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INTRODUCTION 
 

Soft tissue sarcomas (STS), which are derived from 

mesenchymal tissues [1], are highly clinically diverse 

and can originate from many sources, including muscle, 

adipose tissue, peripheral nerves, blood vessels, and 

connective tissue [2]. In the United States of America, 

STS accounts for 1% of cancer cases and 2% of cancer-

related deaths [3]. In 2019, 12,750 new STS cases were 

diagnosed and 5,270 patients died from the disease [4].  

 

Diagnosis and treatment of the multiple histological 

types of STS are challenging for physicians [5], and a 

multidisciplinary approach is often beneficial [6]. 

Because metastasis and disease recurrence are common  

 

in STS, patients with localized and early-stage STS 

could benefit from early diagnosis and radical resection 

[2, 7–10]. Currently, imaging and biopsy are the 

primary methods recommended for diagnosing STS. 

Magnetic resonance imaging is the most effective 

method for identifying STS originating in the 

extremities, pelvis, and trunk, while standard radio-

graphy and computed tomography are typically used to 

detect STS in other areas [9]. In the era of precision 

medicine, identification of biomarkers for and 

molecular characterization of STS will likely play an 

increasingly prominent role in diagnosis, treatment, and 

prognosis prediction. An integrated genomic 

characterization analysis of 206 adult STS patients 

conducted by The Cancer Genome Atlas (TCGA) 
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ABSTRACT 
 

In this study, The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify 
potential biomarkers of soft tissue sarcoma (STS) and construct a prognostic model. The model was used to 
calculate risk scores based on the expression of five key genes, among which MYBL2 and FBN2 were 
upregulated and TSPAN7, GCSH, and DDX39B were downregulated in STS patients. We also examined gene 
signatures associated with the key genes and evaluated the model’s clinical utility. The key genes were found to 
be involved in the cell cycle, DNA replication, and various cancer pathways, and gene alterations were 
associated with a poor prognosis. According to the prognostic model, risk scores negatively correlated with 
infiltration of six types of immune cells. Furthermore, age, margin status, presence of metastasis, and risk score 
were independent prognostic factors for STS patients. A nomogram that incorporated the risk score and other 
independent prognostic factors accurately predicted survival in STS patients. These findings may help to 
improve prognostic prediction and aid in the identification of effective treatments for STS patients. 
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Research Network has been crucial for improving 

treatment of STS [11]. Nevertheless, identification of 

additional specific biomarkers would further improve 

STS treatments. 

 

The TCGA database contains genomic and clinical data 

from >20,000 primary cancer and matched normal 

samples representing 33 types of cancer [12]. In 

addition, the Genotype-Tissue Expression (GTEx) 

database contains openly available clinical data, 

including gene expression, quantitative trait locus, and 

histology images, from 1,000 healthy individuals [13, 

14]. In this study, we conducted an integrated analysis 

of gene expression profiles and clinical data from these 

databases to identify common gene signatures 

associated with the development, pathological 

mechanisms, and prognosis of STS. In addition, we 

established a prognostic model and nomogram for STS 

based on clinical data obtained from the TCGA 

database. 

 

RESULTS 
 

Samples and clinical data 
 

TCGA Sarcoma gene expression profiles and clinical 

data were downloaded from the UCSC Xena Hub 

datasets. Following data preprocessing, gene expression 

profiles from 263 STS samples and two matched 

controls and survival information and other clinical data 

from 256 patients were included in subsequent analysis. 

The 263 STS samples included 106 (40%) leiomyo-

sarcomas, 58 (22%) dedifferentiated liposarcomas, 52 

(18%) undifferentiated pleomorphic sarcomas, 25 

(10%) myxofibrosarcomas, 10 (4%) malignant 

peripheral nerve sheath tumors, 10 (4%) synovial 

sarcomas, and two (0.8%) desmoid tumors. Patients 

ranged from 20 to 89 years in age; 54% were female 

and 46% were male. The matched controls obtained 

from the GTEx database included 396 muscle and 515 

fat samples. 

