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INTRODUCTION 
 

Liver cancer is one of the greatest threats to human 

health worldwide, with hepatocellular carcinoma (HCC) 

accounting for approximately 80% of these cases [1]. 

Due to its complex pathogeny, heterogeneity of cancer 

cells, and low rates of diagnosis at early stages, the 

treatment of this disease is still not optimal and patient 

prognosis is poor [2]. Despite extensive high-throughput 

sequencing technologies and microarray analyses to 

clarify molecular targets associated with the progression 

of HCC, small sample sizes in individual studies and the 

diversity of technology platforms utilized have led to  

 

substantial discrepancies in the research, making 

statistical analyses difficult. Recently, integrated 

bioinformatics methods and data reanalysis have been 

used to overcome this problem [3–5]. 

 

The role of epigenetics in cancer progression has 

attracted increasing attention. Abnormal DNA 

methylation can modulate the expression of cancer-

related genes at the transcriptional level and predict 

prognosis for patients [6]. As an important epigenetic 

regulatory mechanism, DNA methylation is involved in 

the modulation of cancer cell proliferation, apoptosis, 

and invasion [7–9]. Although some research has shown 
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ABSTRACT 
 

The molecular mechanisms underlying hepatocellular carcinoma (HCC) progression remain largely undefined. 
Here, we identified 176 commonly upregulated genes in HCC tissues based on three Gene Expression Omnibus 
datasets and The Cancer Genome Atlas (TCGA) cohort. We integrated survival and methylation analyses to further 
obtain 12 upregulated genes for validation. These genes were overexpressed in HCC tissues at the transcription 
and protein levels, and increased mRNA levels were related to higher tumor grades and cancer stages. The 
expression of all markers was negatively associated with overall and disease-free survival in HCC patients. Most of 
these hub genes can promote HCC proliferation and/or metastasis. These 12 hub genes were also overexpressed 
and had strong prognostic value in many other cancer types. Methylation and gene copy number analyses 
indicated that the upregulation of these hub genes was probably due to hypomethylation or increased gene copy 
numbers. Further, the methylation levels of three genes, KPNA2, MCM3, and LRRC1, were associated with HCC 
clinical features. Moreover, the levels of most hub genes were related to immune cell infiltration in HCC 
microenvironments. Finally, we identified three upregulated genes (KPNA2, TARBP1, and RNASEH2A) that could 
comprehensively and accurately provide diagnostic and prognostic value for HCC patients. 
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that the abnormal methylation of certain genes affects 

HCC cell senescence, tumor growth, metastasis,  

hepatic carcinogenesis, and patient prognosis [10–12],  

a comprehensive integrative analysis of such gene 

networks has not been performed. 

 

Genomic DNA copy number can affect gene expression 

and is involved in cancer progression. Alterations to 

copy number signatures can lead to transcriptome 

imbalances and the abnormal expression of cancer-

related genes, which can be used to predict both overall 

survival and sensitivity to drug treatment [2, 13]. 

Therefore, a combination of the information from DNA 

copy number arrays, DNA methylation arrays, mRNA 

detection, and protein level detection can sufficiently 

clarify the molecular mechanisms and predict novel 

treatment targets for HCC. 

 

In this study, The Cancer Genome Atlas (TCGA) HCC 

cohort and Gene Expression Omnibus (GEO) datasets 

were used to identify differentially-expressed genes 

(DEGs) between HCC and normal tissues. Twelve 

upregulated hub genes were selected to detect the 

association between their expression and clinical 

prognosis. Moreover, their methylation levels, gene copy 

numbers, and relationships with immune cell infiltration 

were assessed. Finally, we identified three upregulated 

genes that could serve as diagnostic and prognostic 

indicators for HCC patients. 

 

RESULTS 
 

Identification of DEGs in HCC 

 

We first obtained the gene expression information for 

HCC and non-tumor liver tissues from three GEO 

datasets and a TCGA cohort and performed data  

pre-procession using GEO2R and GEPIA2 websites to 

screen DEGs based on the cut-off criteria of a p-value < 

0.01 and [log2FC (fold-change)] > 1. Figure 1A–1C 

 

 
 

Figure 1. Identification of upregulated genes in hepatocellular carcinoma (HCC) tissues. (A–C) Volcano plot visualizing the 

differentially-expressed genes between HCC and non-tumor tissues in (A) GSE112790, (B) GSE121248, and (C) GSE124535 datasets. Each 
symbol represents a gene, and red or green colors indicate upregulated or downregulated genes, respectively. (D) The specific chromosomal 
locations of differentially-expressed genes between HCC and non-tumor tissues in the TCGA cohort. Red indicates overexpressed genes and 
green indicates downregulated genes. The vertical line represents chromosomes. (E) Common upregulated genes among GSE112790, 
GSE121248, GSE124535, and TCGA datasets. 
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shows the DEGs from GSE112790, GSE121248, and 

GSE124535 databases, respectively, based on a volcano 

plot. We also identified DEGs in the TCGA cohort and 

visualized their chromosomal locations (Figure 1D). 

