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INTRODUCTION 
 

Cardiac hypertrophy is an important pathological stage 

in the induction of chronic heart failure by pressure 

overload [1–5]. Initial cardiac hypertrophy is a 

compensatory process that is beneficial for maintaining 

myocardial contractility and enhancing cardiac function. 

However, persistent cardiac hypertrophy reduces 

myocardial compliance, which is insufficient to 

maintain the body's requirements for blood pumping. 

The heart function will gradually deteriorate and 

eventually develop into heart failure [6]. Prevention of 

ventricular remodeling can slow down the progression 

of  cardiac  insufficiency,  prolong  the  survival  time of  

 

patients, and improve their prognosis [7–10]. Therefore, 

studying the pathogenesis of cardiac hypertrophy has 

great significance for the treatment of heart failure. 

 

The poly ADP-ribose (PAR) polymerase (PARP) family 

is an important enzyme essential for DNA damage 

repair in eukaryotic cells [2]. PARP-1 is the first 

identified member of the PARP family, which is 

activated by DNA damage and has DNA repair 

capabilities. The basic structure of PARP-1 is highly 

conserved in eukaryotic cells, and its catalytic domain 

also exhibits high homology between different species 

[11, 12]. In addition to being activated by DNA 

damage, several types of post-translational modifica-

www.aging-us.com AGING 2020, Vol. 12, No. 5 

Research Paper 

SIRT3 inhibits cardiac hypertrophy by regulating PARP-1 activity 
 

Xiaojun Feng1,*, Yanan Wang2,*, Wenxu Chen2, Suowen Xu3, Lingli Li1, Yadi Geng1, Aizong Shen1,4, 
Hui Gao5, Lei Zhang1, Sheng Liu1 
 
1The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology 
of China, Hefei, Anhui, PR. China 
2Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, PR. 
China 
3Aab Cardiovascular Research Institute, University of Rochester, West Henrietta, NY 14586, USA 
4Anhui Provincial Cardiovascular Institute, Hefei, Anhui, PR. China 
5Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, PR. China 
*Equal contribution 
 
Correspondence to: Sheng Liu, Lei Zhang, Hui Gao; email: lslcclhl@163.com, 76zhanglei@163.com, gaohui9512@163.com  
Keywords: cardiac hypertrophy, SIRT3, PARP-1, acetylation, ribosylation 
Received: June 4, 2019 Accepted: January 24, 2020  Published: March 4, 2020 
 
Copyright: Feng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

Sirtuin 3 (SIRT3) is a type III histone deacetylase that inhibits cardiac hypertrophy. It is mainly localized in the 
mitochondria and is thus implicated in mitochondrial metabolism. Recent studies have shown that SIRT3 can 
also accumulate in the nuclear under stressed conditions, and participated in histone deacetylation of target 
proteins. Poly [ADP-ribose] polymerase 1 (PARP-1) functions as an important PARP isoform that was involved in 
cardiac hypertrophy. Our experiments showed that SIRT3 accumulated in the nuclear of cardiomyocytes 
treated with isoproterenol or SIRT3 overexpression. Moreover, overexpression of SIRT3 by adenovirus inhibited 
the expression of cardiac hypertrophic genes-ANF and BNP, as well as abrogating PARP-1 activation induced by 
isoproterenol or phenylephrine. In addition, co-immunoprecipitation experiments revealed that SIRT3 could 
interact with PARP-1, and overexpression of SIRT3 could decrease the acetylation level of PARP-1. Our results 
indicate that SIRT3 exerts protective effects against cardiac hypertrophy by reducing the level of acetylation 
and activity of PARP-1, thus providing novel mechanistic insights into SIRT3-mediated cardiprotective actions. 
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tions can also affect the activity of PARP-1. For 

example, protein kinase C (PKC) and DNA protein 

kinase (DNA-PK) can phosphorylate PARP-1, interfere 

with its DNA binding ability, and inhibit its activity [13, 

14]. However, JNK1 and ERK1/2 phosphorylate and 

activate PARP-1 [15, 16]. Acetylation can also affect 

the function of PARP-1. For example, histone acetyl-

transferase P300 can acetylate PARP-1, and acetylated 

PARP-1 can promote the transcriptional activity of 

nuclear factor kappa B (NF-κB) [17]. Previous studies 

have shown that SIRT1 deacetylates PARP-1 and 

inhibiting its activity in cardiomyocytes [18]. Our 

previous studies showed that PARP-1 activity was up-

regulated with increasing isoproterenol (ISO) stimu-

lation time and reached its peak at 24 h. Moreover, ISO 

stimulation significantly up-regulated the acetylation 

level of PARP-1 [19]. 