 

Identification and functional annotation of primary 

differentially expressed genes (DEGs) 
 

DEGs were obtained from the three groups. A total of 

2,290 and 1,301 genes were identified as DEGs in the 

muscle and fat control groups (|log2 FC|>2, p<0.05), 

respectively. 775 DEGs were identified in the matched 

controls group (|log2 FC| >1, p<0.05). Heatmaps of 

DEGs from the three groups are displayed in 

Supplementary Figure 1A–1C. 121 DEGs common to 

all three groups were identified as primary DEGs and 

examined in subsequent analyses. Functional anno-

tations revealed that primary DEGs were mainly 

involved in mitotic nuclear division, sister chromatid 

segregation, chromosome segregation, nuclear division, 

mitotic sister chromatid segregation, and nuclear 

chromosome segregation based on the top six terms 

identified in the GO analysis (p<0.05; Figure 1A, 

Supplementary Figure 2A, 2B). KEGG analysis showed 

that primary DEGs were associated with cell cycle, 

DNA replication, cellular senescence, oocyte meiosis, 

progesterone-mediated oocyte maturation, and the p53 

signaling pathway based on the top six terms (p<0.05; 

Figure 1B, Supplementary Figure 2C, 2D). The results 

of these functional annotation suggest that the 121 

primary DEGs are associated with the formation and 

development of tumors. 

 

Identification of survival-related DEGs and 

establishment of a prognostic model 
 

A total of 256 patients were randomly assigned to the 

training (128 patients) and test (128 patients) groups. A 

total of 44 DEGs were selected via univariate Cox 

regression analysis (p<0.05). Following Lasso 

regression analysis, seven DEGs were selected for 

multivariate Cox regression analysis (optimal 

log(Lambda): 7; Figure 2A, 2B). Finally, five key genes 

highly associated with survival were used to establish 

the prognostic model: risk score = 

−0.201×exp(TSPAN7) + 0.284×exp(MYBL2) + 

0.941×exp(GCSH) + 0.159×exp(FBN2) + 

0.417×exp(DDX39B) (Table 1). Patients were separated 

into high- and low-risk groups based on this risk score; 

those in the high-risk group had lower survival rates 

(p=6.691e−05, Figure 3A). As shown in Figure 3D, 

these five survival-related DEGs performed 

satisfactorily in predicting prognosis of STS patients 

(area under the curve: 0.781). There were obvious 

differences in expression of the key genes between 

patients with lower and higher risk scores (Figure 3G). 

Moreover, those with higher risk scores had shorter 

survival times. Similar results were obtained for the test 

group, which validated the prognostic model (Figure 

3B, 3E, 3H). Finally, we confirmed the value of this 

prognostic model by testing it in the overall patient 

group, which included all patients in the study (Figure 

3C, 3F, 3I). 

 

Expression levels of the five key DEGs in STS 

patients 
 

Among the five key genes, expression of MYBL2 and 

FBN2 was increased, and expression of TSPAN7, 

GCSH, and DDX39B was decreased, in STS patients 

(p<0.001; Supplementary Figure 3A and 3B). 

Expression levels of all of these key genes except 

DDX39B, which was not indexed in the external dataset 

(GSE21122), were validated in Supplementary Figure 

3C. The five key genes effectively discriminated 
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between STS patients and controls (Supplementary Figure 

4). As shown in Supplementary Figure 5A and 5B, the 

five key genes could also distinguish between low- and 

high-risk patients and healthy individuals, further 

validating the accuracy of the prognostic model 

(p<0.001). Moreover, there were significant differences in 

expression of the five key genes between all histological 

types and controls (Supplementary Figure 6A and 6B). 

This result was also validated using the GSE21122 

datasets (Supplementary Figure 6C), indicating these five 

key genes were suitable for predicting prognosis in all 

histological types included in this study. 

 

 
 

Figure 1. Functional annotation of primary differentially expressed genes (DEGs). (A) Gene Ontology (GO) functional annotation 
and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments for DEGs. 

 

 
 

Figure 2. Feature selection using the Lasso regression model. (A) Lasso regression analysis coefficients. (B) Selection of tuning 
parameters in the Lasso regression analysis based on 1,000 cross-validations. 
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Table 1. Multivariate Cox regression analysis of key genes. 

Genes 
Overall survival 

coef HR 95% CI p value 

TSPAN7 -0.201 0.818 0.652 1.026 0.082 

MYBL2 0.284 1.328 1.057 1.669 0.015 

GCSH 0.941 2.562 1.388 4.728 0.003 

FBN2 0.159 1.172 1.006 1.366 0.041 

DDX39B 0.417 1.518 1.071 2.150 0.019 

Note: coef: coefficient; HR: hazard ratio; CI: confidence interval. 
 

