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INTRODUCTION 
 
Lung cancer is acknowledged as being the leading cause 
of cancer deaths worldwide, with more than 1,600,000 
new cases diagnosed yearly [1]. Non-small cell lung 
cancer (NSCLC) is the main histological types of lung 
cancer, accounting for more than 85% of all lung cancer 
cases [2]. NSCLC is also divided into several subtypes, 
including lung adenocarcinoma (LUAD), lung squamous 
cell carcinoma (LUSC), and large-cell lung cancer 
(LCLC), as well as other infrequent types, among of 
which LUAD and LUSC are the most prevalent.  

 

Increasing evidence indicates that the degree of 
malignancy of cancers is determined not only by the 
intrinsic features of the tumor cells, but also by 
components in the tumor microenvironment (TME), 
including immune cells, mesenchymal cells, endothelial 
cells, inflammatory mediators, and extracellular matrix 
molecules [3]. Tumor-infiltrating immune cells (TIICs) 
and stromal cells, which are two major types of non-
tumor cell components, have been proposed to be 
valuable for the diagnostic and prognostic assessment of 
tumors [4–8]. Previous studies have suggested that 
tumor-infiltrating lymphocytes (TILs) have a significant 
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ABSTRACT 
 
Non-small-cell lung cancer (NSCLC), which consists mainly of lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUSC), are the leading cause of cancer deaths worldwide. In this study, we performed a comprehensive 
analysis of the tumor microenvironmental and genetic factors to identify prognostic biomarkers for NSCLC. We 
evaluated the immune and stromal scores of patients with LUAD and LUSC using data from The Cancer Genome 
Atlas database with the ESTIMATE algorithm. Based on these scores, the differentially expressed genes were 
obtained and immune-related prognostic genes were identified. Functional analysis and protein-protein interaction 
network further revealed the immune-related biological processes in which these genes participated. Additionally, 
22 subsets of tumor-infiltrating immune cells (TIICs) in the tumor microenvironment were analyzed with the 
CIBERSORT algorithm. Finally, we validated these valuable genes using an independent cohort from the Gene 
Expression Omnibus database. The associations of the immune and stromal scores with patients’ clinical 
characteristics and prognosis were positive in LUAD but negative in LUSC and the correlations of TIICs with clinical 
characteristics were clarified. Several differentially expressed genes were identified to be potential immune-related 
prognostic genes. This study comprehensively analyzed the tumor microenvironment and presented immune-
related prognostic biomarkers for NSCLC. 

mailto:qlwjb2008@163.com


www.aging-us.com 4758 AGING 

effect on the clinical course of numerous cancers  
[9–14]. Recently, Fridman et al. [15] summarized the 
association of T cells with cancer clinical outcomes and 
found that TILs, especially cytotoxic T cells, memory T 
cells, and T helper 1 cells, were positively associated 
with good clinical outcomes in several cancers, 
including melanoma, head and neck, breast, bladder, 
urothelial, ovarian, colorectal, renal, prostate, and lung 
cancers. It was demonstrated that the type and density 
of TILs were useful for distinguishing the clinical stage, 
as well as the prognosis in colorectal and lung cancers 
[16, 17]. In addition, the TME was also reported to have 
an influence on the gene expression of tumor tissues 
and the clinical outcome [18–22]. These findings 
elucidated the relationship between the TME and cancer 
progression, raising potential methods to improve the 
management of malignant tumors. 
 
Pertaining to TME, algorithms were developed to 
predict the tumor purity using gene expression profile 
data from The Cancer Genome Atlas (TCGA) database 
[20–22]. For example, by analyzing the specific gene 
expression signatures of immune and stromal cells, 
Yoshihara et al. created an algorithm called ESTIMATE 
(Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data) to calculate 
immune and stromal scores for predicting the 
infiltration of non-tumor cells [20]. Subsequently, 
reports that had applied the ESTIMATE algorithm to 
the analyses of prostate cancer [23], breast cancer [24], 
and colon cancer [25] showed the effectiveness of such 
large-data-based algorithms, whereas its use for 
predicting the tumor purity of lung cancer has not been 
investigated in detail. 
 
In this study, using abundant TCGA and Gene 
Expression Omnibus (GEO) database-sourced cases of 
NSCLC and the ESTIMATE algorithm [20], we 
explored the microenvironmental and genetic factors 
associated with the disease to identify immune-related 
prognostic biomarkers in its main subtypes including 
LUAD and LUSC.  
 
RESULTS 
 
Associations of immune and stromal scores with 
clinical characteristics and prognosis of NSCLC 
 
We downloaded TCGA-sourced gene expression profiles 
and clinical information of 980 cases of NSCLC, 479 
(48.9%) of which were pathologically diagnosed as 
LUAD and 501 (51.1%) as LUSC. Of the LUAD cases, 
260 (54.3%) patients were females and 219 (45.7%) were 
males, whereas there were 130 (25.9%) females and 371 
(74.1%) males among the LUSC cases. The proportion 
reflected the distribution trend worldwide where females 

and males with LUAD had similar morbidities, while the 
morbidity of males with LUSC was 3 times higher than 
that of females with the disease. As calculated by the 
ESTIMATE algorithm, the immune score ranged from -
942.51 to 3,442.08 among the patients with LUAD and 
from -1,188.16 to 3,455.61 among those with LUSC, 
whereas the stromal score ranged from -1,789.62 to 
2,097.96 for LUAD and from -2,230.11 to 1,845.98 for 
LUSC (P<0.001) (Figure 1A). 
 
