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ABSTRACT 
 

We investigated whether telomere length (TL) reflecting physical rather than chronological aging is associated with 
disease progression in the different cognitive stages of Alzheimer’s disease (AD). Study participants included 89 
subjects with amyloid pathology (A+), determined through amyloid PET or cerebrospinal fluid analysis, including 26 
cognitively unimpaired (CU A+) individuals, 28 subjects with mild cognitive impairment (MCI A+), and 35 subjects 
with AD dementia (ADD A+). As controls, 104 CU A- individuals were selected. The participants were evaluated 
annually over two years from baseline. Compared to the highest TL quartile group of MCI A+ participants, the 
lowest TL quartile group yielded 2-year differences of -9.438 (95% confidence interval [CI] = -14.567 ~ -4.309), -
26.708 (-41.576 ~ -11.839), 3.198 (1.323 ~ 5.056), and 2.549 (0.527 ~ 4.571) on the Mini-Mental State Examination, 
Consortium to Establish a Registry for AD, Clinical Dementia Rating-Sum of Boxes, and Blessed Dementia Scale-
Activities of Daily Living, respectively. With this group, the lowest TL quartile group had a significantly greater 
probability of progressing to ADD than the highest TL quartile group (hazard ratio = 13.16, 95% CI = 1.11 ~ 156.61). 
Telomere shortening may be associated with rapid cognitive decline and conversion to dementia in MCI A+.  
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INTRODUCTION 
 

The number of people with age-related dementia, 

particularly Alzheimer's disease dementia (ADD), is 

rapidly increasing due to worldwide aging populations. 

Over the past decade, significant advances have been 

made in identifying AD biomarkers, mainly through 

neuroimaging and cerebrospinal fluid (CSF) molecular 

analysis. The biomarkers associated with amyloid β 

(Aβ) plaques include cortical amyloid positron emission 

tomography (PET) ligand binding [1–3] or low CSF 

Aβ42 [4], both of which provide evidence of the AD 

pathophysiological process in vivo. Recent studies 

using AD biomarkers suggest a 20- to 30-year interval 

between initial amyloid positivity and the onset of 

dementia [5]. Approximately 25% of cognitively 

unimpaired (CU) individuals and 50-70% of individuals 

with mild cognitive impairment (MCI) in the AD 

syndromal cognitive staging show amyloid deposition 

on PET or CSF studies [6–8]. CU individuals with a 

positive amyloid biomarker are classified as having 

preclinical AD [9].   

 

Despite extensive research in the field of AD, no 

treatment has yet been developed to modify its 

progression. Thus, alternative therapies, including 

nonpharmacological approaches and risk factor 

controls, are becoming more important. Interventions 

targeting diverse risk factors, including more childhood 

education, exercise, maintaining social engagement, 

reducing smoking, and management of diabetes mellitus 

(DM), depression, poor sleep, and midlife hearing loss, 

obesity, and hypertension might have the potential to 

delay or prevent a third of dementia cases [10, 11]. 

Physical activity (PA) has also been associated with 

slower progression of dementia and with a lower risk of 

mortality in ADD [12]. However, age is a robust 

nonmodifiable risk factor for AD [10]. 

 

Telomeres are repetitive nucleotide sequences at the end 

of chromosomes that are shortened by cell division and 

oxidative stress [13, 14]. Critically short telomeres 

induce cellular senescence [13, 15], and telomere 

shortening is associated with aging and age-related 

chronic diseases [16]. Measurement of leukocyte 

telomere length (TL) is widely used as a marker of TL 

in other tissues because of their easy availability [17]. 

Regulation of TL is the result of the interplay between 

multiple environmental and genetic factors. Recently, 

TL has emerged as a promising biomarker to assess the 

cumulative influence of psychosocial, environmental, 

and behavioral factors on complex disease risk. Shorter 

TL is associated with high levels of perceived stress, 

major depressive disorder, low educational attainment, 

physical inactivity, and short sleep duration [18]. 

Therefore, TL is increasingly being studied as a 

possible epigenomic marker associated with 

neurodegenerative diseases such as AD [19]. Since the 

main risk factors associated with telomere shortening 

are also related to the pathogenesis of AD, it is 

speculated that telomere attrition may be associated 

with the progression of AD. 

 

However, the data from published studies on TL in AD 

and MCI patients are both scarce and contradictory [17, 

20–22], which likely reflects methodological 

shortcomings (i.e. undetermined amyloid pathology) 

resulting in inadequate group allocation of study subjects. 

Therefore, the present study aimed to investigate whether 

TL shortening was associated with AD progression over 

two years in participants with amyloid pathology 

determined by PET or CSF studies, at the different 

cognitive stages of AD. 

 

RESULTS 
 

Demographic and clinical characteristics of study 

subjects 

 

The study included 104 CU A-, 26 CU A+, 28 MCI A+, 

and 35 ADD A+ cases. Table 1 shows the demographic 

and clinical characteristics of participants by AD 

cognitive stage. The CU A- and CU A+ participants had 

a significantly lower mean age than the MCI A+ and 

ADD A+ participants. The ADD A+ patients had 

significantly lower educational levels and Mini-Mental 

State Examination (MMSE) scores than the other 

groups. The prevalence of men was lower in the ADD 

A+ group than in the other groups. The Consortium to 

Establish a Registry for AD (CERAD) and Clinical 

Dementia Rating-Sum of Boxes (CDR-SB) scores 

differed by cognitive stage, with better performance in 

the order of CU A+ > MCI A+ > ADD A+. The Logical 

Memory (LM) delayed recall score was significantly 

higher in the CU A- and CU A+ groups than in the MCI 

A+ and ADD A+ groups. The CU A- group had 

significantly lower standard uptake value ratios 

(SUVRs) on 18F-flutemetamol PET and 11C-Pittsburgh 

compound-B (PiB) PET, lower prevalence of 

Apolipoprotein E (APOE) ε4 carrier, and higher CSF 

Aβ42 levels than the other groups. The ADD A+ 

patients had significantly higher CSF total tau (t-tau), 

tau phosphorylated at Thr181 (p-tau), t-tau/Aβ42, and 

p-tau/Aβ42 levels than the other groups. There were no 

differences between the groups regarding mean cortical 

thickness and TL (Table 1). 

 

Associations between telomere length and cognitive 

function or AD biomarkers 

 

The results of simple linear regression analyses of the 

association between TL as independent variable and 



 

www.aging-us.com 4409 AGING 

Table 1. Demographic and clinical characteristics of the participants by AD cognitive stage. 