 
 

Figure 3. Assessment of the prognostic model. Survival analyses for the training (A), test (B), and overall (C) datasets. Receiver 
operating curves (ROC) of the prognostic model in the training (D), test (E), and overall (F) datasets. Differences in risk score, survival time, 
and gene expression between the high- and low-risk groups in the training (G), test (H), and overall (I) datasets.  
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Alterations in key genes in STS 
 

Alterations of the key genes were explored using data 

obtained from the cBioPortal database. Of the 265 

samples included, 73 (28%) had alterations in the key 

genes (Figures 4A, 4B); the network of key genes and 

most frequently altered neighbor genes is displayed in 

Figure 4C. Furthermore, patients with alterations in the 

key genes had shorter OS (Figure 4D). 

Relationships between immune infiltration, risk 

scores, and gene expression  

 

CD4+ T cell (correlation (cor)= -0.233, p=1.795e-04), 

CD8+ T cell (cor= -0.128, p=0.042), B cell (cor= -

0.124, p=0.048), dendritic cell (cor= -0.217, p=4.923e-

04), macrophage (cor= -0.250, p=5.745e-05), and 

neutrophil (cor= -0.218, p=4.535e-04) infiltration were 

negatively correlated with STS patient risk scores 

 

 
 

Figure 4. Alterations in expression of the five key genes. (A) 73 of 265 samples (28%) had alterations of the five key genes. (B) 
Frequencies of different alterations. (C) Network of key genes and most frequently altered neighbor genes. (D) Survival analysis for patients 
with and without alterations in the five key genes. 
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(Figure 5A). Similar negative correlations were 

observed between immune cells and FBN2 and 

DDX39B expression specifically (Figure 5D, 5E). 

TSPAN7 expression was negatively correlated with 

CD4+ T cell infiltration, but positively correlated with 

B-cell infiltration (Figure 5B). MYBL2 expression 

was positively correlated with CD4+ T cell 

infiltration, but negatively correlated with B-cell 

infiltration (Figure 5C). Moreover, low-risk patients 

had higher expression of immune checkpoint 

molecules PDCD1 and CD274 (Supplementary Figure 

7). No differences in CTLA4 and LAG3 expression 

were observed between high- and low-risk patients 

(Supplementary Figure 7). 

GSEA analysis for the five key genes 
 

The top pathways for each key gene are illustrated in 

Supplementary Figure 8A–8E; overall, they were highly 

associated with cell cycle and cancer pathways. These 

results further validate the crucial roles these genes play 

in STS and tumors in general. 

 

Identification of prognostic factors and nomogram 

construction 
 

Univariate and multivariate Cox analyses indicated that 

age, margin status, presence of metastasis, and risk 

score had significant impacts on prognosis (Table 2). In 

 

 
 

Figure 5. Scatter diagram of the relationship between immune cell infiltration, risk scores, and key gene expression. (A) 
Relationships between immune cell infiltration and risk scores. (B) Relationships between immune cell infiltration and expression of the 
TSPAN7 (B), MYBL2 (C), FBN2 (D), and DDX39 (E) genes. 
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Table 2. Univariate and multivariate analysis of clinical factor and risk score. 

Variables 
Univariate analysis  Multivariate analysis 

HR 95% CI P value  HR 95% CI P value 

Age 1.023 1.007 1.040 0.004  1.034 1.015 1.053 2.865E-04 

Gender 0.853 0.571 1.275 0.438  NA NA NA NA 

Race 1.257 0.591 2.671 0.553  NA NA NA NA 

Sample weight 1.000 0.999 1.000 0.295  NA NA NA NA 

Total necrosis percent 1.208 0.953 1.532 0.119  NA NA NA NA 

Margin status 1.899 1.175 3.070 0.009  2.155 1.262 3.679 0.005 

Metastatic diagnosis 2.939 1.788 4.831 2.123E-05  3.937 2.252 6.884 1.533E-06 

Radiation therapy 0.604 0.280 1.301 0.198  NA NA NA NA 

Histological type 0.972 0.865 1.093 0.636  NA NA NA NA 

Risk score 1.908 1.506 2.417 8.518E-08  2.355 1.710 3.243 1.554E-07 

Note: HR: hazard ratio; CI: confidence interval; NA: not available.  
 

addition to these four factors, sex and histological type 

were used to construct the nomogram for STS patients 

displayed in Figure 6. Internal validation showed that 

the predictive accuracy for STS as calculated using the 

C-index was 0.782. Actual survival rates and 

predictions obtained using the nomogram were largely 

concordant (Supplementary Figure 9A–9C). 