To identify the potential correlations of the clinical 
characteristics with the immune and stromal scores, we 
divided the cases into high and low score groups 
according to the median scores. The statistical analyses 
revealed that for patients with LUAD, high immune 
scores were associated with an earlier clinical TNM 
stage (P = 0.008) and T stage (P = 0.003), and high 
stromal scores were associated with an earlier M stage 
(P = 0.007). Interestingly, both the immune and stromal 
scores were significantly higher for the females than 
those for the males (P = 0.01 and 0.025, respectively). 
For the patients with LUSC, none of differences in the 
scores were statistically significant, aside from that the 
immune scores being higher for the females than for the 
males (P < 0.001) (Figure 2A–2X). 
 
Kaplan-Meier survival and log-rank analyses were 
performed to determine the potential correlations of 
overall survival (OS) with the immune and stromal 
scores (Figure 2Y). The results showed that for the 
patients with LUAD, high immune scores were 
associated with a favorable prognosis (P = 0.022), 
whereas the stromal scores did not have any statistically 
significant association with prognosis (P = 0.092). For 
the patients with LUSC, the OS was not significantly 
different for the immune or stromal scores.  
 
Differential gene expression analysis 
 
To reveal the correlations of the gene expression 
profiles with the stromal and immune scores, we 
compared Affymetrix microarray data of the 479 LUAD 
and 501 LUSC cases obtained from TCGA, 
respectively. The heatmaps in Figure 1B showed 
distinct gene expression profiles of the cases belonging 
to the high and low immune and stromal score groups.  
 
Moreover, we summarized the differentially expressed 
genes (DEGs) in Venn diagrams (Figure 1C). In the 
comparison between the LUAD groups with high and 
low immune scores, 626 genes were found to be 
upregulated and 150 genes were downregulated in the 
high-score group. In the comparison based on stromal 
scores, 665 genes were upregulated and 118 genes were 
downregulated in the high-score group (fold change > 2, 
P < 0.05). Moreover, among the DEGs, 317 genes were 
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Figure 1. Comparison of gene expression profiles with immune and stromal scores of NSCLC subtypes. (A) The box-plot shows 
that there is significant difference between LUAD and LUSC at the levels of the immune scores and stromal scores (P < 0.001). (B) Heatmap of 
significantly differentially expressed genes based on immune and stromal scores. Genes with higher expression are shown in red, those with 
lower expression are shown in green, and those with the same expression level are in black. All results were screened at fold change > 2, P < 
0.05. (C) Venn diagram analysis of aberrantly expressed genes based on immune and stromal scores. NSCLC, Non-small cell lung cancer; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma. 
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upregulated and 62 genes were downregulated in common 
in the high immune and stromal score groups compared 
with the gene expression in the low-score groups. 
Similarly, in the comparison of the LUSC cases, 1195 
genes were upregulated and 136 genes were 
downregulated in the high stromal score group, and 1187 

genes were upregulated and 176 genes were 
downregulated in the high immune score group (fold 
change > 2, P < 0.05). Additionally, 874 genes were 
upregulated and 72 genes were downregulated in common 
in the high immune and stromal score groups. We decided 
to focus on these DEGs for all subsequent analyses. 

 

 
 

Figure 2. Associations of immune and stromal scores with clinical characteristics and prognosis in NSCLC subtypes. The LUAD 
and LUSC cases were respectively divided into groups with high or low median immune or stromal scores. The results represent their 
correlation with clinical characteristics in LUAD (A–L) and LUSC (M–X), respectively, and their correlation with overall survival in LUAD and 
LUSC (Y). P < 0.05 was used to assess differences in Log-rank test. NSCLC, Non-small cell lung cancer; LUAD, lung adenocarcinoma; LUSC, lung 
squamous cell carcinoma. 



www.aging-us.com 4761 AGING 

Survival analysis of genes differentially expressed in 
common 
 
To determine the potential role of the individual DEGs in 
OS, Kaplan-Meier survival analysis was carried out on 
the dataset from TCGA on the basis of the DEGs that 
were up-regulated and down-regulated in common in the 
stromal and immune score groups. Among the 379 
common DEGs in LUAD, 130 were shown to 
significantly predict OS (P < 0.05; selected genes are 
shown in Figure 3A–3H). Among the 946 common 

DEGs in LUSC, 140 were statistically associated with 
OS (P < 0.05; selected genes are shown in Figure 3I–3P). 
All of the genes with statistically significant association 
with OS were listed in Supplementary Table 1. 
 