 

In recent years, PARP-1 has been extensively studied in 

cardiovascular diseases. In an animal model of 

pathological hypertrophy, PARP-1 activity was 

significantly up-regulated [12, 20]. PARP-1 inhibitor and 

PARP-1 knockdown can inhibit angiotensin II (AngII)-

induced cardiac hypertrophy [11]. In addition, studies 

have shown that treatment with PARP-1 inhibitor (L-

2286) can significantly reduce cardiac hypertrophy 

caused by isoproterenol (ISO) [21]. PARP-1 activation 

induces cardiac hypertrophy mainly by catalyzing the 

transfer of ADP-ribose from nicotinamide adenine 

dinucleotide (NAD+) to its target protein, consuming 

intracellular NAD+, impairing energy metabolism, and 

causing decreased activity of type III histone deacetylase 

(SIRTs). The decrease of SIRT3 and SIRT6 activity in 

the SIRT family can cause significant cardiac 

hypertrophy phenotype [22, 23]. In addition, PARP-1 can 

increase chromatin remodeling or directly promote the 

transcriptional activities of transcription factors (such as 

AP-1 and NF-κB) to upregulate the expression of 

intracellular adhesion molecule 1 (ICAM-1), and various 

cytokines and chemokines, which could contribute to the 

inflammatory mechanisms that promote cardiac 

hypertrophy [2, 12, 17]. 

 

The SIRTs family is a type III type histone deacetylase 

whose activity is dependent on NAD+ [24]. The SIRTs 

family has seven members: SIRT1~7, which all contain 

a conserved catalytic core region (consisting of 

approximately 275 amino acids) [25]. The subtypes of 

the SIRTs family are widely distributed in tissues, but 

there are large differences in their intracellular 

distribution [26]. SIRTs are important therapeutic 

targets in treating cardiovascular diseases, such as 

cardiac hypertrophy and atherosclerosis [27, 28]. 

Among them, SIRT1 and SIRT2 are distributed in both 

cytoplasm and nuclear, SIRT6 and SIRT7 are mainly 

located in the nuclear, while SIRT3, SIRT4 and SIRT5 

are mainly located in mitochondria. Although SIRT3 is 

thought to be present in mitochondria, the long 

fragment of SIRT3 (44 KDa) is able to accumulate in 

the nuclear under stress [29] (two types of human 

SIRT3 protein: 44 KDa and 28 KDa, respectively, while 

rats only have 28 KDa SIRT3 protein). 

 

SIRT3 decreases mitochondrial lysine acetylation levels 

[30], thereby promoting antioxidant effects and 

improving mitochondrial function [31, 32]. SIRT3 is 

involved in the development of many cardiovascular 

diseases, from cardiac hypertrophy to dilated cardio-

myopathy, heart failure, and atherosclerosis [33]. For 

example, overexpression of SIRT3 can deacetylate and 

activate superoxide dismutase 2 (SOD2) to reduce 

intracellular reactive oxygen species (ROS), which in 

turn improves atherosclerosis [34]. SIRT3 also 

deacetylates and activate Foxo3a to inhibit cardiac 

hypertrophy [23]. In addition, overexpression of SIRT3 

or exogenous administration of NAD+ can inhibit cardiac 

hypertrophy in mice [31]. However, no report is available 

as to whether SIRT3 can interact and deacetylate PARP-

1 and thereby ameliorating cardiac hypertrophy. 

 

Based on the fact that both SIRT3 and PARP-1 

consume NAD+ to exert their functions, we 

hypothesized that SIRT3 could inhibit cardiac hyper-

trophy by repressing PARP-1 activation in cardio-

myocytes. 