 

Identification of small-molecule drugs 
 

The 107 upregulated and 14 downregulated DEGs were 

mapped into the Connectivity Map database, which was 

then used to identify the top 10 small-molecule drugs 

most likely to be effective based on p-values < 0.05 

(Table 3). Camptothecin, daunorubicin, 0175029-0000, 

 

 
 

Figure 6. Nomogram for STS. STS: soft tissue sarcoma; LMS: leiomyosarcomas; UPS: undifferentiated pleomorphic sarcoma; MF: 
myxofibrosarcomas; DL: dedifferentiated liposarcomas; SS: synovial sarcomas; MP: malignant peripheral nerve sheath tumors. 
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Table 3. Potential small-molecule drugs identified using the Connectivity Map database. 

Rank Cmap name Mean n Enrichment P Specificity Percent non-null 

1 camptothecin -0.727 3 -0.985 0 0.0568 100 

2 daunorubicin -0.661 4 -0.952 0 0.0088 100 

3 0175029-0000 -0.753 6 -0.952 0 0 100 

4 resveratrol -0.726 9 -0.836 0 0 100 

5 trichostatin A -0.419 182 -0.394 0 0.3663 84 

6 GW-8510 -0.663 4 -0.927 0.00002 0.0916 100 

7 colistin 0.567 4 0.873 0.00036 0 100 

8 dipyridamole -0.506 6 -0.756 0.0004 0.0123 100 

9 fludrocortisone 0.269 8 0.669 0.00048 0.0177 50 

10 apigenin -0.619 4 -0.873 0.00056 0.0163 100 

Note: camp: Connectivity Map. 
 

resveratrol, and trichostatin A were the top molecules 

likely to act on the gene targets obtained in our 

comparison of tumor and normal tissues; these drugs 

might therefore be particularly useful for treating STS. 

 

DISCUSSION 
 

Because it encompasses a large and heterogenous group 

of malignant tumors with diverse origins, STS is 

difficult to diagnosis and treat effectively. In addition to 

conventional diagnosis and treatment, identification of 

novel specific biomarkers might improve outcomes for 

both early and advanced stage STS patients [15]. In this 

study, we attempted to identify potential biomarkers for 

risk stratification and prognosis prediction in STS 

patients, as well as small-molecule drugs that might aid 

in treatment by targeting these biomarkers. 

 

The TCGA and the GTEx databases were utilized to 

identify differentially expressed genes (DEGs) that 

might serve as potential biomarkers for STS; univariate 

Cox regression analysis, Lasso regression analysis, and 

multivariate Cox regression analysis were then used to 

select key genes for inclusion in the prognostic model. 

The DEGs of interest were mainly enriched in mitotic 

nuclear division, sister chromatid segregation, 

chromosome segregation, and nuclear division, which 

are highly associated with tumorigenesis. They were 

also involved in cell cycle, DNA replication, and the 

p53 signaling pathway. The p53 signaling pathway is a 

well-established pathway associated with various types 

of cancer [16], including sarcomas [17]. A prognostic 

model was used to generate risk scores based on 

expression of the five key genes, among which MYBL2 

and FBN2 were upregulated, while TSPAN7, GCSH, 

and DDX39B were downregulated, in STS; validation 

studies confirmed that this risk score was highly 

associated with survival. The model was effective in 

distinguishing between high- and low-risk STS patients 

and between patients and healthy individuals, regardless 

of the histological type.  

 

Changes in expression of the five key genes identified 

here have been reported in different types of cancer, 

including lung [18], renal [19], breast [20], colorectal 

[21], prostate [22], and multiple myeloma [23]. In an 

analysis of gene expression profiles from 13 primary 

and 15 metastatic uterine leiomyosarcoma cases, 

Davidson et al. [24] reported that TSPAN7 was 

overexpressed in primary uterine leiomyosarcoma; 

however, in our study, TSPAN7 was downregulated in 

all histological types of STS. This inconsistency might 

be due to the small sample size in the Davidson study. 