Functional analysis of the prognostic genes 
 
To further explore the interaction among the identified 
prognostic DEGs, we generated the protein-protein 
interaction (PPI) networks using the STRING tool. 
According to the results, the network for LUAD was 

 

 
 

Figure 3. Correlations of expression of individual immune-related DEGs in overall survival of NSCLC subtypes. Kaplan-Meier 
survival curves were generated for the selected immune-related DEGs extracted DEGs extracted from the comparison of groups of high (red 
line) and low (blue line) gene expression. Horizontal axis: overall survival time, days; Vertical axis: survival rate. (A–H) Prognosis-related DEGs 
in LUAD. (I–P) Prognosis-related DEGs in LUSC. P < 0.05 was used to assess differences in Log-rank test. DEGs, differentially expressed genes; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.  
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made up of 101 nodes and 513 edges, where C-C motif 
chemokine receptor type 2 (CCR2), CD80 molecule, 
lymphocyte cytosolic protein 2 (LCP2), Toll-like 
receptor 4 (TLR4), TLR7, interleukin 10 (IL10), and 
protein tyrosine phosphatase receptor type C (PTPRC) 
were the top 7 remarkable nodes as they had the most 
connections with other members of the module (Figure 
4A, Supplementary Figure 1A). Similarly, the network 
for LUSC was made up of 99 nodes and 266 edges, 
where complement C3a receptor 1 (C3AR1), colony-
stimulating factor 1 receptor (CSF1R), C-C motif ligand 
2 (CCL2), CCR1, colony-stimulating factor 2 (CSF2), 
CD14 molecule, and transmembrane immune signaling 
adaptor TYROBP were the top 7 remarkable nodes 
(Figure 4B, Supplementary Figure 1B). There were 
several immune response-critical genes in the center, 
including CD80, TLR4, TLR7, IL-10, CSF1R, CCL2, 
CCR1, CSF2, and CD14. 
 
Consistent with the PPI network analyses, functional 
enrichment analyses showed that these prognostic 
DEGs were significantly associated with the immune 
status as well. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses revealed that the DEGs 
were associated with several important pathways, of 
which the top 3 in LUAD were for cell adhesion 
molecules, cytokine-cytokine receptor interaction, and 
hematopoietic cell lineage, and the top 3 in LUSC were 
for complement and coagulation cascades, cytokine-
cytokine receptor interaction, and phagosomes (Figure 
4C, 4E). The Gene Ontology (GO) terms of the 
biological process, cellular component, and molecular 
function categories were identified respectively to be 
significant (P < 0.05, q value < 0.05), indicating that 
these genes were mainly involved in immune and 
inflammatory responses (Figure 4D, 4F). 
 
Immune landscape of the microenvironment in 
NSCLC 
 
In the prior analyses, we identified that immune and 
stromal scores played important roles in predicting the 
clinical characteristics and patient prognosis in NSCLC. 
To better understand the immune and stromal signature, 
and to find more detailed relationships with LUAD and 
LUSC, we selected 22 available immune cell types for 
analyses. The selected TIICs were major cell types related 
to adaptive immunity [i.e., memory B cells, naïve B cells, 
activated memory CD4 T cells, resting memory CD4 T 
cells, naïve CD4 T cells, CD8 T cells, T follicular helper 
(Tfh) cells, gamma delta T (Tgd) cells, and regulatory T 
(Treg) cells] and to innate immunity [i.e., activated 
dendritic cells (DCs), resting DCs, eosinophils, 
macrophages (M0–M2), activated mast cells, resting mast 
cells, monocytes, activated natural killer (NK) cells, 
resting NK cells, neutrophils, and plasma cells].  

Using the CIBERSORT algorithm, we first evaluated 
the differences in the 22 TIIC subpopulations in patients 
with LUAD and LUSC. Supplementary Figure 2 
summarized the proportions of TIICs distributed in each 
sample (i.e., 54 paracancerous samples and 479 patients 
with LUAD, and 49 paracancerous samples and 454 
patients with LUSC). As shown in Figure 5A and 5B, 
the interrelation of the various TIICs in LUAD and 
LUSC varied from weak to moderate. The violin 
diagrams (Figure 5C, 5D) further provided visualization 
of the relative proportions of TIICs in all samples and 
the differences in their distribution between the 
paracancerous and cancerous samples, where the results 
were consistent with the heatmaps (Supplementary 
Figure 2) described above. The results showed the 
aberrant immune cell infiltration and the heterogeneity 
in the paracancerous and cancerous samples. In the 
patients with LUAD, 10 TIICs (viz., naïve B cells, 
memory B cells, plasma cells, activated memory CD4 T 
cells, Tfh cells, Treg cells, Tgd cells, resting DCs, M1 
macrophages, and activated NK cells) were in a higher 
proportion in the cancerous tissues than those in the 
paracancerous tissues, whereas 9 TIICs (viz., resting 
memory CD4 T cells, resting NK cells, monocytes, M0 
macrophages, M2 macrophages, activated DCs, resting 
mast cells, eosinophils, and neutrophils) were in a 
higher proportion in the paracancerous tissues. The 
results were similar in the patients with LUSC, that is, 8 
TIICs (viz., plasma cells, activated memory CD4 T 
cells, Tfh cells, Treg cells, Tgd cells, M0 macrophages, 
M1 macrophages, and resting DCs) made up a higher 
proportion in the cancerous tissues, whereas 8 TIICs 
(viz., resting memory CD4 T cells, resting NK cells, 
monocytes, M2 macrophages, activated DCs, resting 
mast cells, eosinophils, and neutrophils) have a higher 
proportion in the paracancerous tissues (P < 0.05). 
Moreover, we performed a comparison of TIICs 
between patients with LUAD and those with LUSC. 
Patients with LUAD had a higher percentage of resting 
memory CD4+ T cells, Tregs, monocytes, M2 
macrophages, activated NK cells, resting and activated 
dendritic cells, and resting mast cells than those with 
LUSC, while the infiltration of plasma cells, activated 
memory CD4+ T cells, Tfh cells, resting NK cells, M0 
and M1 macrophages, and activated mast cells were 
lower in patients with LUAD, and other immune cells 
were not significantly different between patients with 
LUAD and those with LUSC (Supplementary Figure 3). 
 