 

RESULTS  
 

Overexpression of SIRT3 inhibits ISO or PE-

induced cardiomyocyte hypertrophy 

 

In H9c2 cells, 10 μM ISO or 100 μM phenylephrine 

(PE) were used to treat cardiomyocytes for 24 h, using 

mRNA expressions of cardiac hypertrophic genes ANF 

and BNP as indicators of cardiomyocyte hypertrophy. 

The results showed that both ISO and PE treatments 

significantly up-regulated mRNA expression of ANF 

and BNP (Figure 1). 

 

In addition, in cardiomyocytes, SIRT3 was 

overexpressed by Ad-SIRT3, and the inhibitory effect 

of Ad-SIRT3 on ISO or PE-induced cardiomyocyte 

hypertrophy was confirmed by detecting hypertrophic 

genes. The results showed that overexpression of SIRT3 

reversed the upregulation of hypertrophic genes by ISO 

or PE (Figure 1). 
 

SIRT3 expression and localization in ISO-induced 

cardiac hypertrophy model 
 

In H9c2 cells, after treatment with 10 μM ISO for 3-

24 h, total protein, cytoplasmic protein and nuclear 
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protein were extracted, and the total protein 

expression and distribution in cytoplasm of SIRT3 

were detected by western blot. The results showed 

that 10 μM ISO up-regulated the total protein 

expression of SIRT3 and also increased the 

distribution of SIRT3 in the cytoplasm and nuclear 

(Figure 2).  

 

In addition, SIRT3 protein was overexpressed by 

SIRT3 adenovirus (Ad-SIRT3) in H9c2 cells, and 

cytosolic protein and nuclear protein were extracted 

after 24 h. The results showed that Ad-SIRT3 

transfection increased the distribution of SIRT3 in 

cytoplasm and nuclear (Figure 2). Furthermore, in 

neonatal rat cardiomyocytes, SIRT3 protein was 

overexpressed with SIRT3-Flag or SIRT3-EGFP 

plasmid, and a distinct SIRT3 overexpression band 

was also detected in cytoplasm and nuclear (Sup-

plementary Figure 2). 

 

For in vivo studies, SD rats were injected 

subcutaneously with ISO (1.5 mg/kg/d) for 7 

consecutive days. Echocardiography and H&E 

staining confirmed that the hearts of rats treated with 

ISO were significantly larger than those of control 

animals receiving saline and showed typical 

hypertrophic changes (Supplementary Table 2 and 

Supplementary Figure 1). Furthermore, ISO in-

creased HW/BW ratio and mRNA expression of 

hypertrophic genes (ANF and BNP) (Supplementary 

Figure 1). 

 
 

Figure 1. SIRT3 overexpression inhibits the expression of 
mRNA levels of ANF and BNP. In H9c2 cells, Ad-GFP or Ad-

SIRT3 were transfected and then stimulated with 10 uM ISO or 
100 uM PE for 24 h. RNA was extracted and mRNA expression of 
ANF and BNP was detected by qRT-PCR. Data were presented as 
means±SE. *P<0.05 versus control or GFP group, #P<0.05 versus 
GFP treated with ISO or PE, n=4 independent experiments.  

In the ISO-induced SD rat cardiac hypertrophy 

model, the results of immunohistochemistry showed 

that the total expression of SIRT3 protein and the 

distribution in the cytoplasm and nuclear were 

significantly increased (Figure 3). The total protein, 

cytoplasmic protein and nuclear protein of SD rat 

heart tissues were extracted and detected by western 

blot. The results showed that the total expression of 

SIRT3 and the distribution in the cytoplasm and 

nuclear were also significantly increased in the heart 

tissue of the ISO group (Figure 4). 

 

SIRT3 overexpression inhibits ISO or PE-induced 

upregulation of PARP-1 activity 

 

Our previous studies have shown that PARP-1 activity 

was significantly up-regulated in cardiac hypertrophy, 

while inhibition of PARP-1 activity can significantly 

inhibit cardiac hypertrophy [19, 35]. In H9c2 

cardiomyocytes, PARP-1 activity was detected by 

anti-PAR antibody after 3-24 h stimulation with 10 

μM ISO. The result showed that 10 μM ISO 

significantly up-regulated PAPR-1 activity and was 

most evident at 24 h (Figure 5A). In addition, in the 

cardiac hypertrophy model of ISO-induced SD rats, the 

activity of PARP-1 was also significantly up-regulated 

compared with the control group (Figure 5B). 