Consistent with our results, increased expression of 

TSPAN7, which can inhibit the development of 

multiple myeloma in vivo [23], was associated with 

longer survival time in clear-cell renal cell carcinoma 

[25]. FBN2 has been identified as a diagnostic 

biomarker in leiomyosarcoma and rhabdomyosarcoma 

[26, 27]. Additionally, aberrant methylation of FBN2 

has been observed in breast cancer, non-small cell lung 

cancer, and esophageal squamous cell carcinoma  

[28–30]; FBN2 methylation might negatively impact 

STS prognosis as well. To our knowledge, the role of 

GCSH has not been examined in STS, but only in breast 

cancer and papillary thyroid cancer [20, 31]. MYBL2 is 

associated with poor prognosis in numerous cancers and 

plays a vital role in the regulation of cell proliferation, 

cell survival, and differentiation [32]. For example, 

MYBL2 was recently found to promote progression of 

Ewing sarcoma [33]. Here, overexpression of MYBL2 

was associated with poor outcomes in STS patients. 

DDX39B, a DExD RNA helicase, is involved in pre-

mRNA splicing and nuclear export of mRNAs [34]. 

Awasthi et al. [35] found that DDX39B could promote 

global translation and cell proliferation through 

upregulation of pre-ribosomal RNA, ultimately leading 

to oncogenesis. In addition, DDX39B is a crucial 
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contributor to Kaposi's sarcoma-associated herpesvirus 

intronless mRNA nuclear export and virus replication 

[36]. Because all histological types of STS were 

characterized by changes in the expression of these five 

key genes, they might be particularly useful as new 

prognostic biomarkers for STS. However, the specific 

roles of these genes in STS need to be examined in 

future studies.  

 

In this study, we performed multilevel analyses to 

further explore associations between key genes in STS 

and immune infiltration, gene alterations, and GSEA 

pathways. Negative correlations between infiltration of 

six types of immune cells and risk scores indicated that 

increased immune cell infiltration contributed to better 

survival in STS, which is consistent with previous 

studies [11, 37]. The TCGA Research Network [11] 

reported that higher NK, T, and dendritic cell levels 

were associated with better outcomes. In contrast to our 

findings, Koirala et al. [38] found that increased 

dendritic cell (DC) and macrophage levels negatively 

impacted survival in human osteosarcoma. The absence 

of lymphatic vessels, and the resulting inhibition of 

antigen-presenting capacity, in human bone tissue might 

explain these detrimental effects of DCs [39]; this might 

also highlight important differences in immune 

infiltration between STS types containing lymphatic 

vessels and osteosarcoma. Conflicting results have been 

obtained regarding the association between macrophage 

infiltration and osteosarcoma prognosis [40], and 

additional studies are needed on this topic. In this study, 

we found that expression of two of the key genes, 

DDX39B and FBN2, was negatively correlated with 

infiltration of most immune cell types. MYBL2 

expression was positively correlated with CD4+ T-cell 

infiltration, but negatively correlated with B-cell 

infiltration. TSPAN7 expression was negatively 

correlated with CD4+ T-cell infiltration and positively 

with B-cell infiltration. Finally, GCSH expression was 

not correlated with infiltration for any of the immune 

cell types examined. We also demonstrated that 

expression of PDCD1 and CD274 was higher in low-

risk patients, suggesting that our prognostic model 

could potentially identify patients who would benefit 

from treatment with immune checkpoint inhibitors. Our 

use of five key genes together in a single model 

improved its prognostic value compared to the 

individual genes, based on the comparisons of risk 

scores with the individual gene expression in the 

correlations with immune cell infiltration. In addition, 

survival times were substantially reduced in patients 

with alterations in these key genes, indicating that they 

possess accurate prognostic power. Finally, a GSEA 

analysis revealed that the key genes promoted cell 

proliferation as well as cancer development and 

progression via different cell cycle, DNA replication, 

mismatch repair, and cancer-associated pathways (e.g., 

phosphatidylinositol signaling system [41], basal cell 

carcinoma, transforming growth factor beta signaling 

pathway [42], WNT signaling pathway [43], and the 

p53 signaling pathway). These signaling pathways have 

also been reported as important regulators in 

osteosarcoma and STS [43, 44]. Finally, these key 

genes might also affect development and progression of 

STS through interactions with gene fusion products and 

miRNAs, which not only play important regulatory 

roles but can also act as therapeutic targets in sarcoma 

[45]. For example, EWSR1 fusion is common in Ewing 

sarcoma [46], and EWSR1-FLI1 regulates the 

expression of MYBL2 [33]. Additional studies of such 

mechanisms might also help improve diagnosis and 

treatment of STS.  