To further clarify the roles of these TIICs in LUAD and 
LUSC, we performed analyses between TIICs and T, N, 
M stage of the patients. As shown in Supplementary 
Figure 4, the results revealed that, in LUAD, memory B 
cells and CD8+ T cells were more in advanced N stage 
(N1-N3) than those in early N stage (N0) (P = 0.001, 
0.032, respectively), whereas M0 macrophages were 



www.aging-us.com 4763 AGING 

 
 

Figure 4. Functional analyses of immune-related prognostic genes. (A, B) PPI networks of the prognostic DEGs determined by the 
STRING database. The color of each node in the PPI network reflects the log fold-change value of the Z score of gene expression, and the size 
of the node indicates the number of proteins interacting with the designated protein. (C, E) KEGG analysis of immune-related prognostic 
genes. Top pathways with P < 0.05 and q value < 0.05 are shown. (D, F) GO analyses of the prognostic DEGs in the categories of biological 
processes (BP), cellular components (CC), and molecular functions (MF). PPI, Protein-protein interaction, DEGs, differentially expressed 
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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less in advanced N stage (P = 0.042). In LUSC, higher 
infiltration of Tfh cells were closely related to earlier T 
stage (T1-T2) (P = 0.003), while that of naïve CD4+ T 
cells were correlated with more advanced T stage (T3-
T4) (P = 0.03). CD8+ T cells and M1 macrophages were 
in a higher infiltration in advanced N stage than those in 
early N stage (P = 0.032, 0.02, respectively). No other 
significant differences were observed between 
infiltration of TIICs and T, N, M stages.  
 
Validation with GEO data 
 
To verify if the prognostic value of the genes identified 
by TCGA analyses were critical in other cases of 
NSCLC, we selected an independent cohort of NSCLC 
cases from the GEO database (i.e., 106 LUAD cases 
and 66 LUSC cases, Accession Number GSE37745). 

Consequently, 23 of a total of 130 genes identified in 
the LUAD cases from TCGA were validated as being 
positively associated with prognosis, and 3 of the 140 
genes identified in the LUSC cases were likewise 
validated as being prognostic (Figure 6). Among the 
validated genes, several were of particular interest. For 
example, 7 of the LUAD-associated genes [intercellular 
adhesion molecule 3 (ICAM3), membrane spanning 4-
domains A1 (MS4A1), IL-16, Bruton tyrosine kinase 
(BTK), kallikrein-related peptidase 12 (KLK12), tumor 
necrosis factor superfamily member 8 (TNFSF8), and 
CCR2] had already been reported to participate in the 
progression of other cancers, whereas the functions of 
the other 16 genes have never before been reported in 
any cancers. In the LUSC cases, 2 [glutathione S-
transferase alpha 1 (GSTA1) and hyaluronan synthase 
1(HAS1)] of the 3 validated genes have been reported 

 

 
 

Figure 5. Correlation matrix and violin diagrams of the proportions of all 22 subsets of TIICs. (A, B) Correlation matrix of the 
correlation of the infiltration of tumor immune cells with LUAD and LUSC. (C, D) Difference of immune infiltration between cancerous tissues 
and paracancerous tissues. P < 0.05 was considered statistically significant. TIICs, tumor-infiltrating immune cells; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma. 
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to play important roles in the process of cancer 
development, and the third gene [leucine-rich repeat 
LGI family member 2 (LGI2)] has never before been 
studied in detail. 

DISCUSSION 
 
NSCLC is one of the most aggressive cancers 
worldwide, with high morbidity and lethality. Despite

 

 
 

Figure 6. Validation of TCGA results with other cohorts from the GEO database. Kaplan-Meier survival curves were generated 
using the data of GEO database to determine the prognosis-related DEGs in TCGA. The Horizontal axis: overall survival time, days; 
Vertical axis: survival rate. P < 0.05 was used to assess differences in Log-rank test. GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas.  
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the progression of therapeutic methods in recent years, 
including chemotherapy, radiotherapy, targeted therapy, 
and immunotherapy, the prognosis of patients with 
NSCLC remain poor. One of the reasons for the dismal 
prognosis is a shortage of effective prognostic 
biomarkers for guidance on cancer therapy. Therefore, 
we conducted the bioinformatics analysis with TCGA to 
identify TME-related genes that could predict the 
prognosis of NSCLC patients. 
 
