 genes used to construct the immune-related risk signature for 
ccRCC. (A) Analysis in the TCGA discovery set. (B) Further validation in the GEPIA database. 
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Supplementary Figure 5. Validation of the five-IRG signature in matched normal and ccRCC specimens harvested at The First 
Affiliated Hospital of Anhui Medical University (n = 35). In agreement with results from the other databases analyzed, the five genes 

were up-regulated in ccRCC samples compared with adjacent, normal ones. 
 

 
 

Supplementary Figure 6. X-tile analysis for selection of optimum cut-off value for the IRG signature’s risk score. Left panels 

indicate an inverse association (red) between the risk score and overall survival. Middle panels show risk score distribution. Right panels 
show Kaplan-Meier survival plots for high-risk and low-risk groups. (A) Analysis of the TCGA discovery set. (B) Analysis of the E-MTAB-3267 
dataset. 
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Supplementary Figure 7. Correlation between clinical factors and IRG signature’s risk score. The bar chart shows a trend toward 

higher risk score for male gender, advanced stage, high grade, and high-risk classification groups. 
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Supplementary Figure 8. IRG signature-based sub-group analysis. Kaplan-Meier analysis of the risk signature in patients (A) aged < 65 

years, (B) aged ≥ 65 years, (C) female, (D) male, (E) stage I & II, (F) stage III & IV, (G) grade 1 & 2, and (H) grade 3 & 4. 

 

 

 

 

 
 

Supplementary Figure 9. Pearson’s correlation analysis of the risk score of the signature and the expression of T-cell and 
immune checkpoint genes. 
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Supplementary Figure 10. Assessment of correction effects for the 3 GEO datasets. (A) A heat map based on the top 100 genes 

from 20 random samples in the 3 datasets shows no distinctly different sample clustering in each dataset. (B) Principal component analysis 
showing random sample distribution in the 3 datasets. 
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Supplementary Tables 
 

 

 

Supplementary Table 1. Differently expressed immune-related genes between normal and ccRCC samples. 