 

To investigate whether SIRT3 inhibits cardiac 

hypertrophy by inhibiting PARP-1 activity, we 

overexpressed SIRT3 in cardiomyocytes with Ad-

SIRT3, then stimulate with ISO or PE for 24 h, and 

detect PARP-1 activity changes with anti-PAR 

antibody. The results showed that ISO or PE 

significantly up-regulated PARP-1 activity, while 

SIRT3 overexpression obviously inhibited the up-

regulation of PARP-1 activity. This result suggests 

that SIRT3 inhibition of cardiac hypertrophy may be 

through inhibition of PARP-1 activity (Figure 6). 

 

SIRT3 interacts with and deacetylates PARP-1 

 

The above results indicate that SIRT3 in the nuclear of 

cardiomyocytes is abundantly expressed under ISO 

stimulation and SIRT3 overexpression, which makes it 

possible for SIRT3 to interact with PARP-1. To further 

illustrate the relationship between SIRT3 and PARP-1, 

we overexpressed SIRT3 by Ad-SIRT3 and used co-

immunoprecipitation (CO-IP) to detect their interaction. 

The results of CO-IP showed that SIRT3 interacts with 

PARP-1 (Figure 7A). Since SIRT3 is a deacetylase and 

PARP-1 acetylation significantly enhances its activity, 

we simultaneously tested the level of acetylation of 

PARP-1. The results showed that PARP-1 acetylation 

was significantly enhanced by ISO, while over-

expression of SIRT3 significantly inhibited the 
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acetylation level of PARP-1 (Figure 7A). These results 

suggest that SIRT3 inhibit the activity of PARP-1 by 

inhibiting the acetylation of PARP-1. 

 

In addition, we also studied the interaction between 

endogenous SIRT3 and PARP-1. Since SIRT3 is mainly 

localized in the cytoplasm but PARP-1 is mainly 

localized in the nuclear, we thus extracted the nuclear 

protein after 24 h stimulation with 10 μM ISO and 

detected the interaction between SIRT3 and PARP-1 by 

CO-IP. The results showed that the binding of SIRT3 to 

PARP-1 was significantly enhanced under ISO 

stimulation (Figure 7B). 

 

In the ISO-induced in vivo cardiac hypertrophy model, 

nucleoproteins of heart tissues were extracted, and 

SIRT3 and PARP-1 interactions were also detected by 

CO-IP. The results showed that the PARP-1 acetylation 

level in the ISO group was increased, and the 

interaction between SIRT3 and PARP-1 was also 

significantly enhanced (Figure 8A). 
 

In the cardiac hypertrophy model of ISO-stimulated SD 

rats, the interaction between SIRT3 and PARP-1 was 

enhanced, whereas the level of acetylation of PARP-1 

was also increased. This may be due to the fact that ISO 

stimulation reduces the activity of SIRT3. Since SIRT3 

is a type III histone deacetylase, its activity is dependent 

on intracellular NAD+ level, so we measured the level 

of NAD+ in cardiac tissue. The results showed that 

NAD+ was significantly reduced in the cardiac 

hypertrophy model of ISO-stimulated SD rats, 

 

 
 

Figure 2. Distribution of SIRT3 in cytoplasm and nuclear of cardiomyocytes. In H9c2 cells, Ad-GFP or Ad-SIRT3 were transfected, or 

10 µM ISO stimulated for 3-24 h. Total, cytoplasm and nuclear fraction of protein were extracted, and the protein expressions of SIRT3 were 
detected in total (A), cytoplasm (B) and nuclear (C) by western blot. Data were presented as means±SE. *P<0.05 versus control group, n=4 
independent experiments. 
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suggesting that SIRT3 activity was reduced under ISO 

stimulation (Figure 8B). 

 

DISCUSSION 
 

The protective role of SIRT3 in cardiac hypertrophy has 

been reported by several studies, but its main role is 

concentrated in the cytoplasm, and nuclear SIRT3 based 

anti-hypertrophic mechanism remains to be elucidated. 