 CU A- CU A+ MCI A+ ADD A+ P*  P < 0.05† 

N 104 26 28 35   

Age, years 67.1 (7.5) 66.7 (7.0) 74.6 (7.8) 75.1 (7.5) <0.001 b, c, d, e 

Male 44 (42.3%) 12 (46.2%) 18 (64.3%) 9 (25.7%) 0.023  

Education, years 10.1 (5.3) 10.4 (5.1) 10.1 (3.6) 6.3 (4.0) 0.001 c, e, f 

MMSE  26.4 (2.8) 26.2 (3.1) 23.1 (4.4) 16.7 (3.8) <0.001 b, c, e, f 

CERAD 79.1 (12.4) 76.7 (13.5) 55.3 (13.5) 37.4 (10.6) <0.001 b, c, d, e, f 

LM delayed recall  12.2 (7.8) 9.1 (6.4) 2.8 (3.5) 0.5 (1.2) <0.001 b, c, d, e 

CDR-SB 0.01 (0.05) 0.02 (0.10) 1.21 (0.93) 4.64 (2.30) <0.001 b, c, d, e, f 

Geriatric Depression Scale  8.3 (6.1) 11.3 (8.4) 11.9 (7.8) 11.4 (7.5) 0.045  

APOE ε4 carrier 15 (14.4%) 11 (42.3%) 12 (42.9%) 18 (51.4%) <0.001  

FMM composite SUVR‡ 0.57 (0.03) 0.70 (0.14) 0.74 (0.13) 0.82 (0.13) <0.001 a, b, c, e 

PiB composite SUVR§ 1.08 (0.05) 1.43 (0.22) 1.60 (0.19) 1.70 (0.36) <0.001 a, b, c 

CSF Aβ42, pg/ml¶ 556.0 (55.8) 386.5 (108.8) 308.2 (86.8) 275.7 (79.2) <0.001 a, b, c, e 

CSF t-tau, pg/ml¶ 49.5 (10.5) 59.1 (36.0) 60.0 (23.5) 96.4 (62.3) <0.001 c, e, f 

CSF p-tau, pg/ml¶ 16.6 (4.5) 23.4 (10.8) 27.5 (18.7) 39.4 (23.9) <0.001 b, c, e, f 

CSF t-tau/Aβ42¶ 0.09 (0.02) 0.19 (0.19) 0.21 (0.11) 0.40 (0.35) <0.001 c, e, f 

CSF p-tau/Aβ42¶ 0.03 (0.01) 0.07 (0.05) 0.10 (0.08) 0.16 (0.11) <0.001 b, c, e, f 

Cortical thickness, mm 3.10 (0.14) 3.05 (0.17) 3.03 (0.14) 2.95 (0.14) 0.119  

Hippocampal volume, cm3 5.14 (0.74) 5.04 (0.70) 4.45 (1.10) 4.45 (0.87) 0.004 c 

Telomere length, kb 7.83 (2.03) 8.39 (2.43) 7.52 (1.95) 7.84 (2.04) 0.538  

Values are means (standard deviations) or number (%). CU, cognitively unimpaired; MCI, mild cognitive impairment; ADD, 
Alzheimer’s disease dementia; A−, absence of amyloid pathology determined by normal amyloid PET finding or CSF study; A+, 
presence of amyloid pathology determined by abnormal amyloid PET finding or CSF study; MMSE, Mini-Mental State 
Examination; CERAD, Consortium to Establish a Registry for AD; LM, logical memory; CDR-SB, Clinical Dementia Rating-Sum of 
Boxes; APOE, apolipoprotein E; FMM, flutemetamol; PIB, Pittsburgh compound-B; CSF, cerebrospinal fluid; Aß, amyloid ß; t-
tau, total tau; p-tau, tau phosphorylated at Thr181. *Chi-square test for categorical variables, analysis of variance for age and 
education, analysis of covariance (ANCOVA) for GDS with age, sex, and education level as covariates, and ANCOVA for other 
continuous variables with age, sex, education level, and GDS as covariates. †Tukey method for age and education and 
Bonferroni analysis for other continuous variables. a, CU A- vs. CU A+; b, CU A- vs. MCI A+; c, CU A- vs. ADD A+; d, CU A+ vs. 
MCI A+; e, CU A+ vs. ADD A+; f, MCI A+ vs. ADD A+. ‡Measured in 53 CU A-, 20 CU A+, 21 MCI A+, and 22 ADD A+ participants. 
§Measured in 42 CU A-, 6 CU A+, 6 MCI A+, and 10 ADD A+ participants. ¶Measured in 69 CU A-, 17 CU A+, 16 MCI A+, and 21 
ADD A+ participants.  
 

each baseline cognitive function test as dependent 

variable are shown in Figure 1. Across all A+ 

participants, higher TL was associated with better 

global cognition measured with MMSE after adjustment 

for age, sex, and education (Table 2). Higher TLs were 

associated with better global cognition, measured with 

MMSE, as well as better memory function, measured 

with LM delayed recall, in the MCI A+ group. The 

relationship between CERAD and TL also showed a 

positive trend in the MCI A+ group, although it did not 

reach statistical significance.  

TL was not correlated with CSF Aβ42, t-tau, p-tau, t-

tau/Aβ42, or p-tau/Aβ42 levels, composite SUVRs on 
11C-PiB PET or on 18F-flutemetamol PET, cortical 

thickness, or hippocampal volume in all A+ participants 

as well as in each cognitive stage A+ group (Table 3). 

 

Influence of telomere length on clinical outcomes 

over time 

 

There were no differences between the TL quartile 

groups in each cognitive stage group with regard to 
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age, sex, education, body mass index (BMI), 

homocysteine level, total sleep time, Mini Nutritional 

Assessment (MNA) and Geriatric Depression Scale 

(GDS) scores, or the prevalence of hypertension, DM, 

dyslipidemia, current smoking, current drinking, 

sarcopenia, APOE ε4 carriers, or for participants that 

met the World Health Organization PA guidelines (≥ 

600 metabolic equivalent minutes of PA per week) 

[23] (Supplementary Table 1). Thus, the relationship 

of the baseline TL quartile level (as the explanatory 

variable) with the four clinical outcome measures was 

analyzed using linear mixed models with a function of 

TL quartile group, age, time, and group x time 

interaction, in each AD cognitive stage group 

(Supplementary Table 2). 