 

Our prognostic model based on five key genes was able to 

stratify STS patients into clinically meaningful high- and 

low-risk groups which differed significantly in terms of 

survival. The accuracy of the prognostic model was 

validated using the test group. In addition, univariate and 

multivariate Cox regression analyses of our model 

demonstrated that age, margin status, diagnosis of 

metastasis, and risk score were independent prognostic 

factors for STS. Prognostic predictions for STS patients 

are currently based on the presence of metastases as well 

as tumor grade, size, and depth [47, 48]. While previous 

studies have constructed nomograms for prognostic 

predictions in STS [49], gene expression is not typically 

included. In this study, we incorporated our risk score 

together with multiple clinical factors (e.g., age, sex, 

margin status, diagnosis of metastasis, histological type) 

to generate a prognostic nomogram with high predictive 

accuracy for STS patients.  

 

Finally, we identified small-molecule drugs that might 

improve STS treatment by targeting the key genes using 

the Camp database. One such drug, Camptothecin, is a 

topoisomerase inhibitor [50] that inhibited cell 

proliferation and showed anticancer activity in colon, 

lung, ovarian, breast, liver, pancreas, and stomach 

cancer [51] and in Ewing sarcoma [52]. Furthermore, 

combinations of immune checkpoint inhibitors and the 

small-molecule drugs might also help improve 

treatments for STS [53].  

 

This integrated analysis of multiple databases enhanced 

the robustness and reproducibility of our conclusions; the 

inclusion of information from the GTEx database was 

especially helpful in compensating for the paucity of 

control samples in the TCGA database. In addition, our 

inclusion of both gene expression and clinical data might 

render our results especially applicable to STS patients in 

the clinical setting. However, analysis of additional 

clinical data is necessary to confirm these results. 
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CONCLUSION 
 

This study demonstrated that five key genes (i.e., 

MYBL2, FBN2, DDX39B, TSPAN7, and GCSH) highly 

associated with prognosis, and immune infiltration, could 

promote STS via different signaling pathways. The 

prognostic model based on these five key genes 

demonstrated excellent performance in terms of risk 

stratification of patients and prediction of survival. 

Furthermore, the nomogram integrating multiple genes 

and clinical factors could provide specific predictions for 

the survival of individuals with STS. Based on the 

combination of gene and clinical data, this study may 

contribute to the management of STS. 

 

MATERIALS AND METHODS  
 

Data collection and preprocessing 
 

Gene expression profile and clinical data from the 

TCGA and GTEx databases were downloaded from the 

University Of California Santa Cruz (UCSC) Xena Hub 

datasets (https://xenabrowser.net/). Gene expression 

data were downloaded from TCGA Sarcoma, which 

were obtained using the Illumina HiSeq 2000 RNA 

Sequencing platform by the University of North 

Carolina (Chapel Hill, NC, USA) TCGA genome 

characterization center. Data were obtained for 265 

samples (263 samples with STS and two matched 

controls) and were log2(x+1) transformed. We also 

downloaded gene expression profiles for muscle and fat 

tissues, which were the two most common histological 

types among TCGA samples, from the GTEx database 

for use as additional matched controls. GTEx gene 

expression data were also log2(x+1) transformed to 

allow comparisons to TCGA data. Transformation of 

Ensembl identifiers and normalization of expression 

between the TCGA and GTEx datasets were also 

performed prior to subsequent differential analysis. 

GSE21122 gene expression profiles [54] for 149 STS 

samples and nine normal fat tissue samples were 

downloaded from the Gene Expression Omnibus 

database (https://www.ncbi.nlm.nih.gov/geo/) and used 

as the validation dataset. If a database did not include an 

STS category, sarcoma sample data was used as STS 

data; most databases include only STS and not bone 

tumors in the sarcoma category.   

 

Identification of differentially expressed genes (DEGs)  
 

The DEG analyses were performed using the “limma” 

package [55] in R statistical software, version 3.53. 

DEGs were divided among three groups: “tumors” vs. 

“muscle tissues” + “matched controls” from TCGA 

Sarcomas (hereinafter “muscle controls”), “tumors” vs. 