Our study first showed that SIRT3 was up-regulated 

under ISO stimulation, and that adenovirus mediated 

overexpression of SIRT3 significantly inhibited the 

upregulation of ISO or PE-induced upregulated 

expression of cardiac hypertrophic genes-ANF and BNP 

(Figure 1). Studies have shown that long fragment of 

SIRT3 (44 KDa) is able to aggregate in the nuclear under 

stress conditions [4] (two of the human SIRT3 proteins: 

44 KDa and 28 KDa, respectively, while the rat has only 

28 KDa of SIRT3). Our results also showed that SIRT3 

(28 KDa) expression was significantly enhanced in the 

nuclear under ISO stimulation (Figure 2). Furthermore, 

when SIRT3 was overexpressed with Ad-SIRT3, a 

 

 
 

Figure 3. SIRT3 protein immunohistochemistry in rat heart tissues of NS group and ISO group. SD rats of ISO group were 

subjected to subcutaneous injections of 1.5 mg/kg/d isoproterenol for 7 d. The control group was given the same dose of saline. We stained 
SIRT3 protein with SIRT3 antibody and stained the nuclear with DAPI. Brown represents SIRT3 protein and blue represents nuclear. 
Representative images out of 4 independent experiments were shown. 



www.aging-us.com 4183 AGING 

 
 

Figure 4. Distribution of SIRT3 in cytoplasm and nuclear of SD rat heart tissues. SD rats of ISO group were subjected to 

subcutaneous injections of 1.5 mg/kg/d isoproterenol for 7 d. The control group was given the same dose of saline. Total, cytoplasm and 
nuclear fraction of protein were extracted, and the protein expressions of SIRT3 were detected in total (A), cytoplasm (B) and nuclear (C) by 
western blot. Data were presented as means±SE. *P<0.05 versus control group, n=4 independent experiments. 

 

 
 

Figure 5. ISO upregulates PARP-1 activity. H9c2 cells were treated with 10 µM ISO for 3-24 h and SD rats were subjected to 

subcutaneous injections of 1.5 mg/kg/d isoproterenol for 7 d. The H9c2 cells protein (A) and SD rats’ heart tissues protein (B) were extracted 
after the above treatment. Western blot was used to detect PARP-1 activity. Data were presented as means±SE. *P<0.05 versus CON or NS 
group, n=4 independent experiments. 
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Figure 6. SIRT3 overexpression inhibits ISO or PE-induced upregulation of PARP-1 activity. In H9c2 cells, Ad-GFP or Ad-SIRT3 

were transfected and then stimulated with 10 µM ISO or 100 µM PE for 24 h. Western blot was used to detect PARP-1, SIRT3 protein 
expression and PARP-1 activity. Data were presented as means±SE. *P<0.05 versus GFP group, #P<0.05 versus GFP treated with ISO or PE, n=4 
independent experiments. 

 

 
 

Figure 7. SIRT3 interacts with and deacetylates PARP-1 in cardiomyocytes. In H9c2 cells, Ad-GFP or Ad-SIRT3 were transfected and 

then stimulated with 10 µM ISO for 24 h. PARP-1 was precipitated using PARP-1 antibody and detected with acetylated antibody, PARP-1 
antibody, and SIRT3 antibody (A). In H9c2 cells, nuclear protein was extracted after 24 h stimulation with ISO. Nuclear SIRT3 protein was 
precipitated with SIRT3 antibody, and corresponding protein expression was detected with PARP-1 antibody and SIRT3 antibody (B). Data 
were presented as means±SE. *P<0.05 versus GFP group, #P<0.05 versus GFP treated with ISO, n=4 independent experiments. Images 
representative of four independent experiments are shown. 
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distinct SIRT3 overexpression band was also detected 

in the nuclear (Figure 2). In addition, in primarily 

isolated neonatal rat cardiomyocytes, overexpressed 

with SIRT3-Flag or SIRT3-EGFP plasmids, SIRT3 

expression were also detected in cytoplasm and nuclear 

(Supplementary Figure 2). These results suggest that 

nuclear SIRT3 may also play an important role in 

repressing cardiac hypertrophy. The results of heart 

tissue immunohistochemistry also showed that ISO 

stimulation increased the nuclear distribution of SIRT3 

protein (Figure 3). 