In the lowest TL quartile group of MCI A+ participants, 

the estimated mean differences on 2-year follow-up 

evaluation compared with the highest TL quartile group 

were -9.438 (95% confidence interval [CI] = -14.567 ~ -

4.309, P = 0.001), -26.708 (95% CI = -41.576 ~ -11.839, 

P = 0.001), 3.198 (95% CI = 1.323 ~ 5.056, P = 0.001), 

and 2.549 (95% CI = 0.527 ~ 4.571, P = 0.014) on 

MMSE, CERAD, CDR-SB, and Blessed Dementia Scale-

Activities of Daily Living (BDS-ADL), respectively 

(Figure 2A–2D and Supplementary Table 2). Meanwhile, 

in the lowest TL quartile group of CU A- participants, the 

estimated mean difference over the same 2-year period 

compared with the highest TL quartile group was 0.524 

(95% CI = 0.201 ~ 0.846, P = 0.002) on the BDS-ADL 

(Supplementary Table 2). 

 

 
 

Figure 1. Associations between telomere length (TL) and baseline cognitive function in each Alzheimer’s disease (AD) 
cognitive stage group. Simple linear regression was performed with TL as independent variable and each cognitive function 
test as dependent variable. (A) Significant positive association between TL and Mini-Mental State Examination (MMSE) scores in the 

cognitively unimpaired (CU) A+ group (R2 = 0.190). (B) Significant positive association between TL and Consortium to Establish a Registry for 
AD (CERAD) scores in the AD dementia (ADD) A+ group (R2 = 0.152). (C) No significant association was detected between TL and Clinical 
Dementia Rating-Sum of Boxes (CDR-SB) in each AD cognitive stage group. (D) Significant positive association between TL and Logical 
Memory delayed recall scores in the mild cognitive impairment (MCI) A+ group (R2 = 0.245). Higher scores suggest better cognition in MMSE, 
CERAD, and LM delayed recall test, and lower scores suggest better performance in CDR-SB.  
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Table 2. Associations between telomere length and cognitive function in the AD cognitive stage groups. 

 MMSE   CERAD   CDR-SB   LM delayed recall 

 b* (95% CI) P†  b* (95% CI) P†  b* (95% CI) P†  b* (95% CI) P† 

CU A- (N = 104)           

TL 0.190 

(-0.042 ~ 0.422) 

0.108  -0.446 

(-1.314 ~ 0.421) 

0.310  -0.001 

(-0.006 ~ 0.004) 

0.706  -0.476 

(-1.160 ~ 0.208) 

0.170 

CU A+ (N = 26)           

TL 0.339 

(-0.037 ~ 0.715) 

0.075  -0.480 

(-2.151 ~ 1.192) 

0.557  0.002 

(-0.016 ~ 0.020) 

0.811  -0.268 

(-1.218 ~ 0.681) 

0.562 

MCI A+ (N = 28)           

TL 1.026 

(0.047 ~ 2.005) 

0.041  2.487 

(-0.090 ~ 5.060) 

0.058  -0.128 

(-0.348 ~ 0.092) 

0.242  1.048 

(0.348 ~ 1.747) 

0.005 

ADD A+ (N = 35)           

TL 0.356 

(-0.351 ~ 1.063) 

0.312  1.539 

(-0.287 ~ 3.365) 

0.095  -0.040 

(-0.499 ~ 0.420) 

0.862  0.072 

(-0.162 ~ 0.306) 

0.535 

All A+ (N = 89)           

TL 0.531 

(0.070 ~ 0.991) 

0.024  1.244 

(-0.348 ~ 2.836) 

0.124  -0.058 

(-0.300 ~ 0.184) 

0.636  0.334 

(-0.139 ~ 0.808) 

0.164 

TL, telomere length; CU, cognitively unimpaired; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia; A−, 
absence of amyloid pathology determined by normal amyloid PET finding or CSF study; A+, presence of amyloid pathology 
determined by abnormal amyloid PET finding or CSF study; MMSE, Mini-Mental State Examination; CERAD, Consortium to 
Establish a Registry for AD; CDR-SB, Clinical Dementia Rating-Sum of Boxes; LM, logical memory; CI, confidence interval. 
*Unstandardized coefficient of regression. †Linear regression analysis with each cognitive function test as dependent variable 
and TL as independent variable, controlling for age, sex, and education. 
 

Influence of telomere length on AD cognitive stage 

progression 

 

Eight (7.7%) participants from the CU A- group 

progressed to MCI over two years. Seven (26.9%) 

participants from the CU A+ group showed cognitive 

impairment over two years, with five progressing to 

MCI and two progressing to ADD. Ten (35.7%) 

participants from the MCI A+ group progressed to ADD 

within the two-year follow-up. There were no 

differences between the TL quartile groups in each 

cognitive stage group with respect to demographic 

factors, BMI, MNA, homocysteine level, total sleep 

time, hypertension, DM, dyslipidemia, current smoking, 

current drinking, sarcopenia, APOE ε4, PA, and GDS 

(Supplementary Table 1). Therefore, the Cox 

proportional hazards model was adjusted only for age. 

This analysis showed that among MCI A+ participants 

the lowest TL quartile group had a significantly greater 

probability of progressing to ADD compared with the 

highest TL quartile group (hazard ratio [HR] = 13.16, 

95% CI = 1.11 ~ 156.61, P = 0.041) (Table 4 and Figure 

3). Among CU A+ participants, rate of progression to 

MCI or ADD was higher in the lowest TL quartile 

group than in the other groups. However, for CU A+ 

participants the HR of conversion to MCI or ADD did 

not differ significantly between the lowest and highest 

TL quartile groups. 

 

DISCUSSION 
 

The present results demonstrate that very short 

telomeres reflecting pathological aging are associated 

with a rapid decline in cognitive function in MCI A+ 

individuals and with conversion from MCI to dementia. 

In previous long-term follow-up studies, telomere 

shortening was not associated with either disease 

progression in MCI or AD [21, 24] or progression of 

cognitive status in MCI or CU [24]. However, in the 

referred studies subjects were enrolled based solely on 

clinical diagnostic criteria, and evaluation of brain 

amyloid pathology was not described. Thus, some 

patients without brain amyloid pathology may have 

been included in the AD or MCI group, while 

individuals with brain amyloid pathology may have 

been included in the healthy elderly group. Therefore, 
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Table 3. Correlation between telomere length and biomarkers of Alzheimer’s disease in the Alzheimer’s continuum 
groups. 

