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INTRODUCTION 
 

Osteosarcoma (OS) is the most common primary bone 

malignancy and occurs primarily in children and 

adolescents [1, 2]. Chemotherapy such as cisplatin 

(CDDP) pre- and post- operative is applied as a 

standard treatment for those who are not suitable for 

surgical intervention. Despite significant advances in 

neoadjuvant chemotherapy, the prognosis of OS has 

barely improved in the past few decades [3]. Extensive 
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ABSTRACT 
 

Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein 
arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet 
its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression 
predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as 
evidenced by the increase in senescence-associated β-galactosidase (SA-β-gal)-stained cells, induction of p21 
expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, 
we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via 
affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 
depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, 
was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by 
interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The 
present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that 
targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS. 
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studies have focused on genetic mutations of 

transcription factors, including p53 and Rb1, yet little is 

known about how druggable enzymes are involved in 

OS [2]. Recently, several epigenetic enzymes such as 

DNA methyltransferase 1 (DNMT1), enhancer of zeste 

homolog 2 (EZH2) and nuclear receptor-binding SET 

domain-containing (NSD), have been demonstrated to 

play a crucial role in OS, and targeting these enzymes 

enhanced OS cell apoptosis and chemosensitivity [4–6]. 

Therefore, targeting these enzymes in combination with 

chemotherapy might shed light on the treatment of OS. 

 

Protein arginine methyltransferase 5 (PRMT5) is a 

druggable enzyme that has been shown to be 

aberrantly expressed in various cancers, and it acts as 

a putative oncogene in maintaining cancer cell 

survival [7–9], yet its role in OS remains elusive. We 

previously demonstrated that upstream signaling 

molecules, such as the protein kinase C (PKC), 

nuclear transcription factor Y (NF-Y), and carboxyl 

terminus of heat shock cognate 70-interacting protein 

(CHIP), play a key role in regulating PRMT5 

expression and thus cell proliferation [10, 11]. Studies 

have also suggested that PRMT5 inhibition or loss-of-

function impairs the DNA damage response (DDR) 

and induces apoptotic cell death via targeting p53, 

flap structure-specific endonuclease 1 (Fen1), and 

RuvB-like AAA ATPase 1 (RUVBL1), and Rad9 [12–

16]. We have recently shown that PRMT5 functions 

as a master epigenetic activator of DDR genes, and 

that targeting PRMT5 by genetic knockdown or 

pharmacological inhibition can sensitize multiple 

cancer cell lines to radiation and chemotherapy [17]. 

PRMT5 is also responsible for regulating cellular 

senescence in glioblastoma neurospheres via Akt and 

ERK signaling [18].  

 

Cellular senescence is a state of permanent cell cycle 

arrest characterized by an accumulation of senescence-

associated β-galactosidase (SA-β-gal) and the 

appearance of a senescence-associated secretory 

phenotype (SASP). Several stimuli, such as oxidative 

stress and DNA damage, have been demonstrated to 

cause cellular senescence [19, 20]. The process of 

senescence is coordinated through two canonical 

pathways, the p53/p21 and Rb1/p16 pathways, yet cells 

can also undergo senescence via p53-independent 

pathways [21]. In addition, thioredoxin-interacting 

protein (TXNIP) has been demonstrated to functions as 

another key regulator of cellular senescence [22]. 

Although induction of senescence could be associated 

with drug resistance or tumor recurrence [23], there is 

no doubt that induction of cellular senescence is a 

promising antitumor mechanism either during cancer 

progression or within the chemotherapeutic windows in 

various cancers at the very early stage [24, 25].  

In the present study, we found that PRMT5 is highly 

expressed in OS tissues and that its overexpression 

predicts poor clinical outcomes. Knockdown of PRMT5 

induces pronounced senescence in OS cells while 

overexpression of PRMT5 in OS cells inhibits DNA 

damaging agents-induced senescence, presumably 

through a mechanism of regulating the DDR. Finally, we 

elucidated that TRIM21, an E3 ubiquitin-protein ligase, 

by interacting with PRMT5, plays a key role in regulating 

the TXNIP/p21 axis during senescence in OS cells. 

 

RESULTS 
 

PRMT5 is highly expressed in OS tissues, and its 

expression is correlated with OS clinicopathological 

features 

 

PRMT5 has previously been shown to be overexpressed 

in multiple human cancers, including prostate, lung, and 

colon cancers [7, 8], yet its role in OS is under 

investigation. Thus, we first examined the expression 

level of PRMT5 in the commercial tissue microarrays 

(TMAs) consisting of 27 normal bone and 72 OS tissues 

by immunohistochemistry (IHC). As shown in Figure 

1A–1C, PRMT5 expression was significantly increased 

with disease progression from normal bone to grade I 

OS (++) and grade II OS (+++). These results confirm 

that the expression of PRMT5 in OS tissues is higher 

than that in normal bone. We further analyzed the 

association of PRMT5 expression with clinico-

pathological characteristics in 34 OS patients. As shown 

in Table 1, the high expression level of PRMT5 was 

positively correlated with local recurrence/lung 

metastasis and tumor grading, while negatively 

correlated with the survival status in OS patients (no 

correlation with age, sex, primary location, or 

histological type). In agreement with our findings, the 

publicly available mixed osteosarcoma-Kuijjer dataset 

also revealed that the high expression level of PRMT5 

was correlated with poor metastasis-free survival 

probability, although the overall survival probability 

was not significantly different (Figure 1D and 1E). 

Since Ki67 is the most widely used marker for assessing 

the level of malignancy and prognosis; we then aimed 

to correlate the expression of PRMT5 with Ki67 in OS 

tissues [26]. In fact, PRMT5 expression positively 

correlated with Ki67 expression in another set of OS 

tissues (Supplementary Figure 1A and 1B). These 

results collectively suggest that abnormal expression of 

PRMT5 may play a role in OS. 

 

Downregulation of PRMT5 elicits senescence in OS 

cells 

 

Next, we sought to investigate the possible effects of 

PRMT5 on the growth of OS cells. As shown in 
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Supplementary Figure 2A–2C, knockdown or inhibition 

of PRMT5 showed little effect on the apoptosis of U2 

OS cells. However, knockdown of PRMT5 significantly 

increased the percentage of senescent cells and retarded 

the cell proliferation of OS, as evidenced by SA-β-gal 

staining, 5-Ethynyl-2'-deoxyuridine (EdU)  

incorporation assay, as well as the protein expression of 

p-mTOR and p-p70 S6K, which distinguish quiescence 

and senescence [27] (Figure 2A and 2B, Supplementary 

Figure 2D–2F). Senescent cells have been demonstrated 

to actively secrete a group of proteins named SASP 

[28]; and we confirmed that knockdown of PRMT5 

upregulated the mRNA expression of SASP genes, 

including CXCL-1, CXCL-2, CXCL-3, IL-6, IL-8, 

TNF-α, ICAM-1, and CCL2 (Supplementary Figure 

2G). Cellular senescence can be triggered by multiple 

pathways, including the p53-p21 and Rb-p16 axes [21, 

28]. Since PRMT5 was previously demonstrated to play 

a key role in epigenetically silencing the transcription of 

p21 [29, 30], we then explore this in OS cells. 