 

PARP-1, the most studied member of the PARP family, 

acts primarily as a DNA damage sensor in the nuclear  

 

 
 

Figure 8. SIRT3 interacts with PARP-1 in heart tissues. SD 

rats of ISO group were subjected to subcutaneous injections of 
1.5 mg/kg/d isoproterenol for 7 d. The control group (NS) was 
given the same dose of saline. Nuclear protein of heart tissues 
was extracted. PARP-1 was precipitated using PARP-1 antibody 
and detected with acetylated antibody, PARP-1 antibody, and 
SIRT3 antibody (A). NAD+ content in heart tissues of SD rats was 
detected by NAD+/NADH detection kit (B). Images representative 
of four independent experiments are shown. Data were 
presented as means±SE. *P<0.05 versus NS group, n=4 
independent experiments. 

and is activated in response to DNA single-strand 

breaks stimulated by free radicals and cell damage [36]. 

Poly (ADP-ribosylation) of PARP-1 requires NAD+ as a 

substrate. Overactivation of PARP-1 may deplete the 

storage of cellular NAD+, thereby reducing the function 

and activity of NAD+-dependent enzymes, such as the 

SIRTs family [36–39]. Thus, by direct ribosylation to 

modify its substrates, such as NF-κB, and to inhibit the 

function of NAD+ dependent enzymes, PARP-1 is 

involved in a variety of cardiovascular diseases, 

including heart failure, myocardial ischemia/reperfusion 

injury, atherosclerosis and cardiovascular complications 

of diabetes [40–42]. 

 

There are two methods for detecting PARP-1 activity: 

one is to use the anti-PAR-monoclonal antibody (that is, 

the method used in our study), which is a commonly 

used detection method, and this method is used in many 

high-quality articles [41, 43, 44]. When the signal 

detected by the PAR antibody is significantly enhanced, 

it means that PARP-1 activity is significantly enhanced, 

and more NAD+ is consumed [43, 44]. The second 

method was determined by a chemical quantitation 

method as described by Putt and Hergenrother (2004) 

[45], which converted NAD+ into a highly fluorescent 

agent using recombinant human PARP-1 (Sigma). The 

fluorescence intensity was determined by Multimode 

Microplate Reader (Infinite M1000, Tecan, 

Switzerland) at 360 nm for excitation and 445 nm for 

emission. To measure the cellular PARP-1 activity, the 

recombinant PARP-1 was replaced by nuclear extracts 

from cardiomyocytes and heart tissues. Because some 

cell experiments are performed in the presence of 

SIRT3 overexpression, SIRT3 requires NAD+ for its 

activity. Therefore, the second PARP-1 activity 

detection method is not suitable for detecting PARP-1 

activity in this case. 

 

Cardiac hypertrophy is an important stage of heart 

failure development, and PARP-1 has been shown to be 

critical for the development of cardiac hypertrophy. 

PARP-1 activity was found to be significantly 

upregulated in various animal models of pathological 

cardiac hypertrophy [21, 46], and PARP-1 deficient 

mice significantly attenuated AngII-mediated cardiac 

hypertrophy [41]. Likewise, PARP-1 inhibitor L-2286 

significantly attenuated cardiac hypertrophy induced by 

pressure overload [21]. Another PARP-1 inhibitor AG-

690/11026014 (6014), which was virtually screened, 

inhibited AngII-induced cardiomyocyte hypertrophy 

[47]. We also previously demonstrated that PARP-1 

siRNA interference or the PARP-1 inhibitor 3-

aminobenzamide (3-AB) also inhibits ISO-induced 

cardiomyocyte hypertrophy [19]. In addition, our 

previous studies have shown that ISO stimulation in 

neonatal rat cardiomyocytes significantly enhances the 
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acetylation and activity of PARP-1 [19]. Consistent 

with these studies, we found significant activation of 

PARP-1 in cardiac hypertrophy induced by ISO or PE, 

and its level of acetylation was significantly elevated 

under the induction of ISO (Figures 5, 7A and 8A). 