 CU A+ MCI A+ ADD A+ All A+ 

 r P r P r P r P 

CSF Aβ42*  0.130 0.608 0.171 0.511 -0.082 0.724 0.104 0.444 

CSF t-tau* -0.054 0.830 -0.091 0.737 0.225 0.328 0.082 0.553 

CSF p-tau* -0.171 0.498 -0.158 0.545 -0.012 0.958 -0.081 0.554 

CSF t-tau/Aβ42* -0.097 0.701 -0.160 0.553 0.355 0.114 0.124 0.366 

CSF p-tau/Aβ42* -0.165 0.514 -0.173 0.507 0.133 0.565 -0.027 0.844 

FMM composite SUVR† 0.008 0.972 0.360 0.109 -0.050 0.824 0.012 0.925 

PiB composite SUVR‡ -0.535 0.216 0.248 0.591 0.009 0.980 -0.208 0.328 

Cortical thickness -0.122 0.544 -0.006 0.975 -0.060 0.737 -0.039 0.719 

Hippocampal volume  0.153 0.447 0.157 0.426 0.022 0.900 0.152 0.156 

CU, cognitively unimpaired; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia; CSF, cerebrospinal fluid; A−, 
absence of amyloid pathology determined by normal amyloid PET finding or CSF study; A+, presence of amyloid pathology 
determined by abnormal amyloid PET finding or CSF study; Aß, amyloid ß; t-tau, total tau; p-tau, tau phosphorylated at 
Thr181; FMM, flutemetamol; PIB, Pittsburgh compound-B. *Measured in 17 CU A+, 16 MCI A+, and 21 ADD A+ participants. 
†Measured in 20 CU A+, 21 MCI A+, and 22 ADD A+ participants. ‡Measured in 6 CU A+, 6 MCI A+, and 10 ADD A+ participants. 
 

 

 

Figure 2. Changes in cognitive performance over 2 years according to telomere length (TL) in mild cognitive impairment (MCI) 
A+ participants. (A) Mini-Mental State Examination (MMSE). (B) Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). (C) 

Clinical Dementia Rating-Sum of Boxes (CDR-SB). (D) Blessed Dementia Scale-Activities of Daily Living (BDS-ADL). Figures show estimated 
means of clinical outcome measures from baseline to 1- and 2-year follow-up in each TL quartile group. The relationship of baseline TL 
quartile level (as the explanatory variable) with each clinical outcome measure (as a dependent variable) was analyzed using linear mixed 
models with a function of TL quartile group, age, time, and group x time interaction. Lower scores suggest worse cognition in MMSE and 
CERAD, and higher scores suggest worse performance in CDR-SB and BDS-ADL. 
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Table 4. Hazard ratios of conversion to MCI or dementia according to the telomere length quartile groups of each CU 
and MCI groups. 

Group Telomere length (kb) Total Event HR (95% CI) P* 

CU A- 

(N = 104) 

8.11 < 26 2 1 (reference)  

7.17 – 8.11 26 2 0.84 (0.11 ~ 6.51) 0.866 

6.64 – 7.16 26 3 1.25 (0.20 ~ 8.00) 0.815 

≤ 6.63 26 1 0.51 (0.04 ~ 6.08) 0.597 

CU A+  

(N = 26) 

8.60 < 5 1 1 (reference)  

7.74 - 8.60 8 2 1.35 (0.11 ~ 16.95) 0.817 

6.68 - 7.73 7 0  0.965 

 ≤ 6.67 6 4 3.18 (0.32 ~ 31.68) 0.323 

MCI A + 

(N = 28) 

7.85 < 7 1  1 (reference)  

7.04 - 7.85 6 2  2.93 (0.25 ~ 34.93) 0.395 

6.62 - 7.03 8 4 3.63 (0.39 ~ 33.96) 0.259 

≤ 6.61 7 3 13.16 (1.11 ~ 156.61) 0.041 

CU, cognitively unimpaired; MCI, mild cognitive impairment; A−, absence of amyloid pathology determined by normal 
amyloid PET finding or CSF study; A+, presence of amyloid pathology determined by abnormal amyloid PET finding or CSF 
study; HR, hazard ratio; CI, confidence interval. *Cox proportional hazards model adjusted for age.  
 

the negative results of those studies might be due to 

misclassification of patients. To our knowledge, this is 

the first study to evaluate the long-term prognostic 

effect of TL in patients with amyloid pathology 

confirmed by AD biomarkers. There was no dose- 

 

 
 

Figure 3. Conversion from mild cognitive impairment 
(MCI) to dementia according to the telomere length (TL) 
quartile groups in MCI A+. Normalized cumulative conversion 

data are based on Cox proportional hazards regression analysis 
adjusted for age as a covariate. The lowest TL quartile group (TL ≤ 
6.61 kb) had a significantly greater probability of progressing to 
dementia compared with the highest TL quartile group (TL > 7.85 
kb) in the MCI A+ participants (hazard ratio = 13.16, 95% 
confidence interval = 1.11 ~ 156.61, P = 0.041). 

response relationship between telomere shortening and 

cognitive decline or between telomere shortening and 

dementia conversion. This may be because critically 

short telomeres induce cellular senescence [13, 15]. 

 

The long-term prognostic effect of short telomeres was 

more pronounced in the MCI A+ stage than in the CU 

A+ or mild ADD A+ stages. There was no relationship 

between telomere shortening and rapid cognitive 

decline or ADL deterioration in the ADD A+ group. 

This may be due to severe neuroinflammation and the 

relatively weak effect of telomere shortening on the 

dementia stage of AD. This is supported by a previous 

CSF study showing that: i) soluble triggering receptor 

expressed on myeloid cells 2 (sTREM-2), a microglial 

activation marker, was increased in the CU, MCI, and 

ADD stages; ii) monocyte chemoattractant protein-1 

(MCP-1), a marker of microglial inflammatory reaction, 

was increased in the MCI and ADD stages but not in the 

CU stage; and iii) chitinase-3-like protein 1 (CHI3L1), 

an astroglial activation marker, was increased only in 

the ADD stage [25]. In the CU A+ stage (preclinical 

AD), the effect of telomere shortening on clinical 

deterioration may have been decreased because of the 

weak neuroinflammatory response and slow 

progression. In contrast, in the MCI stage of AD, where 

a moderate neuroinflammatory response occurs, the 

synergistic effect with telomere shortening may have 

been strongest. This suggests that the control of risk 

factors affecting telomere shortening is likely to be 

more important in the MCI stage. On the other hand, 

very short telomeres were associated with a rapid 

decline in ADL performance in the CU A- group. This 

suggests that pronounced telomere shortening may be 
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causally correlated with functional deterioration in 

normal aging.  

 

According to cross-sectional analyses, telomere 

shortening was also associated with poor cognitive 

function in the MCI stage of AD, as assessed by MMSE 

and LM tests, and tended to be associated with worse 

global cognition in the CU stage of AD, as assessed by 

MMSE. In contrast, telomere shortening was not 

associated with cognitive function in the ADD stage. 

These cross-sectional results also suggest that the effect 

of short telomeres was more pronounced in the MCI 

stage than in the CU or ADD stages. 