Surprisingly, no significant change of p21/CDKN1A 

mRNA level was found upon PRMT5 depletion in the 

U2 OS cells (Supplementary Figure 2H). However, 

knockdown of PRMT5 dramatically increased the 

protein expression of p21 (but not p53) in the U2 OS 

cells (Figure 2C). Similar induction of p21 at the protein 

level was found in shP5#1 and shP5#3 Saos-2 cells, in 

which p53 expression is lost (Figure 2C). In addition, a 

marked increase of p21 expression at both the 

cytoplasm and nucleus was validated using subcellular 

fractionation and immunofluorescence analyses (Figure 

2D, Supplementary Figure 2I).  

 

In contrast, overexpression of PRMT5 by transiently 

transfection of the plasmid encoding HA-PRMT5 

markedly reduced the percentage of senescent cells and 

the expression of p21 triggered by PRMT5 depletion, 

indicating the specific role of PRMT5 in regulating

 

 
 

Figure 1. PRMT5 is overexpressed in OS tissues and its expression predicts poor survival probability. (A) The expression of 

PRMT5 was examined by IHC using commercial tissue microarrays (TMAs), which contained normal bone and different TNM stages of OS (++ 
indicated T1; +++ indicated T2). Representative images of PRMT5 expression in the tissues are shown. The red arrows indicate the trabecular 
bone. Scale bar = 50 μm. (B) The expression scores of PRMT5 in the cytoplasm and nucleus of OS cells (n = 72). (C) The expression scores of 
PRMT5 in normal bone (n = 27) and OS (n = 72). (D and E) PRMT5 expression along with OS survival probability was analyzed using the mixed 
osteosarcoma-Kuijjer dataset in the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl). 

http://r2.amc.nl/
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Table 1. Association of PRMT5 expression with the clinicopathological characteristics of 34 OS patients.  

Variable N Low PRMT5 High PRMT5 P value 

Age (years) 
   

<20 20 7 13 0.643 

>20 14 6 8 
 

Sex 
    

Male 20 8 12 0.8 

Female 14 5 9 
 

Primary location 
   

Proximal tibia  17 7 10 
 

Proximal humerus  9 3 6 0.979 

Proximal femur  3 1 2 
 

Others  5 2 3 
 

Histological type 
   

Conventional OS 11 5 6 0.549 

Others 23 8 15 
 

Local recurrence/Lung metastasis 
   

Yes 19 4 15 0.020* 

No 15 9 6 
 

Survival status 
   

Yes 18 14 4 0.042* 

No 16 7 9 
 

Grading 
    

I and II 30 24 6 0.019* 

III 4 1 3 

 
Notes: aGrouping of age was performed according to the median. 
Abbreviations: OS, osteosarcoma 
 

cellular senescence (Figure 2E and 2F, Supplementary 

Figure 2J). To explore whether p21 expression is 

essential for PRMT5 knockdown-triggered cellular 

senescence, we combined the application of the siRNA 

to interfere with the p21 expression (Supplementary 

Figure 2K). The knockdown of p21 significantly reduced 

the percentage of SA-β-gal stained-senescent cells in 

shP5 cells (Figure 2G and 2H). Altogether, these results 

consistently support a crucial role of PRMT5 in 

regulating p21 expression and thus the cellular 

senescence in OS. 

 

PRMT5 inhibits DNA damaging agents-induced OS 

cell senescence 
 

Increasing evidence suggests that DNA damage is a 

common mediator of cellular senescence [31, 32]; 

therefore, we investigated whether the cellular 

senescence triggered by PRMT5 depletion in OS was 

associated with DNA damage. Knockdown of PRMT5 

(shP5#1 or shP5#3) initiated obvious DNA double-strand 

breaks (DSBs) in U2 OS cells, as evidenced by the comet 

assay, which was used to visualize DNA fragmentation in 

individual cells. In addition, the Olive tail moment 

(OTM) indicated the tail length was increased in cells 

upon PRMT5 depletion (Figure 3A and 3B). This effect 

became more pronounced with the addition of CDDP, a 

first-line DNA damaging chemotherapeutic reagent for 

OS treatment [33] (Figure 3A and 3B). In support of this 

finding, the expression and percentage foci of γ-H2A.X 

(≥ 10), a marker of DNA DSBs, as reported previously 

[34], were increased after the PRMT5 knockdown 

(Figure 3C–3E). Since PRMT5 is reported to cause DNA 

damage and regulate DNA repair signaling [14–17], we 

sought to determine whether knockdown of PRMT5 

affects DNA repair signaling in OS cells. As shown in 

Figure 3D–3E, the percentage of γ-H2A.X foci (≥ 10) 

positive cells in the scramble control (SC) group was 

noticeably decreased after 12 and 24 h of recovery from 

CDDP treatment (replacement with fresh medium), while 

the percentage of γ-H2A.X foci remained constant in the 

shP5#1 and shP5#3 groups, indicating the impairment of 

DNA repair signaling. 

 

CDDP has been reported to induce cancer cells 

undergoing senescence [35, 36]. Next, we sought to 
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investigate whether PRMT5 plays a role in CDDP-

induced cellular senescence. Of note, induction of p21 

accompanied with cellular senescence was elicited upon 

treatment of CDDP, while knockdown of PRMT5 further 

enhanced the p21 protein expression as well as OS cell 

senescence (Figure 3F–3H). On the contrary, 

overexpression of PRMT5 remarkably suppressed CDDP-

induced p21 protein level and OS cell senescence (Figure 

3I–3J). These results collectively suggest that PRMT5 

overexpression in OS cells might confer resistance to 

CDDP via modulation of cellular senescence. 