 

Since SIRT1 is a direct deacetylase of PARP-1, SIRT6 

also interacts with PARP-1. Our study reveals SIRT3 as 

the third SIRTs member that directly interacts with and 

deacetylates PARP-1. After overexpressing SIRT3 by 

Ad-SIRT3, we detected the interaction between SIRT3 

and PARP-1 by CO-IP. The results show that over-

expression of SIRT3 can interact with PARP-1, and 

overexpression of SIRT3 can inhibit ISO-induced levels 

of PARP-1 acetylation (Figure 7A). In addition, under 

the action of ISO, the nuclear expression of SIRT3 was 

significantly enhanced, and correspondingly, the 

interaction between SIRT3 and PARP-1 was also 

significantly enhanced (Figures 7B and 8A). 

 

We did not perform a loss of function test because it 

failed to block SIRT3 expression in the nuclear alone. 

Nevertheless, our overexpression experiments con-

firmed that SIRT3 overexpression can inhibit the 

acetylation and activity of the nuclear protein PARP-1, 

which shows that SIRT3 can exert its deacetylation 

effect in the nuclear (Figure 7A). 

 

Taken together, our study reveals that SIRT3 exerts 

protective effects against cardiomyocyte hypertrophy by 

deacetylating PARP-1 and inhibit PARP-1 activity. 

These results will provide important clues for the study 

of the role of SIRT3 in cardioprotection and highlights 

the potential of SIRT3 activators in treating 

cardiovascular disorders. 

 

MATERIALS AND METHODS  
 

Isoproterenol (ISO) was purchased from EMD 

Chemicals (San Diego, CA, USA). Phenylephrine (PE, 

P6126) were obtained from Sigma–Aldrich (Sigma, St. 

Louis, MO, USA). FBS and DMEM were purchased 

from Gibco (Grand Island, NY, USA). Ad-SIRT3 (due 

to the Flag label, its molecular weight is about 29 KDa) 

was purchased from Vigene Bioscience (Shandong, 

China). NAD+/NADH detection kit was purchased from 

Beyotime (Shanghai, China). 

 

Cell culture 

 

H9c2 cardiomyocytes derived from rat ventricular 

myocardium were purchased from the Cell Bank of the 

Chinese Academy of Science (Beijing, China). Briefly, 

H9c2 cells were cultured in high glucose DMEM 

(GIBCO, USA) supplemented with 10% fetal bovine 

serum (GIBCO, USA) and 1% penicillin/streptomycin 

(GIBCO, USA) at 37°C in a humidified atmosphere 

with 5% CO2 [48]. 

 

Animals 

 

Sixteen male Sprague-Dawley (SD) rats (180–220g,) 

were supplied by the Experimental Animal Center of 

Anhui Medical University (Hefei, China). All animal 

care and experimental procedures were performed 

according to the Guide for the Care and Use of 

Laboratory Animals published by the US National 

Institutes of Health (NIH Publication No. 85-23, revised 

1996) and were approved by the Animal Ethic 

Committee of Anhui Medical University. Cardiac 

hypertrophy was induced by s.c. injection of 

isoprenaline (1.5 mg/kg/d) for 7 consecutive days. Rats 

given normal saline (NS) were regarded as vehicle 

control group. The total number of rats was 8 per group. 

After 7 days, two-dimensionally guided M-mode 

echocardiography was performed using a VisualSonics 

Vevo 2100 system (VisualSonics, Toronto, ON) with a 

MS250 (21-MHz centerline frequency) probe. After 

assessment of echocardiography, rats were killed by 

exposing to a rising concentration of CO2. The hearts 

were carefully excised, and heart weight (HW) was 

determined. For morphometric measures, transverse 

sections of the hearts were fixed with neutral buffered 

formalin (10%), embedded in paraffin, cut into 5μm 

cross-sections and stained with haematoxylin and eosin 

(H&E). 

 

RNA isolation and quantitative RT-PCR (qRT-PCR) 
 

Total RNA from cultured H9c2 cells was extracted 

using Trizol Reagent (Invitrogen, Carlsbad, CA, USA) 

following the manufacturer’s instructions [49]. One 

microgram of total RNA was reversely transcribed to 

first strand cDNA using One-step RT kit (Toyobo, 

Osaka, Japan). The mRNA levels of targeted genes 

were determined using Quantitative PCR kit (Toyobo, 

Osaka, Japan) by ABI 7500 system (Applied 

Biosystems, USA). Rat-specific primers for atrial 

natriuretic factor (ANF), brain natriuretic peptide 

(BNP), GAPDH were shown in Supporting 

Information Supplementary Table 1. GAPDH served 

as the endogenous control. 