Through the deconvolution of large-scale genomic data 
sourced from TCGA, the ESTIMATE algorithm was 
used to obtain immune and stromal scores to understand 
the microenvironment of NSCLC. For the LUAD 
dataset, we found that high immune scores were 
associated with an earlier clinical stage and T stage, and 
high stromal scores were positively related to an earlier 
M stage. In addition, higher immune scores showed 
close associations with better OS. For the LUSC cases, 
aside from the finding that the immune scores were 
significantly higher in the females, neither the immune 
nor the stromal scores were significantly associated 
with the clinical characteristics and prognosis. These 
results suggested that the microenvironment was closely 
associated with patients’ outcome.  
 
In the previous study, “immune hot” tumors referred to 
those in which PD-L1 as well as pro- and anticancer 
immune cells and mediators were in a high proportion, and 
these tumors presented a better response to the immune 
treatment than others [27]. In our results, the immune 
scores ranged from -942.51 to 3,442.08 among the patients 
with LUAD and from -1,188.16 to 3,455.61 among those 
with LUSC. Though the average immune score of the 
former was significantly higher than that of the later, it did 
not mean that LUAD was more immune-hot than LUSC. 
As our results showed in Supplementary Figure 3, some 
immune cells were higher in LUAD (i.e., resting memory 
CD4+ T cells, Tregs, monocytes, M2 macrophages, 
activated NK cells, resting and activated dendritic cells, 
and resting mast cells), whereas some were higher in 
LUSC (i.e., plasma cells, activated memory CD4+ T cells, 
Tfh cells, resting NK cells, M0 and M1 macrophages, and 
activated mast cells), other immune cells, including the 
most effective immune cells, CD8+ T cells, were not 
significantly different between patients with LUAD and 
those with LUSC. Aside from the immune infiltration, 
tumors’ response to the immune treatment was also 
determined by the expression level of PD-L1, tumor 
mutation burden, EGFR mutation and other unknown 
factors. Therefore, apart from the analyses of the 
infiltration of immune cells, more analyses were required 
to clarify the tumors’ sensitivity to the immune treatment. 
 
To identify the immune-related genes, we divided the 
samples into immune and stromal groups with either 

high or low scores. Common DEGs were chosen 
through a comparison of gene expression in a large 
number of LUAD and LUSC cases with high vs. low 
immune or stromal scores, and GO and KEGG analyses 
were completed based on those common DEGs. The 
results revealed that the DEGs played a critical role in 
the immunological competence of LUAD and LUSC. 
Thereafter, OS analyses were performed to evaluate the 
prognostic value of these common DEGs. Among the 
DEGs, 130 in LUAD and 140 in LUSC were identified 
to be associated with OS. PPI networks were generated 
to reveal the relationship and function of these 
prognostic genes. Most of the remarkable nodes in the 
modules with a high degree of connectivity (viz., 
CCR2, CD80 (B7-1), TLR4, TLR7, and IL-10 in 
LUAD; and CSF1R, CCL2, and CCR1 in LUSC) were 
reported to be related to proliferation, migration, 
invasion, and immune tolerance in NSCLC [28–34].  
 