 

TXNIP plays a role in regulating cellular senescence 

induced by PRMT5 knockdown 

 

Next, we sought to identify the key factor mediating 

PRMT5 depletion-induced DNA damage and cellular 

senescence. TXNIP has recently been reported as a key 

 

 
 

Figure 2. Downregulation of PRMT5 elicits cellular senescence in OS. (A) Two independent shRNAs targeting PRMT5 (shP5#1 and 

shP5#3) were applied to knock down PRMT5 expression in OS cell lines, and senescent cells were assessed using a SA-β-gal staining kit. Scale bar 
= 20 μm. (B) The percentage of senescent cells was quantified from three independent experiments, and the data are presented as the means ± 
SDs. ****, p< 0.0001. (C) The protein expressions of p53 and p21 with or without PRMT5 depletion in OS cells were determined by WB. (D) 
Cytoplasmic and nuclear proteins were prepared and then determined by WB. PCNA and LAMIN B1 were used as controls. (E) Plasmids encoding 
HA-PRMT5 were transfected into the SC, shP5#1 or shP5#3 U2 OS cells, and the percentage of senescent cells was quantified. ****, p< 0.0001. (F) 
Plasmids encoding HA-PRMT5 were transfected into SC, shP5#1 or shP5#3 U2 OS cells, the expressions of PRMT5 and p21 were then determined 
by WB. (G–H) siRNA targeting p21 (sip21#4) was transfected into SC, shP5#1 or shP5#3 U2 OS cells for 3 days, the senescent cells were visualized 
using a SA-β-gal staining kit. Scale bar = 10 μm. The percentage of senescent cells was quantified. ****, p< 0.0001. 
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regulator of oxidative stress, DNA damage, and cellular 

senescence [22]; thus, we explored the possible 

involvement of TXNIP in PRMT5 depletion-induced 

cellular senescence. Of significance, knockdown of 

PRMT5 upregulated the protein but not the mRNA 

expression level of TXNIP in the U2 OS cells (Figure 

4A, Supplementary Figure 3A). A similar result was 

obtained using another OS cells, Saos-2 (Figure 4B). In 

contrast, overexpression of PRMT5 by transfecting the 

plasmid encoding HA-PRMT5 markedly abolished the 

induction of TXNIP by shP5#3 (Figure 4C). Since 

cytoplasmic TXNIP has been demonstrated to be highly 

 

 
 

Figure 3. PRMT5 inhibits DNA damaging agents-induced OS cell senescence. (A and B) Cisplatin (CDDP, 10 μM) was added to SC, 

shP5#1, and shP5#3 U2 OS cells for 24 h. Then, DSBs were visualized by a comet assay, followed by quantification of the OTM with Open 
Comet software. Scale bar = 20 μm. **, p< 0.01. (C) SC, shP5#1 and shP5#3 U2 OS cells were treated with 10 μM CDDP for 24 h, the 
expressions of PRMT5 and γ-H2A.X were measured by WB. (D, E) SC, shP5#1 and shP5#3 U2 OS cells were treated with 20 μM CDDP for 3 h; 
the medium was then replaced with fresh medium, and cells were cultured for 12 h or 24 h (time for DNA repair). Antibody against γ-H2A.X 
was used for immunofluorescence staining, DAPI was used to counterstain the nucleus, and the percentage of positive cells (with ≥10 foci per 
nucleus considered positive) was counted in three independent experiments and quantified with ImageJ software. Scale bar = 10 μm. *, p< 
0.05. (F) SC, shP5#1 and shP5#3 U2 OS cells were treated with 10 μM CDDP for 24 h, the expressions of PRMT5, p16, p21 and p53 were 
measured by WB. (G, H) SC, shP5#1 and shP5#3 U2 OS cells were treated with 10 μM CDDP for 12 h, the percentage of senescent cells was 
quantified. *, p< 0.05; ***, p< 0.001; the cellular senescence was visualized using a SA-β-gal staining kit. Scale bar = 50 μm. (I, J) U2 OS cells 
were transfected with plasmids encoding HA-PRMT5, followed by treated with CDDP for 12 h, and the percentage of senescent cells was 
quantified. ****, p< 0.0001; the expressions of PRMT5, TXNIP and p21 were determined by WB; the cellular senescence was visualized using 
a SA-β-gal staining kit. Scale bar = 50 μm. 
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correlated with cellular senescence [37], we also 

explored its localization and found that PRMT5 

depletion led to a marked increase of both cytoplasmic 

and nuclear TXNIP (Supplementary Figure 3B and 3C). 

Functionally, knockdown of TXNIP by two different 

small interfering RNAs (siRNAs, siTXNIP#1 and 

siTXNIP#2) significantly reduced the percentage of 

senescent cells resulting from PRMT5 depletion (Figure 

4D, Supplementary Figure 3D). In agreement with this 

finding, siTXNIP#1 and siTXNIP#2 also greatly 

suppressed the induction of p21 as well as the DSBs 

caused by shP5#3 (Figure 4E and 4F, Supplementary 

Figure 3E). Similarly, interfering TXNIP by siTXNIP#1 

also remarkably reduced the percentage of SA-β-gal 

stained-senescent cells and the induction of p21 elicited 

by another shRNA of PRMT5, shP5#1 (Figure 4B, 

Figure 4G and 4H, Supplementary Figure 3F). Notably, 

we found that the treatment of OS cells with CDDP 

induced TXNIP expression at a time of 6 and 12 h, and 

this induction of TXNIP was enhanced upon PRMT5 

depletion by shP5#1 and shP5#3, while suppressed by 

PRMT5 overexpression (Figure 4J, 4K). These results

 

 
 

Figure 4. TXNIP is essential for the induction of cellular senescence by PRMT5 depletion. (A) The protein expression of TXNIP was 

determined by WB with or without PRMT5 knockdown in U2 OS cells. (B) siRNA targeting TXNIP was transfected into SC, shP5#1 or shP5#3 Saos-2 
cells, and the expressions of PRMT5, TXNIP, and p21 were measured by WB; β-actin was used as the internal control. (C) Plasmids encoding HA-
PRMT5 were transfected into SC or shP5#3 U2 OS cells, and the expression of PRMT5 and TXNIP was determined by WB. (D) Two independent 
siRNAs targeting TXNIP (siTXNIP#1 and siTXNIP#2) were transfected into SC or shP5#3 U2 OS cells for 3 days, the percentage of senescent cells 
was quantified. ****, p< 0.0001. (E) siRNAs targeting TXNIP were transfected into SC, shP5#1 or shP5#3 U2 OS cells, and the expressions of 
PRMT5, TXNIP, γ-H2A.X, and p21 were measured by WB; β-actin was used as the internal control. (F) DSBs were quantified by Open Comet 
software. ***, p< 0.001; ****, p< 0.0001. (G, H) siRNA targeting TXNIP was transfected into SC and shP5#1 U2 OS cells, and cellular senescence 
was visualized using a SA-β-gal staining kit. Scale bar = 10 μm. the percentage of senescent cells was quantified. ****, p< 0.0001. (I) U2 OS cells 
were treated with CDDP for different durations, the expression of TXNIP was measured by WB. (J) 10 μM CDDP was added to SC, shP5#1, and 
shP5#3 cells for 12 h, the expressions of PRMT5 and TXNIP were determined by WB. (K) U2 OS cells were transfected with plasmids encoding HA-
PRMT5, followed by treated with CDDP for 12 h, the expressions of PRMT5 and TXNIP were determined by WB. 
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together suggest that TXNIP acts as a key factor 

mediating PRMT5 depletion-induced DNA damage and 

cellular senescence. 