 

Western blot and co-immunoprecipitation (co-IP) 

 

For immunoprecipitation and Western blotting [50], 

mouse anti-PARP-1 polyclonal antibody, mouse pan-

Acetylation monoclonal antibody and mouse β-Actin 

monoclonal antibody was purchased from Proteintech 

(Proteintech Group, Chi cago, IL, USA). Mouse anti-

PAR-monoclonal antibody was purchased from 

Trevigen (Trevigen Inc., Gaithersburg, Maryland, 
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USA). Rabbit anti-sirtuin 3 (SIRT3) polyclonal 

antibody were purchased from Cell Signaling 

Technology (Beverly, MA, USA) and Proteintech 

(Proteintech Group, Chi cago, IL, USA). Nuclear 

proteins were extracted with a commercially available 

Nuclear and Cytoplasm Extraction kit (Active Motif, 

Carlsbad, CA, USA) according to the manufacturer’s 

recommendations. Western blot analyses were 

performed as previously described [19, 51] and β-Actin 

was used as a loading control. For co-IP, total proteins 

(400μg) incubated with 1μg anti-PARP-1 antibody for 

overnight (mouse normal IgG was used as a control), or 

nuclear proteins (200-300μg) incubated with 1 μg anti-

SIRT3 antibody for overnight (rabbit normal IgG was 

used as a control), followed by 4h incubation with 

protein A/G PLUS-Agarose (Santa Cruz, CA, USA) at 

4°C. The co-IP proteins were detected by Western blot.  

 

Data analysis 

 

Data are presented as mean±SE. Statistical analyses 

between two groups were performed by unpaired 

Student’s t-test. Differences among multiple groups 

were tested by one-way ANOVA with Tukey’s post hoc 

test. In all cases, differences were considered 

statistically significant with P<0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. SD rats were subjected to subcutaneous injections of 1.5 mg/kg/d isoproterenol for 7 d. (A and B) 

Pathological changes were observed with echocardiography and a light microscope at 400×magnification after H&E staining. (C and D) The 
ratios of the heart weight to body weight (HW/BW) and mRNA expression of ANF and BNP were calculated. Data were presented as 
means±SE. *P < 0.05 vs. NS, n =6 (independent experiments). 

 

 
 

Supplementary Figure 2. The distribution of SIRT3 overexpression in primary neonatal rat cardiomyocytes. Cells were 

transfected with plasmids for SIRT3-Flag or SIRT3-EGFP. The protein expression levels of SIRT3 in cytoplasm and nuclear were measured by 
Western blot. Data were presented as means±SE. *P<0.05 vs. Con group, n=3.  
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Supplementary Tables 
 

Supplementary Table 1. Primer sequences for quantitative RT-PCR. 

Primer Sequences 

ANF 5'-CCTGGACTGGGGAAGTCAAC-3' (forward) 

 5'-GTCAATCCTACCCCCGAAGC-3' (reverse) 

BNP 5'-CAGAAGCTGCTGGAGCTGATA-3' (forward) 

 5'-TCCGGTCTATCTTCTGCCCA-3' (reverse) 

GAPDH 5'-GCGAGATCCCGCTAACATCA-3' (forward) 

 5'-CTCGTGGTTCACACCCATCA-3' (reverse) 

 

Supplementary Table 2. Gravimetric parameters of SD rats treated with ISO. 

 NS(n=6) ISO(n=6) 

LVPW;d(mm) 1.796±0.403 2.533±0.629* 

LVPW;s(mm) 1.737±0.286 3.500±0.703* 

LVAW;d(mm) 1.737±0.286 2.155+0.448* 

LVAW;s(mm) 2.510±0.330 3.199±0.526* 

LVPW;d: left ventricular posterior wall depth at end-diastole; LVPW;s: left ventricular posterior wall depth at end-systole; 
LVAW;d: left ventricular anterior wall thickness during end-diastole; LVAW;s: left ventricular anterior wall thickness during 
end-systole; Data were presented as means±SE. *P < 0.05 vs. NS group. 
 