 

In this study, TL was not correlated with AD 

biomarkers such as CSF Aβ42, t-tau, and p-tau, or 

composite SUVR on amyloid PET. This suggests that 

telomere shortening may act as a synergistic factor 

rather than as a cause of AD pathogenesis. TL was also 

not correlated with neurodegeneration markers such as 

cortical thickness or hippocampal volume. However, 

because this result was obtained from a cross-sectional 

analysis, a definitive conclusion could not be reached. 

To clarify this link, it will be necessary to investigate 

whether telomere length at baseline is related to cortical 

and hippocampal atrophy progression through follow-

up brain imaging analyses. 

 

TL was not significantly different among the A+ 

cognitive stage groups in our study, nor it varied 

between each A+ and the CU A- group. This reinforces 

the notion that, unlike Aβ or tau protein, telomere 

shortening is not directly related to AD pathogenesis. A 

previous study reported significantly shorter TL in AD 

patients than in healthy elderly individuals [20]. 

However, other studies reported no significant 

difference in TL between healthy elderly individuals 

and dementia or MCI patients [24], or in cerebellum TL 

between pathologically confirmed AD patients and age-

matched control subjects [26]. In line with these 

findings, our results indicate no significant TL 

shortening in the MCI and ADD stages compared with 

healthy elderly individuals.  

 

This study has several limitations. First, the number of 

participants was relatively small, and this may have 

influenced the lack of association detected between TL 

and some clinical variables in cross-sectional and 

longitudinal analyses. Second, the follow-up time (2 

years) was short, which may have also prevented 

detection of true correlations between TL and clinical 

variables or cognitive status progression that might be 

revealed over longer periods of time. Third, TL was 

measured in peripheral leukocytes but not in the brain. 

Although it might not be a perfect surrogate, the 

measurement of leukocyte TL is used as a marker of TL 

in the brain because of the easy availability of blood 

leukocytes [17]. Indeed, in a previous study leukocyte 

and cerebellum TLs were directly correlated in 

individuals with pathologically confirmed sporadic AD 

[26]. Therefore, in this study leukocyte TL is likely to 

reflect TL in the brain. Fourth, we evaluated disease 

progression only through cognitive and functional 

assessments; we did not investigate the effects of 

telomere shortening on the progression of brain atrophy 

through follow-up brain imaging analysis, or on 

changes in biomarkers through continued amyloid PET 

imaging or CSF studies. In the future, this analysis may 

be necessary to increase correlation accuracy and to 

elucidate the mechanism of action of telomere 

shortening in AD. Fifth, we did not measure telomerase 

activity, aberrant telomeric structures, and oxidative 

stress parameters. Oxidative stress induces a decrease in 

telomerase activity and telomeric replication defects 

[27, 28], and reduced telomerase activity as well as 

telomere attrition are considered markers of accelerated 

cellular aging [28]. In addition, telomeric replication 

defects leading to aberrant telomeric structures also 

contribute to telomere shortening [27]. In the future, the 

relationship of aberrant telomere structures, telomerase 

activity, and oxidative stress parameters with cognitive 

decline should be investigated in individuals with 

different AD cognitive stages. Sixth, we only evaluated 

TL at baseline and not since then. There is a possibility 

that changes in TL during the observation period may 

have affected the cognitive decline and progression in 

clinical stage. In the future, the effect of TL changes on 

disease progression in AD clinical stages should be 

investigated. 

 

In conclusion, a critically short telomere was associated 

with a rapid decline in cognitive function in the MCI 

A+ group and with a rapid conversion from MCI A+ to 

ADD. TL was not different among the A+ cognitive 

stage groups and did not differ either between the CU 

A- group and each A+ clinical stage group. In addition, 

TL was not correlated with AD biomarkers. This 

suggests that telomere shortening may act as a 

synergistic factor rather than as a direct driver of AD 

pathogenesis. Nevertheless, our data indicate that 

marked telomere shortening may help predict cognitive 

decline in AD, especially in the MCI stage. 

 

MATERIALS AND METHODS 
 

Participants 

 

In the present study, 89 participants with amyloid 

pathology (A+; determined by abnormal amyloid PET 

findings or CSF Aβ42 levels below the cutoff point) 

and 104 CU individuals without amyloid pathology 

(A-) as a control group were selected from 
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participants of the independent Validation cohort of 

the Korean Brain Aging Study for the Early Diagnosis 

and Prediction of AD (KBASE-V) [7]. The KBASE-V 

is an independent nationwide cohort from nine 

hospitals that reconfirms new potential biomarkers 

identified in the KBASE study and is intended to 

identify risk and prognostic factors for AD in 

additional studies. There were 167 CU, 72 MCI, and 

56 ADD participants in the KBASE-V. The amyloid 

PET or CSF study was performed in 131 CU, 58 MCI, 

and 40 ADD participants. The number of participants 

with amyloid pathology proven by amyloid PET or 

CSF studies was 26, 28, and 36 in the CU A+, MCI 

A+, and ADD A+ groups, respectively. A patient in 

the ADD A+ group and a participant in the CU A- 

group were excluded because of inability to measure 

leukocyte TL. Finally, we included 26 CU A+, 28 

MCI A+, 35 ADD A+, and 104 CU A- participants in 

the present study. 

 

All of the CU participants had normal age-, sex-, and 

education-adjusted performance on four memory tests of 

the Korean version of CERAD (word list immediate 

recall, word list delayed recall, word list recognition, and 

constructional praxis recall) [29] and had a global CDR 

scale score of 0 [30]. The participants with MCI met the 

core clinical criteria for MCI due to AD established by the 

National Institute on Aging-Alzheimer’s Association 

(NIA-AA) workgroups [31], and the following criteria 

modified from the criteria proposed by Petersen et al. 

[32]: (1) CDR 0.5; (2) memory complaints compared to 

the participant’s previous memory function by patients, 

caregivers, or clinicians; (3) a performance score that was 

lower than 1.5 standard deviations (SDs) below the age-, 

education-, and sex-adjusted normative means for one or 

more of the four memory tests included in the CERAD 

[29]; (4) the ability to perform independent ADL [33]; 

and (5) not dementia. The ADD participants in the mild 

dementia stage met the following inclusion criteria: (1) 

dementia according to the Diagnostic and Statistical 

Manual of Mental Disorders, 4th Edition (DSM-IV-TR) 

[34]; (2) probable ADD according to the NIA-AA core 

clinical criteria [35]; and (3) CDR 0.5 or 1. All 

participants were aged between 55 and 90 years, and had 

a reliable informant who could provide the requested 

information to investigators. For all participants, the 

exclusion criteria included [7]: (1) the presence of major 

psychiatric illness; (2) significant neurological or medical 

condition or comorbidities that could affect cognitive 

functions; (3) contraindications for magnetic resonance 

imaging (MRI) scans (e.g., pacemaker, claustrophobia); 

(4) illiteracy; (5) severe visual or hearing difficulty or 

serious communication or behavioral problems that could 

make a clinical examination or brain scan difficult; (6) 

taking an investigational drug; and (7) pregnancy or 

breastfeeding. 