KIT ADRB1 C1QB LCP2 CD300LF 
FGFR2 C5 BIRC3 LY86 CFD 
AQP3 NR1I3 CXCL11 FCGR3B LAT2 
NKIRAS1 TAC1 INHBB EGFR C1S 
BTC FREM1 SCARB1 HCK ERAP2 
ERBB2 GP2 CTSS IL20RB IFI27 
AMFR ANGPTL1 IDO1 SLC15A4 BTN3A3 
NR2F1 VDR CXCL10 PYCARD IL7 
PGR KLK1 SEMA5B CCL28 ITGAM 
VAV3 OLFM4 TRIB3 ADCY7 TRIM22 
GDF7 ACAA1 CXCL9 GJA1 GMFG 
PTGER1 UCHL1 C1QC MYC ITK 
CTNNAL1 USP2 MSR1 LAIR1 CD48 
PLCG2 CHGB CCL20 ISG20 SAMHD1 
MUC1 KL TLR8 CCL4 IL27RA 
SDC1 HSPA2 TNFSF13B LGALS1 CD200 
FGFR3 PTGER3 STC2 TGFA CD247 
CAT PDE1A TRIM9 CSF2RB TNFAIP3 
CR1 SLIT2 ITGB2 TAP1 NLRC3 
IRF6 CR2 CD86 PSMB8 EDNRA 
CXCL12 SEMA6D TYROBP EDN1 AREG 
SEMA3G PDGFRA TLR3 RUNX3 RARRES2 
SORT1 BMPR1B PTPRC JAK3 PIK3R5 
NUDT6 DCN C1QA RAC2 MEF2C 
PRKAR2B GATA3 TLR7 TGFB1 ELMO1 
PLXNB1 PLCL1 SLAMF8 CX3CR1 CCR2 
RORB PTH1R APOBEC3G CD70 IL2RB 
CYFIP2 DEFB1 GBP2 FCGR2B CCDC88A 
AVPR1A APOH CCL5 CXCL5 CLEC5A 
PALM3 ESRRG ADM CD37 RHBDF2 
NR0B2 FAM3B LY96 TREM2 LST1 
PRKCA PRLR FCER1G PDGFD OAS2 
KITLG C7 ABCG1 GZMB ETS1 
TRIM50 ANGPTL3 OSMR NCF2 C5AR1 
PELI2 AZGP1 CD1D APOL1 NR5A2 
TYRO3 FGF1 BTN3A2 VEGFA SERPINB9 
TRIM71 FGF9 CD300A TYMP GRK5 
CMTM4 EGF BCL2A1 CD14 ICAM1 
TGFBR3 ERBB4 SLAMF7 TCF4 TNFRSF1B 
AGR2 PLG AXL C3AR1 FPR1 
SIGIRR HRG CD8A LCK ANGPTL2 
BPI ANGPTL4 CD53 PRF1 CCNA2 
F11 C3 IL10RA TLR2 ARHGAP15 
TNFSF15 CD36 CXCL13 SIGLEC10 NOD2 
PAK6 CXCR4 IFI16 FLI1 CSF1R 
THRB CAV1 CORO1A PROCR TAPBP 
SEMA3B PTHLH CARD16 ANXA1 IRF7 
PPARGC1A PDK1 SERPINE1 CCR5 ISG15 
CTSH P2RX7 CLEC7A MICB BTN3A1 
NR3C2 ESM1 CASP1 NLRC5 MET 
CXCL16 CCL18 CD3D BIRC5 IL4R 
PLXND1 FLT1 TNFSF9 NCKAP1L NLRC4 
PLXNC1 MCHR1 IL12RB1 TRPV2 CMTM3 
NMB TNFRSF9 MASP1 TNFRSF10B TRIM55 
CSF2RA CYSLTR1 HMOX1 DUSP4 RFTN1 
SIRPA SCG2 UBE2L6 CEBPB WIPF1 
FSTL1 JAG2 AKNA BST2 FGR 
CYTIP INPP5D IRF1 VAV1 NRP2 
CD72 CD27 LGALS9 CASP4 LRRK2 
ANXA4 AIM2 S100A8 CALCRL SDC3 
KDR VEGFC FZD1 IL16 S100A9 
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IL15RA NRG3 S100A10 CD4 BMP2 
ABCA1 APLN CCRL2 NFKBIE IL18R1 
REG1A TRAT1 OAS3 SEMA6A DUSP10 
IL7R FAS IL32 PLAUR NR3C1 
SHC1     

 

 

Please browse Full Text version to see the data of Supplementary Tables 2 to 4 

 

Supplementary Table 2. Results of GO analysis based on 326 differentially expressed immune-related genes. 

 

Supplementary Table 3. PANTHER pathway analysis based on 326 differentially expressed immune-related genes. 

 

Supplementary Table 4. Disease ontology analysis based on 326 differentially expressed immune-related genes. 
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Supplementary Table 5. Results of GO analysis based on 47 immune-related hub genes. 

ID Description Count GeneRatio FDR 

GO:0006954 inflammatory response 23 0.489362 2.36E-21 

GO:0006935 chemotaxis 17 0.361702 2.73E-20 

GO:0008009 chemokine activity 12 0.255319 5.49E-16 

GO:0070098 chemokine-mediated signaling pathway 13 0.276596 6.49E-16 

GO:0006955 immune response 18 0.382979 5.11E-13 

GO:0060326 cell chemotaxis 11 0.234043 2.04E-12 

GO:0007186 G-protein coupled receptor signaling pathway 21 0.446809 6.97E-11 

GO:0007204 positive regulation of cytosolic calcium ion concentration 11 0.234043 3.65E-09 