 

TRIM21 interaction with PRMT5 is essential for the 

regulation of the TXNIP/p21 axis 

 

It is well characterized that PRMT5 plays a key role in 

regulating transcription via methylating histone or non-

histone substrates [7]. Given that PRMT5 has a 

marginal effect on the transcription of TXNIP and p21, 

we then hypothesized that PRMT5 might regulate 

TXNIP protein expression in an indirect manner, e.g., 

via modulating protein-protein interaction. We have 

previously identified TRIM21 as a potential interacting 

partner of PRMT5 by mass spectrometry in prostate 

cancer cells [11]. Next, we sought to assess whether 

TRIM21 is necessary for PRMT5-regulated TXNIP and 

p21 expression. Of significance, PRMT5 and TRIM21 

were colocalized in the cytoplasm in U2 OS cells 

(Figure 5A), and bimolecular fluorescence 

complementation (BiFC) assay, an imaging method for 

visualization of protein-protein interactions in living 

cells [38, 39], confirmed their interaction in the U2 OS 

cells (Figure 5B). The interaction between PRMT5 and 

TRIM21 was further validated by the 

coimmunoprecipitation (co-IP) assay (Figure 5C). Thus, 

these results demonstrate that PRMT5 interacts with 

TRIM21 in the U2 OS cells. Next, shTRIM21 stable 

cells or doxycycline (Dox)-inducible H125-TRIM21 

expressing cells were established for further studies. As 

shown in Figure 5D and 5E, knockdown of TRIM21 

negatively regulated the expression of TXNIP at the 

protein level but not at the mRNA level. In contrast, 

overexpression of TRIM21 significantly attenuated 

TXNIP protein level without an obvious effect on 

TXNIP transcription (Figure 5D and 5E). In addition, 

the treatment of MG132 (proteasome inhibitor) partially 

restored TXNIP (p21 as positive control) expression 

even in the presence of HA-TRIM21 (Figure 5F). These 

results suggest that TRIM21 can post-translationally 

regulate the expression of TXNIP. 

 

 
 

Figure 5. TRIM21 interacts with PRMT5 in U2 OS cells. (A) Colocalization of TRIM21 and PRMT5 was observed in U2 OS cells using 

antibodies against TRIM21 (green) and PRMT5 (red). Scale bar = 20 μm. (B) DAPI was used to indicate nuclei. Myc-VN155-PRMT5 and HA-
VC155-TRIM21, along with HA-cerulean, were cotransfected into U2 OS cells for 48 h, and the reconstituted Venus fluorophore (yellow, 
arrows) was visualized via confocal microscopy. Scale bar = 20 μm. (C) The endogenous interaction between TRIM21 and PRMT5 was 
validated using a co-IP assay. (D, E) shRNAs targeting TRIM21 (shT#1 and shT#2) or plasmid encoding HA-TRIM21 were applied to knock down 
or overexpress TRIM21, and the protein and mRNA levels of TRIM21 and TXNIP were then determined by WB or quantitative real-time PCR, 
respectively. (F) Dox-inducible TRIM21-expressing cells was treated with MG132 (10 μM) for 12h, the protein expression of TRIM21, TXNIP, 
and p21 was then determined by WB. 
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Next, we aimed to explore the possible role of TRIM21 in 

PRMT5 depletion-regulated TXNIP/p21 axis in the U2 

OS cells. As shown in Figure 6A–6C, knockdown of 

TRIM21 increased the percentage of senescent cells, 

accompanied by a significant induction of p21 expression. 

Conversely, enforced expression of TRIM21 by Dox 

induction markedly decreased p21 expression (Figure 

6D). Further, we investigated the functional domain of 

TRIM21 in regulating TXNIP/p21 expression and the OS 

cell senescence. As shown in Figure 6E, overexpression 

of HA-TRIM21 remarkably attenuated the induction of 

TXNIP and p21 in the shP5#3 cells. Nevertheless, a 

comparable expression of TXNIP and p21 in the SC and 

shP5#3 cells was observed either by transfecting the cells 

with the HA-Vector or HA-mTRIM21, a RING domain 

deleted mutant which lacks E3 ubiquitin ligase activity 

(Figure 6E). Consistently, overexpression of HA-TRIM21 

but not HA-mTRIM21 remarkably abolished PRMT5 

knockdown-induced cellular senescence (Figure 6F and 

6G). Taken together, our results suggest that TRIM21 

functional interacting with PRMT5 is involved in the 

regulation of the TXNIP/p21 axis, and the DNA 

damaging agent-induced cellular senescence (Figure 6H). 

 

DISCUSSION 
 

In recent years, PRMT5, as an oncoprotein, has gained 

increasing attention in terms of cancer prevention and 

therapy. PRMT5 is aberrantly expressed in various 

cancers and that inhibition or knockdown of PRMT5 

suppresses cancer cell proliferation, induces cell cycle 

arrest, and abolishes cancer metastasis both in vitro and 

in vivo [7, 8]. In the present study, we first found that 

PRMT5 expression was positively correlated with OS 

pathological grade, establishing the clinical importance 

of PRMT5 expression in OS. 

 

Recent studies have suggested that induction of cellular 

senescence is a promising strategy for enhancing 

therapeutic efficacy in various cancers, including OS 

[23, 25, 40]. We then explored whether PRMT5 plays a 

role in regulating senescence of OS cells with or 

without the DNA damaging stress elicited by the most 

common first-line chemotherapeutic drug, CDDP. 

Several lines of evidence supporting the fact that 

PRMT5 is essential for regulating CDDP-induced OS 

cell senescence: firstly, at the basal level, PRMT5 

knockdown significantly increases the number of 

senescent cells in OS and induces the SASPs gene 

expression, through a mechanism involving p21 

expression; while ectopic expression of PRMT5 

suppresses PRMT5 knockdown-induced cellular 

senescence. Our finding is in according to a recent study 

elucidating that PRMT5 mediates the activation of Akt 

and ERK in glioblastoma neurosphere cells by 

regulating PTEN expression and ultimately participates 

in cellular senescence [18]. Secondary, although CDDP 

has been demonstrated to induce cancer cells into 

senescence through sequential activation of the DNA 

damage response and the p53/p21 pathway in the 

literature [20, 35], and in our hands, knockdown of 

PRMT5 was found to further promote CDDP-induced 

p21 expression and senescent OS cells, while PRMT5 

overexpression remarkably diminished CDDP-induced 

p21 protein level and senescent cells. Thirdly, since 

DNA damage is the most important inducer of cellular 

senescence [41–43], we also reveal the possible 

mechanism demonstrating that PRMT5 plays a crucial 

role in regulating DSBs and DDR at either basal level or 

in CDDP-treated levels. This result is consistent with 

our recent publication reporting that PRMT5 functions 

as a master epigenetic activator of DDR genes [17]. 

These results together suggest that overexpression of 

PRMT5 may confer resistance of OS cells to CDDP by 

regulating cellular senescence, and that targeting the 

druggable PRMT5 in combination with chemotherapy 

may be utilized as a strategy for OS treatment.  