“fat tissues” + “matched controls” (hereinafter “fat 

controls”), and “tumors” vs. “matched controls”. DEGs 

were defined by |log2 FC|>2 and p<0.05 in the first two 

groups. Because the third group included only two 

matched controls, DEGs in that group were defined by 

|log2 FC|>1 and p<0.05 to increase the number of 

identified genes. Only DEGs that were identified in all 

three groups were included in subsequent analyses. 

 

Functional annotation of DEGs 

 

Gene Ontology (GO) functional annotation and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment were performed in R using the 

“clusterProfiler” package [56]. Adjusted p<0.05 was 

considered statistically significant in the GO and KEGG 

analyses. Bar plots, dot plots, and chord plots were 

constructed to visualize functional annotation results via 

the “GOplot” package [57] in R. 

 

Identification of survival-related DEGs and 

establishment of a prognostic model 
 

All available samples were randomly assigned to the 

training and test datasets. The training group was used to 

establish the prognostic model, which was then validated 

using the test group. First, the primary DEGs identified 

above were used in a univariate Cox regression analysis in 

the training dataset using the “survival” package in R. 

DEGs with p<0.05 in the univariate Cox regression 

analysis were then selected for least absolute shrinkage and 

selection operator (Lasso) regression analysis using the 

“glmnet” and “survival” packages [58]; Lasso regression 

analysis, which detects the optimal lambda value based on 

1,000 cross-validations, is particularly useful in high-

dimension datasets [59]. The DEGs of interest identified in 

the Lasso regression analysis were then subjected to 

multivariate Cox regression analysis. The prognostic 

model was constructed based on the following equation: 

i1
irisk score exp(G )

n

i



  ; where n is the number of 

genes identified for the multivariate Cox regression model; 

exp(Gi) is the expression value of gene i; and βi refers to 

the coefficient for gene i. The DEGs included in the 

prognostic model were regarded as key genes associated 

with survival. Patients were divided into “high-risk” and 

“low-risk” groups based on the median risk score obtained 

using this prognostic model. To confirm the results, the 

prognostic model was also used to analyze the test 

datasets. Finally, analyses of overall survival (OS) were 

performed to evaluate differences in OS between high- and 

low-risk patients in the training and test datasets. The 

receiver operating characteristic (ROC) curve was plotted 

using the “survivalROC” package to determine the 

specificity and sensitivity of the risk model. We also 

analyzed OS and plotted ROC curves when all samples 

included in the study were combined in a single dataset. 

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
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Expression of the key genes in STS 
 

Differences in expression of the key genes between the 

STS and normal groups and between the high-risk, low-

risk, and normal groups were compared using the 

“ggstatsplot” package (http://doi.org/10.5281/zenodo. 

2074621); ROC curves for the five key genes were 

plotted for each group. Data from the TCGA and GTEx 

databases and the GSE21122 dataset were then used to 

investigate differences in expression of the key genes 

between various histological types and matched 

controls. 

 

Alterations in the key genes in STS 
 

The cBio Cancer Genomics Portal database (cBioPortal 

database), (http://cbioportal.org) containing multi-

dimensional cancer genomics data sets from >5,000 

tumor samples enables multilevel analysis for a diverse 

set of tumors [60]. This database was used to investigate 

associations between alterations in the key genes and 

survival in STS patients.  

 

Immune infiltration analysis 
 

Immune infiltration analysis was performed using the 

Tumor Immune Estimation Resource (TIMER) 

database, which includes molecular characterizations of 

six tumor-infiltrating immune subsets in 32 types of 

cancer (https://cistrome.shinyapps.io/timer/) [61, 62]. A 

matrix of six immune cell types (CD4+ T cells, CD8+ T 

cells, B cells, dendritic cells, macrophages and 

neutrophils) from the TIMER database estimation 

module were downloaded and used to explore the 

relationship between immune cells and risk scores. We 

also investigated associations between the five key 

genes and immune cells in TISIDB, an integrated 

repository portal for tumor–immune system interactions 

[63], to understand the impact of gene expression on the 

immune infiltration. Accumulating evidence has 

demonstrated that patients’ responses to immune 

checkpoint inhibitors are associated with the expression 

level of immune checkpoint molecules and immune cell 

infiltration [38, 64, 65]. Differences in the common 

immune checkpoint molecules PD-L1(CD274), 

PD1(PDCD1), CTLA4, and LAG3 between high-risk 

and low-risk patients were examined to determine 

whether the five key genes might be associated with 

immune checkpoint inhibitor efficacy. A p<0.05 

denoted statistical significance.  