Next, using CIBERSORT we assessed the distinct 
infiltration patterns of the various immune cells in 
patients with LUAD and LUSC, and revealed their 
associations with the clinical outcomes. The 
proportions of most of the TIICs (viz., naïve B cells, 
memory B cells, plasma cells, activated memory CD4 
T cells, resting memory CD4 T cells, Tfh cells, Treg 
cells, Tgd cells, resting DCs, activated DCs, M0 
macrophages, M1 macrophages, M2 macrophages, 
resting NK cells, activated NK cells, monocytes, 
resting mast cells, eosinophils, and neutrophils in 
LUAD, and plasma cells, resting memory CD4 T cells, 
activated memory CD4 T cells, Tfh cells, Treg cells, 
Tgd cells, M0 macrophages, M1 macrophages, M2 
macrophages, resting DCs, activated DCs, resting NK 
cells, monocytes, resting mast cells, eosinophils, and 
neutrophils in LUSC) were significantly different in 
the cancerous tissues compared with those in 
paracancerous tissues, indicating the critical role of the 
immune status in cancer progression in a more detailed 
way. Previous reports suggested that neutrophils were 
correlated with high-grade invasive histological 
subtypes of LUAD and associated with poor prognosis 
[35]. Consistent with this, the association between 
neutrophil infiltration and poor survival was also 
reported in gallbladder carcinoma [36]. Recent studies 
identified increased neutrophil infiltration in LUSC 
tumors [27, 37]. While in our analysis, neutrophils 
decreased in cancerous LUAD/LUSC compared to 
paracancerous LUAD/LUSC. The confliction was 
similar to the results of macrophages. Macrophages are 
generally grouped into 2 categories on the basis of 
their function: M1 and M2 macrophages. The M1 
macrophages participate in the proinflammatory 
response and antitumor immunity, whereas the M2 
macrophages indicate an anti-inflammatory response 
and pro-tumorigenic properties [38]. In the present 
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study, we found that paracancerous LUAD/LUSC had 
a higher infiltration of M2 macrophages compared to 
cancerous LUAD/LUSC, which was inconsistant with 
the previous researches [27, 37]. The inconsistent 
results regarding to the distributions of neutrophils and 
M2 macrophages might due to the diverse sources of 
the patients between different studies. Furthermore, 
most studies evaluated neutrophils and M2 
macrophages by immunohistochemistry-based analysis 
of a single or two representative surface markers, 
which can be misleading as many genes are expressed 
in different cell types. In our study, we evaluated the 
proportion of neutrophils and M2 macrophages by the 
bioinformatics tools, known as CIBERSORT. 
CIBERSORT is a well-recognized algorithm that can 
accurately estimate 22 TIICs contribution using a 
machine-learning support vector regression method 
[39–40]. As a consequence, our study put forward a 
novel view at the role of neutrophils and M2 
macrophages in LUAD or LUSC. In addition, some of 
the other TIIC subpopulations, such as plasma cells, 
naïve B cells, and resting and activated NK cells, were 
also found to be associated with some clinical 
characteristics, reflecting the activities of the various 
subsets of TIICs in the development of tumors. Welsh 
et al. [41] showed that an increased islet/stromal mast 
cell ratio was an advantageous independent prognostic 
factor for patients with NSCLC. However, Kawai et al. 
[42] found no correlation of mast cells with clinical 
outcome, whereas G-Andre Banat et al. [43] reported 
that the number of mast cells was higher in tumor 
tissue than in tissue of healthy donors and was 
obviously elevated in stage III compared with stage I 
lung cancer. In our findings, the patients with LUAD 
had a higher infiltration of resting mast cells than 
those with LUSC, while the activated mast cells were 
higher in LUSC, suggesting the potential role of mast 
cells in the subtypes of NSCLC. Infiltrating Tfh cells 
were reported to play protective roles in breast cancer 
[44] and colorectal cancer [26], because they were 
positively associated with patient survival. In our 
results, higher infiltration of Tfh cells was closely 
related to earlier T stage in LUSC. The several 
subtypes of memory CD4+ T cells have various 
functions. For instance, they could assist on the 
cytoxic effect of CD8+ T cells, suppress harmful 
immunological reactions to self and foreign antigens, 
and even block CD8+ T-cell activation and NK cell 
killing [45, 46]. Our study reported that in LUSC, 
higher infiltration of naïve CD4+ T cells was 
associated with more advanced T stage, and CD8+ T 
cells and M1 macrophages were in a higher infiltration 
in advanced N stage. Meanwhile, in LUAD, memory B 
cells and CD8+ T cells were more whereas M0 
macrophages were less in advanced N stage compared 
to early N stage. The above results revealed diverse 

roles of the immune cells in tumor progress, further 
study was urged to investigate role of diverse immune 
cells in tumor microenvironment. 
 
Finally, we validated the prognostic genes using GEO 
data of an independent cohort of patients with NSCLC. 
Of the 23 immune-related prognostic genes identified in 
LUAD, 7 were reported to be associated with the 
progression of NSCLC or other cancers, such as 
ICAM3 [47], MS4A1 [48], and IL-16 [49]. The 
remaining 16 genes have not been previously studied in 
any cancers. For LUSC, only 3 immune-related genes 
were validated as prognostic factors. Of these, the 
functions of GSTA1 [50] and HAS1 [51] in lung cancer 
have been reported, whereas the role of LGI2 in cancer 
remained unknown. All these genes have the potential 
to become novel prognostic biomarkers for NSCLC. 
 
However, there are potential limitations in the present 
study. First, this was a retrospective study based on 
available gene expression and clinical information data 
of NSCLC from TCGA and GEO database, while 
detailed information about resection extent, subtypes of 
LUAD, radiotherapy and chemotherapy were 
incomplete. Therefore the identification of potential 
prognostic genes and the roles of immune and stromal 
scores were limited to univariate survival analysis. 
When they are used for evaluating the prognosis of 
LUAD or LUSC patients, further independent 
validation with multivariate analysis using our own 
tissue samples with complete clinical information is 
warranted. Moreover, the mechanisms through which 
the prognostic immune-related genes modulate the 
initiation and progression of NSCLC requires further in 
vitro and in vivo investigations.  
 
In conclusion, this study provided a comprehensive 
understanding of the tumor microenvironment and 
identified a list of immune-related prognostic genes for 
patients with LUAD and LUSC. Further in vivo and 
vitro studies are urged to investigate the exact 
mechanism by which these significant immune cells and 
genes participated in NSCLC progression in order to 
improve the current therapeutic practice of NSCLC.  
 