 

PRMT5 performs its function mainly through epigenetic 

silencing or direct methylation of histone and 

nonhistone molecules [7]. A series of studies have 

reported that PRMT5 regulates p21 expression via an 

epigenetic silencing mechanism [29, 30], yet in our 

study, knockdown of PRMT5 did not significantly alter 

the transcription of p21 and that the induction of p21 

protein expression by PRMT5 depletion is not 

dependent on p53. Interestingly, we identified TXNIP 

as a critical regulator of senescence in OS cells. TXNIP 

is expressed at a lower level in various cancers (such as 

liver, breast and bladder cancer) and is a multifunctional 

protein that controls various cellular processes, such as 

cell proliferation, apoptotic signaling, oxidative stress 

and inflammation [44–47]. Consistent with the findings 

that overexpression of TXNIP promotes DNA damage 

in esophageal adenocarcinoma [48], senescence in 

vascular endothelial cells [49], we demonstrated that 

TXNIP, may function downstream of PRMT5 to 

regulate DNA damage signaling and p21-mediated 

cellular senescence in U2 OS cells. Surprisingly, similar 

to that of p21 regulation, we also found that knockdown 

of PRMT5 only upregulated the protein but not the 

mRNA level of TXNIP.  

 

TRIM21, which belongs to the TRIM family, is an E3 

ubiquitin ligase with a RING domain. TRIM21 is 

widely involved in cell proliferation, differentiation, 

autophagy, innate immunity and migration [50–53]. Our 

previous mass spectrometry identified several E3 

ligases include CHIP and TRIM21 as interacting 

proteins of PRMT5 in prostate cancer cells [11]. 

Consistent with this, a recent study also presented 

evidence that PRMT5 may functionally interact with 
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Figure 6. TRIM21 is required for the regulation of the TXNIP/p21 axis by PRMT5. (A) Two independent shRNAs targeting TRIM21 

(shT#1 and shT#2) were utilized to knock down TRIM21, and cellular senescence was visualized using a SA-β-gal staining kit. Scale bar = 20 
μm. (B) The percentage of senescent cells was quantified. ***, p< 0.001; ****, p< 0.0001. (C) The protein expression of p21 with or without 
TRIM21 depletion was determined by WB. (D) U2 OS cells expressing Dox-inducible HA-TRIM21 were established; the cells were induced with 
Dox for different durations, and p21 expression was then measured by WB. (E) Plasmids expressing HA-TRIM21 or the HA-TRIM21 ∆RING 
mutant (HA-mTRIM21) were transfected into SC or shP5#3 U2 OS cells, and the protein expression of PRMT5, TXNIP, and p21 was then 
determined by WB. (F–G) Plasmids expressing HA-TRIM21 or the HA-TRIM21 ∆RING mutant (HA-mTRIM21) were transfected into SC or 
shP5#3 cells, and cellular senescence was visualized using a SA-β-gal staining kit. Scale bar = 20 μm; the percentage of senescent cells was 
quantified, and the data are presented as the means ± SDs. n.s., no significance; ****, p< 0.0001. (H) Schematic depicting the involvement of 
the PRMT5/TRIM21 complex in regulation of the DDR and cellular senescence via the TXNIP/p21 axis in U2 OS cells. 
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TRIM21 in myeloma cells [54]. Consistent with these, 

we confirmed the interactions between TRIM21 and 

PRMT5 at both endogenous and exogenous levels in U2 

OS cells. Our finding that knockdown of TRIM21 

significantly induced senescence in U2 OS cells was 

particularly interesting, since this finding is the first to 

delineate the role of TRIM21 in cellular senescence. 

Our finding is supported by recent findings that higher 

expression of TRIM21 decreases the response to CDDP 

in colon cancer and pancreatic cancers, and that 

somehow contributes to chemo-resistant [55]. We also 

confirmed that active TRIM21 (but not the RING 

domain deletion mutant), in cooperation with PRMT5, 

was involved in the regulation of the TXNIP/p21 axis. 

These results suggest that overexpressed PRMT5 likely 

recruits TRIM21 through their physical interaction to 

facilitate post-translational regulation of TXNIP/p21 

expression in OS cells. One possible mechanism is that 

TRIM21 may ubiquitinate TXNIP and promote TXNIP 

degradation. Consistent with the role of TXNIP in 

regulation of DDR [45], knockdown of TXNIP also 

suppressed the induction of p21 expression by PRMT5 

depletion. While this does suggest that the induction of 

p21 expression may be still dependent on the extent of 

DNA damage, yet the reason why this regulation is 

independent of p53 in OS cells remains to be 

investigated. Alternatively, PRMT5/TRIM21 may also 

directly regulate the expression of p21 post-

translationally. Future studies will investigate whether 

PRMT5 forms a ternary complex with TRIM21 and 

TXNIP or p21 and whether PRMT5 may methylate any 

of these proteins.  

 

In summary, we found that PRMT5 is overexpressed in 

OS and its overexpression is correlated with OS 

progression. In addition, we found that PRMT5 plays a 

key role in regulating senescence of OS cells either in 

the presence or absence of DNA damaging agents 

including CDDP. Mechanistically, TRIM21 was found 

to interact with PRMT5 to regulate senescence in OS 

cells in response to DNA damage by modulating the 

expression of TXNIP/p21 (Figure 6H). These findings 

suggest that overexpression of PRMT5 in OS cells 

might confer resistance to chemotherapy, e.g. CDDP via 

modulation of cellular senescence, and that targeting the 

PRMT5/TRIM21/TXNIP signaling may enhance the 

therapeutic efficacy in OS. 

 

MATERIALS AND METHODS 
 

Cell culture and reagents 

 

Human U2 OS and Saos-2 cells were cultured in McCoy's 

5A medium (Life Technologies, Carlsbad, CA, USA) 

supplemented with 10% or 15% fetal bovine serum, 

respectively [56]. HEK293T cells were maintained as 

previously described [10]. CDDP was purchased from 

Selleck (S1166, TX, USA) and diluted in 

dimethylformamide (DMF, Dingguo Changsheng 

Biotechnology Co., Ltd., Beijing, China). Dox was 

purchased from Selleck (S4163, TX, USA). 

 

Immunohistochemistry (IHC) staining 

 

Tissue microarray (OS208) containing samples of normal 

bone and various grades of OS were obtained from 

Alenabio (Alenabio, Shanxi, China) and used for IHC 

with an antibody against PRMT5 (79998, 1:400, CST, 

MA, USA). A total of 34 OS sections were collected from 

patients at the First Affiliated Hospital of Jinan University 

and the Third Affiliated Hospital of Sun Yat-sen 

University. Briefly, paraffin sections were deparaffinized 

in xylene and rehydrated through graded ethanol washes 

(100%-70%, v/v), followed by incubation with 3% 

hydrogen peroxide for 10 min. Antigen retrieval was 

performed by heating slides in 10 mM Tris-HCl (pH = 10) 

for 15 min in a microwave. After three washes with 

phosphate-buffered saline (PBS) containing 0.1% Tween 

20 (PBST), slides were blocked in 5% nonfat milk in 

PBST at room temperature (RT) for 1 h. Slides were 

incubated with primary antibody against PRMT5 at 4°C 

overnight, followed by three washes with PBST and 

incubation with HRP-conjugated anti-rabbit secondary 

antibodies at RT for 1 h. The signal was developed with 

diaminobenzidine for 10 min, and sections were 

counterstained with hematoxylin. Another set of 11 OS 

fresh sections was used for IHC to correlate the 

expression of PRMT5 and Ki67 (IS62630-2, Dako, 

Glostrup, Denmark). Semiquantitative analysis of PRMT5 

expression was performed as previously described [17]. 