The study was performed in accordance with the 

International Harmonization Conference guidelines on 

Good Clinical Practice, and was approved by the 

institutional review board of each center. All 

participants, as well as legal representatives of ADD 

patients, provided written informed consent prior to 

study initiation. 

 

Clinical assessment 

 

All participants underwent physical and neurological 

examinations and thorough diagnostic procedures 

including assessment of participants’ cognition, abnormal 

behaviors, ADL, demographic characteristics, family 

history, current medications, vascular risk factors, and 

other comorbidities through the MMSE [29], GDS [36], 

BDS-ADL [37], and CDR yearly. The participants also 

underwent the CERAD every year and more detailed 

neuropsychological tests, including the Wechsler Memory 

Scale-Fourth edition Korean version LM I, II and 

recognition test, every two years [7]. Brain MRI and 

laboratory tests that included blood chemistry; lipid panel; 

complete blood count; serum levels of folate, vitamin 

B12, 25-hydroxy vitamin D, and brain-derived 

neurotrophic factor; C-peptide; glycated hemoglobin 

(HbA1c); homocysteine; adiponectin; venereal disease 

research laboratory test; thyroid function test; and APOE 

genotyping were performed at baseline. 

 

Hypertension was defined as systolic blood pressure ≥ 

140 mmHg, diastolic blood pressure ≥ 90 mmHg, or use 

of antihypertensive medication [38]. DM was defined 

based on current treatment with insulin or oral 

hypoglycemic medication, 8-h fasting plasma glucose ≥ 

126 mg/dl, or HbA1c ≥ 6.5% [39]. Dyslipidemia was 

defined as total cholesterol ≥ 200 mg/dl, low-density 

lipoprotein cholesterol ≥ 130 mg/dl, high-density 

lipoprotein cholesterol < 40 mg/dl, triglyceride level ≥ 

150 mg/dl, or the use of lipid-lowering drugs [40]. 

Participants’ weight and height were measured while 

they were wearing light clothing. BMI was calculated as 

their weight (kg) divided by the square of their height 

(m2). Participants underwent bioelectrical impedance 

analysis to measure the appendicular skeletal muscle 

mass index and sarcopenia was diagnosed according to 

the Asian Working Group criteria [41]. Nutritional 

status was evaluated using MNA [42]. PA was assessed 

using the International PA Questionnaire [43], and total 

sleep time was assessed using the Pittsburgh Sleep 

Quality Index [44].  

 

Brain MRI 

 

Brain MRI data were obtained from all participants 

using a 3.0 T MR scanner, which captured 3D T1-

weighted and T2-weighted SPACE sagittal images of 
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0.8-mm thickness without gap as well as diffusion 

tensor imaging, axial fluid-attenuated inversion 

recovery imaging, and resting-state functional MRI. The 

MRI protocols were based on the AD Neuroimaging 

Initiative phase 2 MRI protocols [7, 45]. The 3D T1-

weighted MRI parameters were as follows: repetition 

time (TR) = 2300 ms, echo time (TE) = 2.14 ms, 

inversion time (TI) = 900 ms, Flip Angle (FA) = 9°, and 

voxel resolution of 0.8 × 0.8 × 0.8 mm3 in the Skyra and 

Trio Tim scanners (Siemens, Washington DC, USA); 

TR = 7.32 ms, TE = 3.02 ms, TI = 400 ms, FA = 11°, 

and voxel resolution of 0.8 × 0.8 × 0.8 mm3 in the 

General Electric (GE) Discovery MR750 scanner (GE 

Healthcare, Milwaukee, WI, USA); and TR = shortest 

(6.8 ms), TE = shortest (3.1 ms), FA = 9°, and voxel 

resolution of 0.8 × 0.8 × 0.8 mm3 in the Achieva 

scanner (Philips Healthcare, Andover, MA, USA).  

 

The 3D T1-weighted MRI data were processed using 

CIVET pipeline v2.1 (http://mcin-cnim.ca/ 

neuroimagingtechnologies/civet/) [46]. The N3 intensity 

nonuniformity correction algorithm was used to calibrate 

the intensity difference due to an inhomogeneity in a 

magnetic field [47]. Corrected T1-weighted images in 

native space were aligned to the Montreal Neurological 

Institute 152 standard space [48]. Non-brain tissue was 

excluded using the BET algorithm [49]. The registered 

images were classified into white matter, gray matter, and 

CSF using an advanced neural-net classifier [46]. The 

inner surfaces of the cortex were extracted from the partial 

volume corrected white matter mask using deformable 

spherical mesh, and then the outer surface of the cortex 

was automatically extracted using the constrained 

Laplacian-Based Automated Segmentation with 

Proximities algorithm [50]. Using the Euclidean distance 

between the linked vertices of the inner and outer 

surfaces, cortical thickness values in native space were 

calculated [51]. After intensity inhomogeneity correction, 

the corrected T1-weighted images were segmented into 

the left and right sides of hippocampus using FMRIB’s 

Integrated Registration and Segmentation Tool [52]. 

Hippocampal volumes were normalized for total 

intracranial volume.   

 

Amyloid PET 

 

Of the total 193 participants in this study, 181 

underwent amyloid PET at baseline. There were 116 

participants who underwent 18F-flutemetamol PET, 64 

who underwent 11C-PiB PET, and one participant with 

the historical 18F-florbetapir PET result. The PET 

methods for each of the tracers have been previously 

described [7]. The SUVR was obtained by using the 

pons as a reference region on 18F-flutemetamol PET and 

the cerebellar gray matter as the reference region on 
11C-PiB PET. Composite SUVR values were formed by 

averaging the SUVR values for frontal, temporal, 

parietal, occipital, anterior cingulate, and posterior 

cingulate/precuneus cortices. Based on previous work, 

elevated Aβ PET was defined as composite SUVR ≥ 

0.634 on 18F-flutemetamol PET and composite SUVR > 

1.21 on 11C-PiB PET [7]. 