 

Gene Set Enrichment Analysis (GSEA) of the five 

key genes 
 

Gene expression profiles for the 263 STS patients from 

the TCGA database were utilized for GSEA using 

GSEA 3.0 software [66]. Patients were divided into the 

high- and low-expression groups based on the median 

of key gene expression. KEGG pathways for the key 

genes were determined based on the p<0.05 or a false 

discovery rate <0.05, and the top terms were visualized 

using R. 

 

Identification of the prognosis-related clinical 

factors 

 

Univariate and multivariate Cox regression analyses 

were performed to explore the impact of clinical factors 

on the prognostic model. Because clinical data were not 

available for all samples, the training and test datasets 

were combined and analyzes as a single dataset in 

subsequent analyses. The following factors were 

included in the univariate Cox regression analysis: age, 

sex, race, sample weight, percent of total necrosis, 

margin status, diagnosis of metastasis, radiation 

therapy, histological type, and risk score. Factors 

identified as significant in that analysis were used in 

multivariate Cox regression analyses to identify 

independent prognostic factors. These analyses were 

conducted using the “survival” package. 

 

Construction of the nomogram and internal 

validation 
 

We used R to plot the nomogram for OS in STS 

patients. The nomogram incorporated sex, histological 

type, and the independent prognostic factors identified 

in multivariate Cox regression analysis. Bootstrap 

resampling was used to internally validate the nomo-

gram based on concordance index (C-index) values, 

which were obtained through 1,000 resampling events, 

and calibration curves, which were plotted to evaluate 

concordance between actual and predicted survival rates 

[67]. 

 

Identification of small-molecule drugs 
 

The Connectivity Map database contains expression 

data from cultured human cells treated with bioactive 

small molecules. These data can be used to explore 

associations between small-molecule drugs and genes of 

interest identified in patients, to identify potential 

mechanisms of action for these drugs, and to promote 

novel drug design [68]. Small-molecule drugs that 

might be useful for the treatment of STS were identified 

by mapping the primary upregulated and downregulated 

DEGs into the database. 
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SUPPLEMENTARY MATERIALS 
 

 

 
 

Supplementary Figure 1. Heatmaps of DEGs. Heatmaps of DEGs from “tumors” vs. “muscle controls” (A), “tumors” vs. “fat controls” 
(B), and “tumors” vs. “matched controls” (C). 

 
 

 
 

Supplementary Figure 2. Functional annotation of primary differentially expressed genes (DEGs). The Gene Ontology (GO) 
functional annotation (A and B) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments (C and D) of DEGs. 
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Supplementary Figure 3. Differences in the expression of key genes between soft tissue sarcoma (STS) and normal groups. 
(A) Differences in the expression of key genes between STS and muscle controls. (B) Differences in the expression of key genes between STS 
and fat controls. (C) Differences in the expression of five key genes between STS and normal groups in the GSE21122 datasets. 

 
 

 
 

Supplementary Figure 4. Discrimination ability of key genes between STS and controls. (A) Discrimination ability of the five key 
genes between STS and muscle controls. (B) Discrimination ability of the five key genes between STS and fat controls. 
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Supplementary Figure 5. Differences in the expression of key genes among high-risk and low-risk patients, and healthy 
(control) individuals. (A) Differences in the expression of key genes among high-risk and low-risk patients, and healthy (muscle controls) 
individuals. (B) Differences in the expression of key genes among high-risk and low-risk patients, and healthy (fat controls) individuals. 

 
 

 
 

Supplementary Figure 6. Differences in the expression of key genes between all histological types and normal controls. (A) 
Differences in the expression of key genes between all histological types and muscle controls. (B) Differences in the expression of key genes 
between all histological types and fat controls. (C) Differences in the expression of key genes between all histological types and normal 
controls in the GSE21122 datasets. 
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Supplementary Figure 7. Differences in the common immune checkpoint molecules between high-risk and low-risk patients. 
 

 
 

Supplementary Figure 8. Gene Set Enrichment Analysis (GSEA) of the five key genes. GSEA for TSPAN7 (A), MYBL2 (B), GCSH (C), 
FBN2 (D), and DDX39B (E). 
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Supplementary Figure 9. Accordance between actual survival rates and prediction of the nomogram. 
 