 

Bioinformatics analysis 
 
The expression of PRMT5 in OS was extracted from the 

mixed osteosarcoma-Kuijjer dataset in the R2 Genomics 

Analysis and Visualization Platform (http://r2.amc.nl) 

[57]. A Kaplan-Meier survival curve was generated to 

determine the association between PRMT5 expression 

and patient survival status on the R2 website, at which a 

large quantity of public genomic data can be accessed 

for analysis. 

 
Lentiviral infection of OS cells 

 

Lentiviruses expressing shRNA against PRMT5 (shP5) 

and TRIM21 (shT21) or SC shRNA were purchased from 

GenePharma (Shanghai, China). Lentiviruses expressing 

inducible TRIM21 were generated by co-transfected 

HEK293T cells with H125 pLenti-TRE-EGFP-EF1-

rtTA3-IRES-Puro-TRIM21, pLP1, pLP2, and pLP-VSVG 

using at a ratio of 1:1:1:2. U2 OS cells were infected with 

the above lentiviruses by the addition of viral supernatant 

http://r2.amc.nl/
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(multiplicity of infection, MOI = 10) for 24 h and were 

then selected with 2 μg/ml of puromycin for 3 days. 

Puromycin (1 μg/ml) was used to maintain stable cells. 

The targeting sequences of shPRMT5 and shTRIM21 are 

specified in Supplementary Table 1. The H125-TRIM21-

overexpressing stable cells were established and 

overexpression of TRIM21 was achieved by the addition 

of Dox as described previously [58]. 

 

SA-β-gal staining 

 

U2 OS cell senescence was detected by Senescence β-

Galactosidase Staining Kits (Beyotime, China) 

according to the manufacturer’s instructions. Briefly, 

U2 OS cells were seeded into six-well plates and 

cultured for 72 h. Cells were then fixed for 20 min at 

RT with 1 ml of fixative solution and were then washed 

twice with PBS. Next, cells were stained with a staining 

solution mixture containing X-gal overnight at 37°C. 

 

Western blot (WB) 

 

Briefly, U2 OS cells were collected and lysed using cell 

lysis buffer for WB and IP (P0013, Beyotime, Shanghai, 

China) supplemented with phenylmethylsulfonyl fluoride 

(PMSF, ST506, Beyotime, Shanghai, China) and protease 

inhibitor cocktail (Roche, Mannheim, Germany). Proteins 

were then electrophoresed using SDS-PAGE gels 

(Beyotime, Shanghai, China) and transferred to 

polyvinylidene difluoride membranes (PVDF, 0.22 μm, 

PALL-BSP0161, MD, USA). After blocking, membranes 

were incubated with primary antibodies and then with 

HRP-conjugated secondary antibodies at RT. The primary 

antibodies used were as follows: anti-β-actin (8H10D10, 

1:1000; CST, MA, USA), anti-PRMT5 (07-405, 1:1000; 

Millipore, Darmstadt, Germany), anti-p21 (12D1, 1:1000; 

CST, MA, USA), anti-PCNA (D3H8P, 1:1000; CST, 

MA, USA), anti-p16 (92803S, 1:1000; CST, MA, USA), 

anti-γ-H2A.X (20E3, 1:1000; CST, MA, USA), anti-p53 

(9282, 1:1000; CST, MA, USA), anti-TXNIP (D5F3E, 

1:1000; CST, MA, USA), anti-TRIM21 (D1O1D, 1:1000; 

CST, MA, USA), anti-Lamin B1 (D9V6H, 1:1000; CST, 

MA, USA), and anti-RAD51 (PC130, 1:1000; Merck, 

Darmstadt, Germany). Secondary HRP-conjugated 

antibodies (1:1000) were purchased from CST (MA, 

USA). Immunoreactive bands were visualized using 

Clarity Western ECL Substrate (Bio-Rad, Hercules, CA, 

USA). 

 

Preparation of nuclear and cytoplasmic protein 

extracts  

 

Cells were plated at a density of 4×105 cells/per dish in 

6 cm dishes and incubated for 72 h. For the preparation 

of nuclear and cytoplasmic protein extracts, NE-PER 

Nuclear and Cytoplasmic Extraction Reagents (#78833, 

ThermoFisher Scientific, MA, USA) were used 

according to the manufacturer’s instructions. Western 

blot was used to analyze the subcellular localization of 

p21 and TXNIP.  

 

Plasmid construction 

 

The coding regions of HA-VC155-TRIM21, TRIM21, 

and mTRIM21 were amplified from cDNA of OS cells by 

PCR with Phusion High-Fidelity DNA Polymerase (NEB, 

MA, USA). The amplification primers used are specified 

in Supplementary Table 2. The PCR products were then 

subcloned in-frame into HA-VC155N-Linker-MCS (HA-

VC155-TRIM21) or HA-CMV (TRIM21 and mTRIM21) 

vectors using two enzymatic sites, EcoRI and KpnI; the 

plasmids were verified by sequencing and expression 

analysis. 

 

DNA damage (comet) assay  

 

A DNA Damage Detection Kit was purchased from 

KeyGEN BioTECH (KGA240-50), and the experiments 

were performed according to the manufacturer’s 

instructions. Cells were harvested and suspended in PBS, 

mixed with agarose and placed on slides at 4°C for 30 

min. Slides were immersed in cold lysis buffer and then 

incubated with alkaline (300 mM NaOH and 1 mM 

EDTA, pH = 12.3) for 40 min. After electrophoresis, 

slides were washed using 0.4 mM Tris-HCl buffer (pH = 

7.5) and stained with propidium iodide (PI). DNA damage 

was then detected using fluorescence microscopy at an 

excitation wavelength of 515~560 nm. The OTM was 

analyzed by Open Comet software [59]. 

 

Immunofluorescence 

 

U2 OS cells were cultured on glass coverslips one day 

before treatment with DMF or CDDP (20 μM) for 3 h, 

and the medium was then replaced with fresh complete 

medium for 12 h or 24 h to provide the appropriate 

conditions for DNA repair. Sides with cells were fixed 

using 4% paraformaldehyde and permeabilized with 

0.2% Triton X-100. After blocking, cells were 

incubated with primary antibodies (1:200) against γ-

H2A.X, 53BP1, RAD51, PRMT5, and TRIM21 for 1 h, 

followed by incubation with Alexa Fluor 555-labeled 

anti-rabbit IgG (4413S, Cell Signaling Technology), 

4’,6-diamidino-2-phenylindole (DAPI) and phalloidin-

Alexa Fluor 573 (Life Technologies) overnight. Images 

were then acquired using a laser scanning confocal 

microscope (ZEISS LSM 700, Germany). 