 

Cerebrospinal fluid analysis 

 

At baseline, 123 of the total 193 participants underwent 

spinal fluid testing in the morning. CSF was collected in 

15-mL polypropylene transfer tubes (Falcon, Corning 

Science, NY, USA) and immediately centrifuged at 

2000 g for 10 min at room temperature (RT). The 

supernatant (~10 mL) was frozen in dry ice and 

transferred to Inha University’s laboratory, where CSF 

biomarkers were measured. After thawing at RT, the 

shipped CSF samples were mixed with a pipette with a 

polypropylene tip, and 0.4-mL CSF sample aliquots 

were frozen in polypropylene tubes (Sarstedt AG and 

Co., Nümbrecht, Germany) and stored at -80°C until 

analysis. Aβ42, t-tau and p-tau were measured using the 

multiplex xMAP Luminex platform with INNO-BIA 

AlzBio3 kits (Fujirebio Europe, Ghent, Belgium). 

Based on previous work, participants who underwent 

CSF studies were deemed to have AD pathology when 

the CSF Aβ42 was 433.68 pg/ml or lower [7]. 

 

Telomere length assay 

 

Leukocyte TL was examined once at baseline. To this 

end, DNA was extracted from whole blood using G-

DEXTM IIb RBC lysis buffer and G-DEXTM IIb Cell lysis 

buffer (Intron, MA, USA). DNA hydration was performed 

with 300 μL of DNA hydration solution (QIAGEN, 

Hilden, Germany). TL analysis was carried out using a 

nonradioactive TeloTAGGG TL Assay (Roche 

Boehringer-Mannheim, Grenzach-Wyhlen, Germany) as 

described by the manufacturer. Approximately 2-4 μg of 

DNA from each sample was digested with Hinf I/RsaI 

enzyme mix and isolated by gel electrophoresis. DNA 

fragments were transferred to a nylon membrane 

(Millipore, Bedford, MA, USA) by Southern transfer and 

hybridized to a digoxigenin (DIG)-labeled probe specific 

for telomeric repeats. The membrane was incubated with 

DIG-specific antibodies conjugated to alkaline 

phosphatase, and the probe was visualized by 

chemiluminescence using an image analyzer (ImageQuant 

LAS 4000, GE Healthcare, Little Chalfont, UK). Mean 

telomeric repeat-binding factor lengths were determined 

by comparison with molecular weight standards. 

 

Outcomes 

 

We used 4 summary scores to index disease 

progression, namely, the MMSE, the CDR-SB, the 

http://mcin-cnim.ca/neuroimagingtechnologies/civet/
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
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CERAD, and the BDS-ADL. The MMSE (range 0-30) 

evaluates the orientation, registration and recall of three 

words, attention and calculation, language, repetition, 

and complex commands [29]. The CDR assesses 

dementia severity along 5 levels of impairment (rated as 

0, 0.5, 1, 2, or 3) in each of 6 domains: memory, 

orientation, judgment and problem solving, community 

affairs, home and hobbies, and personal care. The CDR-

SB score (range 0-18) is the sum of the ratings in each 

of the 6 domains [30]. The CERAD total score is the 

sum of the scores of its 7 sub-tests: verbal fluency 

(animal naming), Boston naming (15 items), word list 

learning, constructional praxis, word list recall, word 

list recognition, and constructional praxis recall [29]. 

The BDS-ADL score (range 0-17) was determined 

using an 11-item questionnaire assessing activities of 

daily life, including performing household tasks, coping 

with small sums of money, remembering short lists of 

items, finding one’s way indoors, finding one’s way 

around familiar streets, interpreting surroundings, 

recalling recent events, tendency to dwell on the past, 

eating, using the toilet, and dressing [37]. Increases in 

scores represent worsening on the CDR-SB and BDS-

ADL, and improvement on the MMSE and CERAD. 

 

We also investigated cognitive stage transitions (from 

CU to MCI or dementia, and from MCI to dementia) 

over two years. The diagnosis of MCI was based on the 

core clinical criteria for MCI due to AD established by 

the NIA-AA workgroups [31] and the criteria modified 

from those proposed by Petersen et al. [32], as 

mentioned earlier [7]. The diagnosis of dementia was 

based on DSM-IV-TR criteria for dementia [34]. The 

diagnosis of ADD was based on the core clinical criteria 

for probable ADD established by the NIA-AA 

workgroups [35]. 

 

Statistical analyses 

 

For comparisons among the CU A-, CU A+, MCI A+, 

and ADD A+ groups, we used chi-square tests for 

categorical variables and one-way analysis of variance 

(ANOVA) for age and education level. When 

statistically significant overall differences were detected 

in the ANOVA test, pairwise comparisons of means 

between the diagnosis groups were performed by 

Tukey’s method. Analysis of covariance (ANCOVA) 

was performed for statistical analysis of GDS with age, 

sex, and education level as covariates. ANCOVA was 

performed for statistical analysis of MMSE, CERAD, 

LM delayed recall test, CDR-SB, CSF Aβ42, t-tau, p-

tau, t-tau/Aβ42, and p-tau/Aβ42 levels, the composite 

SUVRs on 11C-PiB PET and on 18F-flutemetamol PET, 

mean cortical thickness, average score of right and left 

hippocampal volumes, and TL with age, education 

level, sex, and GDS as covariates. When an overall 

statistically significant difference was detected in the 

ANCOVA test, pairwise comparisons of the means 

between diagnosis groups were performed by 

Bonferroni post hoc analysis. Linear regression adjusted 

for age, sex, and education was used to examine the 

relationship between TL as independent variable and 

each baseline cognitive function test as dependent 

variable in all A+ participants and within each group. 

Pearson’s correlation coefficients were evaluated to 

examine the relationship between TL and AD 

biomarkers in all A+ participants and within each A+ 

cognitive stage group. 

 

TL was divided into quartiles in each of the CU A-, CU 

A+, MCI A+, and ADD A+ groups. We used chi-square 

tests for categorical variables and the Kruskal Wallis 

test for continuous variables to compare between TL 

quartile groups the factors associated with TL and AD 

progression in each AD cognitive stage group. We used 

linear mixed models with a random subject effect to 

analyze the relationship between baseline TL quartile 

level as the explanatory variable and the four clinical 

outcome measures. The fixed effects included TL 

quartile group, age, time, and group × time interaction. 

We used the 1st order autoregressive (AR1) covariance 

structure in the mixed model, which was selected by the 

Akaike information criterion (AIC) of the model. The 

AIC values of AR1 were the lowest in most tested 

correlation structures (Supplementary Table 3). 

 

To examine the effects of baseline TL on patient’s 

progression through the different cognitive stages, a 

Cox proportional hazards model was used after 

controlling for age with proportional hazard assumption 

checked by log-log plotting. Survival curves according 

to TL quartile groups did not intersect and were found 

to be parallel in each of CU A-, CU A+, and MCI A+ 

groups. Data are presented as HRs and 95% CIs. 