GO:0005615 extracellular space 21 0.446809 1.98E-08 

GO:0009986 cell surface 15 0.319149 3.94E-08 

GO:0007267 cell-cell signaling 12 0.255319 9.81E-08 

GO:0030593 neutrophil chemotaxis 8 0.170213 7.61E-07 

GO:0007165 signal transduction 19 0.404255 7.73E-07 

GO:0050900 leukocyte migration 9 0.191489 1.96E-06 

GO:0005886 plasma membrane 30 0.638298 5.27E-06 

GO:0032496 response to lipopolysaccharide 9 0.191489 2.04E-05 

GO:0005576 extracellular region 19 0.404255 2.73E-05 

GO:0070374 positive regulation of ERK1 and ERK2 cascade 9 0.191489 3.39E-05 

GO:0045766 positive regulation of angiogenesis 8 0.170213 3.87E-05 

GO:0008284 positive regulation of cell proliferation 12 0.255319 5.70E-05 

GO:0007166 cell surface receptor signaling pathway 10 0.212766 7.17E-05 

GO:0048248 CXCR3 chemokine receptor binding 4 0.085106 2.28E-04 

GO:0005102 receptor binding 10 0.212766 4.65E-04 

GO:0048015 phosphatidylinositol-mediated signaling 7 0.148936 6.43E-04 

GO:0046934 phosphatidylinositol-4,5-bisphosphate 3-kinase activity 6 0.12766 8.38E-04 

GO:0071222 cellular response to lipopolysaccharide 7 0.148936 9.38E-04 

GO:0009897 external side of plasma membrane 8 0.170213 0.001079 

GO:0006968 cellular defense response 6 0.12766 0.00109 

GO:0004713 protein tyrosine kinase activity 7 0.148936 0.001869 

GO:0008360 regulation of cell shape 7 0.148936 0.003297 

GO:0014066 regulation of phosphatidylinositol 3-kinase signaling 6 0.12766 0.003443 

GO:2000406 positive regulation of T cell migration 4 0.085106 0.003497 

GO:0018108 peptidyl-tyrosine phosphorylation 7 0.148936 0.00552 

GO:0005887 integral component of plasma membrane 15 0.319149 0.006709 

GO:0046854 phosphatidylinositol phosphorylation 6 0.12766 0.008666 

GO:0007169 

transmembrane receptor protein tyrosine kinase signaling 

pathway 6 0.12766 0.009611 

GO:0009986 cell surface 15 0.319149 3.94E-08 

GO:0007267 cell-cell signaling 12 0.255319 9.81E-08 

GO:0030593 neutrophil chemotaxis 8 0.170213 7.61E-07 
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Supplementary Table 6. PANTHER pathway analysis based on 47 immune-related hub genes. 