 

RNA interference 

 

siRNAs targeting different sequences of PRMT5 and 

TXNIP were used for knockdown experiments 
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(GenePharma, Shanghai, China). Cells were cultured at a 

density of 2 × 105 cells/well in a 6-well plate (Costar 

3516, Corning, NY, USA) overnight. siRNAs targeting 

PRMT5 and TXNIP were transfected into cells using 

Lipofectamine 2000 (Invitrogen, CA, USA) for 4 h. Cells 

were then cultured in fresh complete medium for 3 days. 

The targeting sequences of the above siRNAs are 

specified in the supplementary information 

(Supplementary Table 3). 

 

BiFC assay 

 

BiFC was performed to analyze the interaction between 

PRMT5 and TRIM21 in U2 OS cells, as previously 

described [38, 39]. Briefly, U2 OS cells were cultured 

on coverslips overnight, followed by cotransfection 

with plasmids encoding Myc-VN155-PRMT5 and HA-

VC155-TRIM21, along with FLAG-Cerulean, for 48 h. 

Cells were fixed with 4% paraformaldehyde and stained 

with DAPI at RT for 10 min. Fluorescence images were 

acquired using a laser scanning confocal microscope 

(ZEISS LSM 700, Germany). 

 

Co-immunoprecipitation (Co-IP) 

 

Co-IP assays were performed to explore the endogenous 

interaction between PRMT5 and TRIM21 in U2 OS 

cells. Briefly, cells were incubated in lysis buffer 

(P0013, Beyotime, Shanghai, China) supplemented with 

NaF, PMSF, Na3VO4 and protease inhibitors. After 

incubation on ice for 30 min, 40 μl of 50% protein A 

agarose bead slurry (CST, MA, USA) was used to 

preclear cell extracts for 30 min at 4°C, followed by 

incubation with 5 μg of either IgG (CST, MA, USA) or 

antibody against PRMT5 overnight at 4°C. Immune 

complexes were then incubated with 40 μl of 25% 

protein A-Sepharose slurry for 2 h. Immunoprecipitates 

were subjected to WB after being washed five times 

with lysis buffer. Notably, IPKine HRP AffiniPure 

Mouse Anti-Rabbit IgG Light Chain (A25022, Abbkine, 

Wuhan, China) was used as the secondary HRP-

conjugated antibody to eliminate interference from 

heavy chain fragments, which have a similar molecular 

weight as TRIM21. 

 

Reverse transcription and real-time PCR 

 

Reverse transcription and real-time PCR were 

performed as described in our previous studies [56]. A 

TRIzol Plus RNA Purification Kit (Life Technologies) 

was used to isolate total RNA from U2 OS cells. 

Purified RNA was then reverse transcribed to cDNA 

using a High Capacity cDNA Reverse Transcription Kit 

(Invitrogen, CA, USA) according to the manufacturer’s 

instructions. For real-time PCR, a CFX96 Touch™ 

Real-Time PCR Detection System (785BR15759, Bio-

Rad, CA, USA) was used with Fast SYBR GREEN 

Master Mix (Applied Biosystems). Gene expression 

was reported as the relative fold change (2−ΔΔCT) and 

was normalized to control gene expression. Primers 

used for real-time PCR are specified in the 

supplementary information (Supplementary Table 4). 

The experiments were repeated at least three times, and 

the results are expressed as the means ± standard 

deviations (SDs). 

 

Statistical analysis 

 

All experiments were performed at least three times, 

and the data are expressed as the means ± SDs. 

Statistical analysis was performed using GraphPad 

Prism 6 software (GraphPad Software, San Diego, 

CA, USA). Comparisons between two groups were 

performed by using Student's t-test. Values of p> 

0.05 were considered no significant (n.s.); p< 0.05 

was considered statistically significant (*). 

 

Abbreviations 
 

OS: osteosarcoma; CDDP: cisplatin; DNMT1: DNA 

methyltransferase 1; EZH2: enhancer of zeste homolog 2; 

NSD: nuclear receptor binding SET domain containing; 

PRMT5: protein arginine methyltransferase 5; PKC: the 

protein kinase C; NF-Y: nuclear transcription factor Y; 

CHIP: carboxyl terminus of heat shock cognate 70-

interacting protein; DDR: DNA damage response; Fen1: 

flap structure-specific endonuclease 1; RUVBL1: RuvB-

like AAA ATPase 1; SA-β-gal: senescence-associated β-

galactosidase; SASP: senescence-associated secretory 

phenotypes; TXNIP: thioredoxin-interacting protein; 

TMAs: tissue microarrays; IHC: immunohistochemistry; 

OTM: olive tail moment; EdU: 5-Ethynyl-2'-

deoxyuridine; DSBs: double-strand breaks; SC: scramble 

control; BiFC: bimolecular fluorescence 

complementation; co-IP: coimmunoprecipitation; Dox: 

doxycycline; DMF: dimethylformamide; PBS: phosphate-

buffered saline; PBST: phosphate-buffered saline 

containing 0.1% Tween 20; RT: room temperature; SDs: 

standard deviations; PMSF: phenylmethylsulfonyl 

fluoride; PVDF: polyvinylidene difluoride membranes; 

PI: propidium iodide; DAPI: 4’,6-diamidino-2-

phenylindole; n.s: no significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Methods 
 

Analysis of apoptosis by flow cytometry 

 

U2 OS cells were plated at a density of 4×105 cells/per 

dish in 6 cm dishes before transfected with siCon 

(siControl) or siPRMT5 for 3 days. Cells were then 

harvested using trypsinization. For the preparation of 

flow cytometry, an Annexin V-APC/7-amino-

actinomycin D Apoptosis Detection Kit (KeyGEN 

Biotechnology, Nanjing, China) was used according to 

the manufacturer’s instructions. C6 flow cytometry was 

used to analyze the apoptotic cells.  