MATERIALS AND METHODS 
 
Data mining of TCGA and GEO databases 
 
The gene expression profiles of patients with LUAD 
and LUSC, along with their clinical data including 
gender, age, clinical stage, TNM stage, histological 
type, survival, and outcome, were obtained directly 
from the data portal of TCGA (https://tcga-
data.nci.nih.gov/tcga/). The procedures were carried out 
in accordance with the Helsinki Declaration of 1975. 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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For data validation, the gene expression profiles of 
patients with NSCLC with clinical information were 
obtained directly from the GEO data portal (https:// 
www.ncbi.nlm.nih.gov/geo/). The inclusion criteria 
were as follows: (i) patients diagnosed with LUAD or 
LUSC, and (ii) detection of the gene level in tissue 
samples. The exclusion criteria were (i) clinical data 
without survival times and outcomes, and (ii) datasets 
with small sample sizes (n < 50). Finally, the following 
eligible dataset was chosen: Accession Number 
GES37745 (n = 106 for LUAD, and n = 66 for LUSC). 
All the samples were chosen from patients of primary 
untreated tumors. 
 
Identification of differentially expressed genes 
 
Data analyses were performed using the “limma” 
package from Bioconductor (version 3.8; 
https://bioconductor.org/packages/release/bioc/html/lim
ma.html). A fold change of >2, P value of <0.05, and 
false discovery rate of <0.05 were set as the cutoffs for 
screening the DEGs.  
 
Survival analysis 
 
Kaplan-Meier survival analysis was used to illustrate 
the correlation of the immune and stromal scores with 
the OS of the patients and to identify potential 
prognostic genes. 
 
Functional analysis 
 
The PPI network was constructed from the STRING 
database. Functional enrichment analysis of the 
prognostic DEGs was performed using several packages 
(“colorspace,” version 1.4-1, https://cran.r-project.org/ 
web/packages/colorspace/; “stringi,” version 1.4.3, 
https://cran.r-project.org/web/packages/stringi/index. 
html; and “ggplot2,” version 3.1.1, https://cran.r-
project.org/web/packages/ggplot2/index.html), “DOSE” 
(version 3.8, https://bioconductor.org/packages/release/ 
bioc/html/DOSE.html), “clusterprofiler” (version 3.8, 
https://bioconductor.org/packages/release/bioc/html/clust
erProfiler.html), and “enrichplot” (version 3.8, http:// 
bioconductor.org/packages/release/bioc/html/enrichplot.h
tml) from Bioconductor (http://www.bioconductor. 
org/) to annotate the genes according to GO categories of 
biological processes, molecular functions, and cellular 
components. They were also used to conduct pathway 
enrichment analysis on the basis of data from KEGG 
pathways.  
 
Tumor microenvironment analysis 
 
The immune and stromal scores were evaluated by 
applying the ESTIMATE algorithm to the downloaded 

LUAD and LUSC datasets, respectively. The numbers 
and ranges of each type of TIICs were calculated with 
CIBERSORT and a method developed by Bindea et al 
[26]. Correlation-based heatmaps were created using the 
package “corrplot” (version 0.84, https://cran.r-project. 
org/web/packages/corrplot/index.html). Venn diagrams 
were drawn using the package “VennDiagram” and 
violin plots were produced with the package “vioplot” 
(version 0.3.0, https://cran.r-project.org/web/packages/ 
vioplot/index.html). 
 
Statistical analyses 
 
The associations of the immune and stromal scores, 
TIICs, and DEGs with prognosis were analyzed by 
Kaplan-Meier survival analysis and the log-rank test. 
The correlations of the immune and stromal scores with 
clinical characteristics were assessed using 
nonparametric tests (i.e., Wilcox test if the data were 
divided into 2 groups; and the Kruskal test if the data 
were divided into 3 groups or more). Statistical analyses 
were performed using the SPSS 17.0 statistical software 
package (SPSS, Chicago, IL, USA). The differential 
gene expression analysis, functional analysis, and 
unsupervised clustering analysis were performed using 
R version 3.5. 
 
Ethics approval  
 
Ethical approval was obtained from the Research Ethics 
Committee of Qilu Hospital of Shandong University as 
per the Helsinki declaration and its later amendments. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Remarkable genes with a high degree of connectivity with other genes. (A) Top 30 remarkable genes 
with the most connectivity node were selected in LUAD. (B) Top 30 remarkable genes with the most connectivity node were selected in LUSC. 
LUAD, lung adenocarcinoma, LUSC, lung squamous cell carcinoma. 
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Supplementary Figure 2. Immune landscape of the microenvironment in LUAD and LUSC. Differences of 22 immune cells 
infiltration between cancerous tissue and paracancerous tissue in LUAD (A) and LUSC (B). Horizontal axis: list of immune cells; Vertical axis: 
fraction of immune cells infiltrated in samples of patients. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma. 
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Supplementary Figure 3. Differences of immune infiltration between patients with LUAD and those with LUSC. Comparison of 
immune infiltration in patients with LUAD (blue) and those with LUSC (red). Horizontal axis: list of immune cells; Vertical axis: fraction of 
immune cells infiltrated in samples of patients. P < 0.05 was considered statistically significant. LUAD, lung adenocarcinoma, LUSC, lung 
squamous cell carcinoma. 
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Supplementary Figure 4. Comparison of the immune infiltration and T, N, and M stages of patients with LUAD or LUSC. (A, B) 
Differences of immune infiltration between T1-T2 stage and T3-T4 stage in LUAD or LUSC. (C, D) Differences of immune infiltration between 
N0 stage and N1-N3 stage in LUAD or LUSC. (E, F) Differences of immune infiltration between M0 stage and M1 stage in LUAD or LUSC. 
Horizontal axis: list of immune cells; Vertical axis: fraction of immune cells infiltrated in samples of patients. P < 0.05 was considered 
statistically significant. LUAD, lung adenocarcinoma, LUSC, lung squamous cell carcinoma. 
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Supplementary Table 
 