Pathway 

Accession 
Pathway Name Components Subfamilies 

Associated 

Sequence 

P00005 Angiogenesis 77 246 1254 

P00026 
Heterotrimeric G-protein signaling pathway-Gi alpha 

and Gs alpha mediated pathway 
27 217 1104 

P04394 
Thyrotropin-releasing hormone receptor signaling 

pathway 
9 95 535 

P00048 PI3 kinase pathway 35 78 425 

P05916 Opioid prodynorphin pathway 12 47 303 

P05913 Enkephalin release 10 47 314 

P05917 Opioid proopiomelanocortin pathway 9 46 309 

P00038 JAK/STAT signaling pathway 8 18 113 

P00047 PDGF signaling pathway 36 214 1032 

P05915 Opioid proenkephalin pathway 11 46 302 

P00036 Interleukin signaling pathway 36 90 555 

P00012 Cadherin signaling pathway 16 239 1058 

P00034 Integrin signalling pathway 46 251 1296 

P06959 CCKR signaling map 290 171 171 

P04385 Histamine H1 receptor mediated signaling pathway 5 66 395 

P00019 Endothelin signaling pathway 27 149 727 

P00031 
Inflammation mediated by chemokine and cytokine 

signaling pathway 
58 353 1652 

P00054 Toll receptor signaling pathway 46 72 308 

P00021 FGF signaling pathway 26 236 1135 

P04374 5HT2 type receptor mediated signaling pathway 9 103 569 

P00009 Axon guidance mediated by netrin 11 47 228 

P04393 Ras Pathway 39 104 602 

P04376 5HT4 type receptor mediated signaling pathway 7 47 287 

P04391 Oxytocin receptor mediated signaling pathway 6 88 515 

P00018 EGF receptor signaling pathway 28 278 1161 

P05731 GABA-B_receptor_II_signaling 9 41 238 

P00008 Axon guidance mediated by Slit/Robo 14 39 173 

P04377 Beta1 adrenergic receptor signaling pathway 7 64 392 

P05912 Dopamine receptor mediated signaling pathway 27 85 422 

P04378 Beta2 adrenergic receptor signaling pathway 7 64 393 

P00010 B cell activation 37 80 428 

P04379 Beta3 adrenergic receptor signaling pathway 4 41 257 

P00049 Parkinson disease 37 212 1128 

P00056 VEGF signaling pathway 25 98 491 

P06664 Gonadotropin releasing hormone receptor pathway 216 233 235 

P04386 Histamine H2 receptor mediated signaling pathway 4 39 233 

P00053 T cell activation 45 97 561 

P00057 Wnt signaling pathway 49 483 2308 

P04373 5HT1 type receptor mediated signaling pathway 8 62 390 

 
 

Please browse Full Text version to see the data of Supplementary Table 7 

 

Supplementary Table 7. Disease ontology analysis based on 47 immune-related hub genes. 
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Supplementary Table 8. Basic characteristics of the five immune-related genes. 

Gene Description Function Cytoband 

SHC1 SHC (Src homology 2 domain containing) transforming protein 1 ephrin receptor binding 1q21.3 

IRF7 interferon regulatory factor 7 protein binding 11p15.5 

KDR kinase insert domain receptor transferase activity 4q12 

JAK3 Janus kinase 3 transferase activity 19p13.11 

CXCL5 chemokine (C-X-C motif) ligand 5 chemokine activity 4q13.3 

 

 

Please browse Full Text version to see the data of Supplementary Table 9 

 

Supplementary Table 9. Immune gene sets from ImmPort and InnateDB databases. 

 

 

Supplementary Table 10. Clinical characteristics of patients in each dataset. 

Variables 
Discovery set 

n (%) 
Internal validation set 

n (%) 
P value 

E-MTAB-3267 
n (%) 

Age (mean ± SD, 
years) 

60.1 ± 12.3 60.8 ± 12.0 0.498 59.8 ± 8.2 

Age   0.464  
≥ 65 90 (35.0) 99 (38.5)  15 
< 65 167 (65.0) 158 (61.5)  38 

Gender   1  
Male 168 (65.4) 169 (65.8)  37 
Female 89 (34.6) 88 (34.2)  16 

Stage   0.797  
I 125 (48.6) 133 (51.8)  NA 
II 29 (11.3) 25 (9.7)  NA 
III 59 (23.0) 61 (23.7)  NA 
IV 44 (17.1) 38 (14.8)  NA 

Grade   0.988  
G1 7 (2.7) 6 (2.3)  NA 
G2 113 (44.0)  111 (43.2)  NA 
G3 101 (39.3) 103 (40.1)  NA 
G4 36 (14.0) 37 (14.4)  NA 

Status   0.453  
Dead 80 (31.1) 89 (34.6)  39* 
Alive 177 (68.9) 168 (65.4)  14** 

*progression    ** no-progression 
 

 

Supplementary Table 11. Primers for q-RT-PCR analysis of the 5 IRGs. 

Symbol Forward primer Reverse primer 
SHC1 5’-ATCACTCTCACCGTCTCCACCAG-3’ 5’-TCTTTGGCAACATAGGCGACATACTC-3’ 
IRF7 5’-CCCACGCTATACCATCTACCT-3’ 5’-GATGTCGTCATAGAGGCTGTTG-3’ 
KDR 5’-GGAGCTTAAGAATGCATCCTTG-3’ 5’-GATGCTTTCCCCAATACTTGTC-3’ 
JAK3 5’-CCTGATCGTGGTCCAGAGAG-3’ 5’-GCAGGGATCTTGTGAAATGTCAT-3’ 
CXCL5 5’-ATCAGTAATCTGCAAGTGTTCG-3’ 5’-CAAGACAAATTTCCTTCCCGTT-3’ 
GAPDH 5’-CAGGAGGCATTGCTGATGAT-3’ 5’-GAAGGCTGGGGCTCATTT-3’ 

 
 

 