 

EdU (5-Ethynyl-2'-deoxyuridine) incorporation 

assay 

 

Cells were plated at a density of 5×104 cells in 12-well 

plate and incubated for 72 h. The medium was then 

replaced with solution of EdU reagent (1:1000) and 

incubated for another 2 hours. 4 % paraformaldehyde 

was used to fix the cells, followed by Apollo staining 

and DNA staining according to the manufacturer’s 

protocol. The images were obtained by fluorescence 

microscopy. 
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Supplementary Figures 
 

 

Supplementary Figure 1. PRMT5 expression is positively correlated with the expression of Ki67 in OS tissues. (A) 11 OS fresh 

sections were used for IHC to determine the expression of PRMT5 and Ki67. Scale bar = 30 μm (B) The expression score of PRMT5 and Ki67 in 
A was analyzed. The correlation of PRMT5 and Ki67 was calculated using Spearman rank correlation coefficient. 
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Supplementary Figure 2. Knockdown of PRMT5 causes little cell apoptosis and elevates p21 expression. (A and B) U2 OS cells 

were transfected with siCon (siControl) or siPRMT5 for 3 days, then the apoptotic cells were determined by flow cytometry and analyzed 
using Flowjo software. *, p< 0.05. (C) U2 OS cells were treated with different concentrations of EPZ015666 (S7748, Selleck, TX, USA) for 24 h, 
then the apoptotic cells were determined by flow cytometry and analyzed using Flowjo software. *, p< 0.05. (D) Two independent shRNAs 
targeting PRMT5 (shP5#1 and shP5#3) were applied to knock down PRMT5 expression in Saos-2 cells, and senescent cells were assessed 
using an SA-β-gal staining kit. Scale bar = 10 μm. (E) Two independent shRNAs targeting PRMT5 (shP5#1 and shP5#3) were applied to knock 
down PRMT5 expression in U2 OS cells, the percentage of EdU-incorporated cells was analyzed. **, p< 0.01; ***, p< 0.001. (F) The protein 
expression of p-mTOR and p-p70 S6K with or without PRMT5 depletion in U2 OS cells was determined by WB. (G) The relative expressions of 
SASP genes were analyzed by quantitative real-time PCR with or without PRMT5 knockdown in U2 OS cells, and the results were obtained 
from three independent experiments. (H) The mRNA expression of p21 with or without PRMT5 depletion was determined by quantitative 
real-time PCR. (I) The antibody against p21 was used for immunofluorescence staining, and the subcellular localization of p21 in U2 OS cells 
with or without PRMT5 depletion was captured under confocal microscope. Scale bar = 10 μm. (J) Plasmids encoding HA-PRMT5 were 
transfected into the SC or shP5#3 U2 OS cells, and senescent cells were visualized using the SA-β-gal staining kit. Scale bar = 20 μm. (K) siRNA 
targeting p21 (sip21) was transfected into U2 OS cells with or without PRMT5 depletion for 3 days, the protein expression of p21 was 
determined by WB.  
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Supplementary Figure 3. The up-regulation of TXNIP by PRMT5 depletion correlated with DSBs. (A) The mRNA expression of 

TXNIP was determined by quantitative real-time PCR with or without PRMT5 knockdown in U2 OS cells. (B) Cytoplasmic and nuclear proteins 
were isolated, and the protein expression level of TXNIP with or without PRMT5 depletion was determined by WB. LAMIN B1 was used as an 
internal control of nucleus. RAD51 was used as positive control. (C) The subcellular localization of TXNIP was observed by 
immunofluorescence staining under confocal microscope. Scale bar = 10 μm. (D) Two independent siRNAs targeting TXNIP (siTXNIP#1 and 
siTXNIP#2) were transfected into SC or shP5#3 U2 OS cells for 3 days, and senescent cells were visualized using an SA-β-gal staining kit. Scale 
bar = 10 μm (E) siRNAs targeting TXNIP were transfected into the SC and shP5#3 U2 OS cells, the DNA damage was visualized by comet assay. 
Scale bar = 50 μm. (F) siRNA targeting TXNIP was transfected into the SC, shP5#1, and shP5#3 U2 OS cells, the expressions of PRMT5, TXNIP 
and p21 were determined by WB.  
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Supplementary Tables 
 

Supplementary Table 1. Sequences of shRNAs for PRMT5 and TRIM21. 

Target Sequence 

PRMT5#1 GGGACTGGAATACGCTAATTG 

PRMT5#3 GGCTGACCTCCCATCTAATCA 

TRIM21#1 CAGCACGCTTGACAATGAT 

TRIM21#2 GACTTCACCTGTTCTGTGA 

 

Supplementary Table 2. List of the primers used for the plasmids construction. 

Target gene Foward Reverse 

HA-TRIM21 CCGAATTCTCATGGCTTCAGCAGCACGC CCGGTACCATAGTCAGTGGATCCTTGTGATCC 

HA-mTRIM21 
GTCGAATTCTCCAGCGCTTTCTGCTCAAGA

AT 
CCGGTACCATAGTCAGTGGATCCTTGTGATCC 

Myc-VC155-
TRIM21 

CCGAATTCTCATGGCTTCAGCAGCACGC CCGGTACCATAGTCAGTGGATCCTTGTGATCC 

HA-PRMT5 
CCGAATTCGGAGAAAGATGGCGGCGATG CCGCTCGAGCGGGCAGGGCTAGAGGCCAATG

GT 
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Supplementary Table 3. List of the siRNAs sequences targeting PRMT5, p21 and TXNIP. 

Target gene Forward Reverse 

PRMT5#1 CCGGACUUUGUGUGACUAUTT AUAGUCACACAAAGUCCGGTT 

PRMT5#2 CAGCAGGCCAUCUAUAAAUTT AUUUAUAGAUGGCCUGCUGTT 

PRMT5#3 CCAGUUUGAGAUGCCUUAUTT AUAAGGCAUCUCAAACUGGTT 

PRMT5#4 GGUGAACACAGUACUACAUTT AUGUAGUACUGUGUUCACCTT 

p21#4 GGAACAAGGAGUCAGACAUTT AUGUCUGACUCCUUGUUCCTT 

TXNIP#1 GAGACCUGGAAACAAAUAUTT AUAUUUGUUUCCAGGUCUCTT 

TXNIP#2 GUCAGAGGCAAUCAUAUUATT UAAUAUGAUUGCCUCUGACTT 

 

Supplementary Table 4. List of the primers used for the real-time PCR. 

Target gene Foward Reverse 

CXCL-1 ACTCAAGAATGGGCGGAAAGC TCAGGAACAGCCACCAGTGAG 

CXCL-2 TCGCACAGCCGCTCGAAC GGGGGACTTCACCTTCACACTT 

CXCL-3 GTGTGAATGTAAGGTCCCCCG ATTTTCAGCTCTGGTAAGGGC 

IL-6 AGTGAGGAACAAGCCAGAGC AGCTGCGCAGAATGAGATG 

IL-8 CAGTTTTGCCAAGGAGTGCT GTTTTCCTTGGGGTCCAGAC 

TNF-a CCAGACCAAGGTCAACCTCC CAGACTCGGCAAAGTCGAG 

ICAM-1 CGACTGGACGAGAGGGATTG GGAGAGCACATTCACGGTC 

CCL2 TCTCAAACTGAAGCTCGCACT GGGAATGAAGGTGGCTGCTA 

p21 AGGGGACAGCAGAGGAAGA GGCGTTTGGAGTGGTAGAAAT 

TXNIP GCCACACTTACCTTGCCAAT TGATCTTCTGAACCCGAAGG 

TRIM21 CCAATCCGTGGCTGATACTT GCACCCAGGACCATAGGATA 

GAPDH CCCTGTTGCTGTAGCCAAAT CTGACTTCAACAGCGACACC 

 