Survival was defined as the time between entering the 

KBASE-V study and the progression of cognitive status 

(from CU to MCI or dementia, or from MCI to 

dementia) or a censoring event such as withdrawal from 

the study or the last completed follow-up examination. 

Statistical analyses were performed using SPSS 19.0 

(SPSS, Chicago, IL, USA). P < 0.05 was considered 

significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1 

Supplementary Table 1. Baseline characteristics of the telomere length quartile groups in each AD cognitive stage 
group. 

Supplementary Table 2. Estimated mean differences on 2-year follow-up compared to the highest TL quartile group 
on clinical outcome measures in each telomere length (TL) quartile group. 

 MMSE  CERAD  CDR-SB  BDS-ADL 

TL, kb 
Estimate 

 (95% CI) 
P*  

Estimate  

(95% CI) 
P*  

Estimate  

(95% CI) 
P*  

Estimate 

 (95% CI) 
P* 

CU A-            

8.11 < 0   0   0   0  

7.17 - 8.11 
-1.577 

(-3.219 ~ 0.066) 
0.060  

-2.091 

(-8.425 ~ 4.243) 
0.515  

0.072 

(-0.042 ~ 0.186) 
0.212  

0.249 

(-0.077 ~ 0.574) 
0.134 

6.74 - 7.16 
-1.208 

(-2.835 ~ 0.419) 
0.144  

-1.567 

(-7.800 ~ 4.666) 
0.620  

-0.046 

(0.157 ~ 0.065) 
0.419  

0.283 

(-0.033 ~ 0.599) 
0.079 

≤ 6.73 
-1.185 

(-2.829 ~ 0.460) 
0.157  

-1.412 

(-7.761 ~ 4.937) 
0.661  

-0.027 

(-0.140 ~ 0.086) 
0.641  

0.524 

(0.201 ~ 0.846) 
0.002 

CU A+            

8.60 < 0 
 

 0   0   0  

7.74 - 8.60 
-3.403 

(-7.034 ~ 0.229) 
0.066  

-15.372 

(-31.293 ~ 0.548) 
0.058  

1.433 

(0.257 ~ 2.610) 
0.018  

-0.125 

(-1.719 ~ 1.469) 
0.874 

6.68 - 7.73 
2.176 

(-1.655 ~ 6.007) 
0.258  

3.460 

(-13.447 ~ 20.366) 
0.670  

-0.413 

(-1.649 ~ 0.822) 
0.504  

-1.832 

(-3.515 ~ -0.149) 
0.034 

≤ 6.67 
-2.061 

(-5.984 ~ 1.861) 
0.295  

-11.550 

(-28.810 ~ 5.709) 
0.182  

0.042 

(-1.227 ~ 1.310) 
0.947  

-1.161 

(-2.884 ~ 0.561) 
0.180 

MCI A+            

> 7.85 0 
 

 0   0   0  

7.04 - 7.85 
-4.881 

(-9.756 ~ 0.007) 
0.050  

-11.028 

(-25.288 ~ 3.231) 
0.125  

1.795 

(0.126 ~ 3.464) 
0.036  

0.568 

(-1.271 ~ 2.407) 
0.537 

6.62 - 7.03 
-3.509 

(-8.014 ~ 0.996) 
0.123  

-8.929 

(-22.096 ~ 4.238) 
0.177  

1.458 

(-0.138 ~ 3.055) 
0.073  

1.293 

(-0.413 ~ 3.000) 
0.134 

≤ 6.61 
-9.438 

(-14.567 ~ -4.309) 
0.001  

-26.708 

(-41.576 ~ -

11.839) 

0.001  
3.189 

(1.323 ~ 5.056) 
0.001  

2.549 

(0.527 ~ 4.571) 
0.014 

ADD A+            

> 8.38 0   0   0   0  

7.13 - 8.38 
3.278 

(-1.749 ~ 8.305) 
0.197  

4.495 

(-7.579 ~ 16.570) 
0.458  

-0.241 

(-4.380 ~ 3.897) 
0.907  

-1.575 

(-4.942 ~ 1.792) 
0.353 

6.40 - 7.12 
0.297 

(-4.946 ~ 5.540) 
0.910  

1.371 

(-11.249 ~ 13.991) 
0.828  

-0.666 

(-5.086 ~ 3.753) 
0.764  

-1.292 

(-4.801 ~ 2.217) 
0.464 

≤ 6.39 
-0.385 

(-5.267 ~ 4.498) 
0.875  

-8.630 

(-20.370 ~ 3.110) 
0.146  

0.503 

(-3.571 ~ 4.577) 
0.806  

0.330 

(-2.941 ~ 3.600) 
0.841 

CU, cognitively unimpaired; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia; A−, absence of amyloid 
pathology determined by normal amyloid PET finding or CSF study; A+, presence of amyloid pathology determined by 
abnormal amyloid PET finding or CSF study; MMSE, Mini-Mental State Examination; CERAD, Consortium to Establish a 
Registry for AD; CDR-SB, Clinical Dementia Rating-Sum of Boxes; BDS-ADL, Blessed Dementia Scale-Activities of Daily Living. 
*Linear mixed model with a function of TL quartile group, age, time, and group x time interaction.  
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Supplementary Table 3. Akaike information criterion values for the tested covariance structures: autoregressive 
process of order 1 (AR1) and compound symmetry structure corresponding to a constant correlation (CS). 

  AR1 CS 

CU A- MMSE 1280.569 1284.034 

 CERAD 2045.917 2033.524 

 CDR-SB -141.342 -97.449 

 BDA-ADL  487.704 491.361 

CU A+ MMSE 313.016 312.117 

 CERAD 469.895 468.801 

 CDR-SB 187.429 191.708 

 BDA-ADL  213.184 217.940 

MCI A+ MMSE 366.924 355.761 

 CERAD 499.865 506.772 

 CDR-SB 250.708 252.882 

 BDA-ADL  265.504 270.597 

ADD A+ MMSE 516.503 518.846 

 CERAD 649.407 658.293 

 CDR-SB 478.030 481.643 

 BDA-ADL  462.007 463.902 

CU, cognitively unimpaired; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia; A−, absence of amyloid 
pathology determined by normal amyloid PET finding or CSF study; A+, presence of amyloid pathology determined by 
abnormal amyloid PET finding or CSF study; MMSE, Mini-Mental State Examination; CERAD, Consortium to Establish a 
Registry for AD; CDR-SB, Clinical Dementia Rating-Sum of Boxes; BDS-ADL, Blessed Dementia Scale-Activities of Daily Living. 

 