Supplementary Table 1. Significant DEGs in overall survival of patients with NSCLC. 
Subtype of NSCLC Significant DEGs for overall survival 

LUAD GAPT, LILRA4, CD33, CXorf21, TMEM273, CLEC10A, CLEC17A, GPIHBP1, JAML, RUBCNL, 
SCIMP, BTK, TLR7, CD200R1, IRF8, CTSG, FOLR2, DOK2, TFF1, PRKCB, CHRNA5, KLK12, 

CD80, MPEG1, CCR2, INHA, CR1, RASGRP4, PLEK, APOC4-APOC2, RTN1, ATP6V0D2, 
CLEC4A, SLCO2B1, P2RY12, NLRC4, OSCAR, NAIP, ARHGAP15, P2RY13, CD53, PKHD1L1, 

STAP1, TNFSF8, ARHGEF6, GIMAP8, IL16, MCEMP1, CD300C, PTCRA, FCGR1B, PI16, 
CRB2, HLA-DQA1, LILRA6, DNASE2B, IL10, NCKAP1L, LST1, MS4A7, GIMAP4, ICAM3, 

LY86, SIGLEC1, PTPRQ, FCRL3, CD52, ALOX5AP, FDCSP, GIMAP5, S100P, SLAMF1, 
CLECL1, PTX3, RSPO1, TREM2, ZNF831, OLR1, TLR10, FCRL1, TMEM236, LCN15, FCRLA, 

MS4A1, CD1C, ABCC8, SPN, XIRP1, COL6A6, CSF2RB, FCRL4, CD300LG, MS4A6A, 
KIAA1324, CLEC4G, CD79B, GIMAP6, PTPRC, CD84, SASH3, CD1E, NLRP3, SIT1, LCP2, 

PTPRO, IKZF1, MRC1, CCL14, BARX1, ADAMTS8, GPR34, TLR4, GPR174, HPGDS, CD226, 
CCL13, CYSLTR2, MS4A14, ABI3BP, SIGLEC14, KBTBD8, CD1B, CD28, VEGFD, GNRH2, 

P2RX7, EVI2B, DOCK2, SIRPB1, BCAN 
LUSC CD14, ELANE, C11orf96, SNAI1, ISM2, THBS1, MYBPH, LONRF3, HPR, CCDC177, GPIHBP1, 

FOLR2, ACTA2, PCDHGA12, PLA2G5, CRISPLD2, VSIG4, FGA, MSR1, FGG, CFB, NLRP12, 
MEDAG, TFPI2, GGTLC1, FCN3, APOH, SFTA2, POU2F2, GREM1, HAS1, LGI2, UGT1A7, 

CCL2, FHL5, F5, HSD11B1, F13A1, TCF21, SFTPA1, FBP1, ENPP2, OLR1, SERPINA1, ZBTB16, 
CLIC5, SLC7A7, C2, SFTPB, MAP1LC3C, STAB1, MYO1G, AKAP2, MCHR1, CYTH4, TGM2, 
C3AR1, LRRK2, AOC3, RNASE1, CD300E, SFTPA2, LCP1, CSF2, MMP19, CCR1, FCGR2A, 
GSTA1, LRRN4, ACSL5, SLC22A31, CXCR1, TNXB, SSX1, TMEM236, C1QTNF1, TRPV2, 

PECAM1, ACVRL1, ZEB2, ASPA, GJA5, CADM3, STAP1, C5AR2, ADAM11, PTGER2, PDE1B, 
DLC1, NAPSA, MARCO, GNG11, ABCA3, SLC34A2, AGTR2, RPRM, MUC21, KCNMB1, DPT, 

SFRP2, STARD8, CSF1R, MCEMP1, TYROBP, PODN, SFTPD, COL6A5, RFLNA, IL2RA, 
LSAMP, TNFSF13B, LDB2, SPNS3, GPD1, SH2B3, MT1A, P2RY14, PPP1R27, TEX26, 

ANGPTL1, C4BPA, PAX5, CD80, CCR4, RUBCNL, IL5RA, G0S2, ANKRD1, EMCN, C1QTNF7, 
BCL2A1, C6, RARRES2, CETP, RSPO3, ZBP1, IL4I1, INMT, MYCT1, ADGRE3 

Abbreviations: NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; DEGs, 
differentially expressed genes. 