These DEGs were distributed in all chromosomes. A total 

of 176 upregulated genes (Supplementary Table 1) were 

found to be common to all four datasets (Figure 1E). 

 

Functional enrichment analysis, PPI network 

construction, and module analysis 

 

To investigate the biological significance of these 

overlapping genes, we uploaded the list of 176 

upregulated genes into Metascape software for 

functional enrichment analysis. Upregulated genes were 

mainly enriched in biological processes such as cell 

cycle, chromosome condensation, and DNA replication, 

as well as molecular functions such as protein serine 

kinase activity, ECM-receptor interaction, and activation 

of E2F1 target genes. Most enriched clusters were 

associated with cancer. Figure 2A–2B shows the top 20 

clusters of significantly-enriched terms. Next, Metascape 

and Cytoscape (v3.1.2) were used to construct the PPI 

network of the 176 upregulated genes (Figure 2C). We 

identified four significant modules by performing cluster 

analysis of the PPI network with the Cytoscape MCODE 

 

 
 

Figure 2. Enrichment analysis, protein–protein interaction (PPI) network construction, and module analysis. (A) Metascape bar 

graph to view the top 20 non-redundant enrichment clusters of upregulated genes. The enriched biological processes were ranked by p-
value. A deeper color indicates a smaller p-value. (B) Metascape visualization of the networks of the top 20 clusters. Each node represents 
one enriched term colored by cluster ID; nodes that share the same cluster are typically close to each other. Node size is proportional to the 
number of input genes falling into that term. Thicker edges indicate higher similarity. (C) PPI network construction of upregulated genes.  
(D) Four sub-networks were identified by Cytoscape MCODE plug-in analysis. Ingenuity pathway analysis of genes in each sub-network to 
obtain the biological pathways. 
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plug-in based on the degree of importance (Figure 2D). 

We then performed GO and pathway enrichment 

analyses of the genes in these modules (Figure 2D). The 

genes in Module 1 were mainly enriched in sister 

chromatid cohesion, mitotic prometaphase, and M phase. 

Genes in Module 2 were mainly correlated with cell 

cycle, DNA conformation change, and unwinding of 

DNA. Genes in Module 3 were mainly enriched in 

signaling by PDGF, membrane-ECM interactions, and 

focal adhesion. Genes in Module 4 were mainly 

correlated with the Fanconi anemia pathway, pid 

Fanconi pathway, and interstrand cross-link repair 

(Figure 2D). 

 

Identification of HCC prognosis-related genes with 

lower methylation levels 

 

Among the 176 upregulated genes, we screened 57 

(Supplementary Table 2) that were associated with 

higher protein levels in HCC tissues based on 

GSE124535 datasets (Figure 3A). We finally obtained 

12 upregulated genes (KPNA2, CDK1, MCM3, SPATS2, 

TARBP1, PRC1, RRM2, FEN1, NT5DC2, LRRC1, 

MCM6, and RNASEH2A) by selecting overlapping 

genes between the hypomethylation set and those for 

which expression was negatively associated with overall 

survival (OS) and disease free survival (DFS) in HCC 

patients (Figure 3B). Levels of all 12 hub genes were 

negatively correlated with OS and DFS for HCC 

patients from the TCGA cohort (Figure 3C–3F, 

Supplementary Figure 1). In addition, the expression of 

these 12 genes was associated with individual cancer 

stages and tumor grade (Figure 3G–3J, Supplementary 

Figure 2). As shown in Figure 4A, mRNA levels of 

these 12 hub genes were higher in cancer than in normal 

liver tissues based on the TCGA cohort. Each column 

represents a sample and each row represents a gene; the 

color indicates the expression levels. 

 

Next, we obtained protein expression data for eight 

genes from the Human Protein Atlas database. All eight 

genes were upregulated in HCC as compared to levels in 

normal tissues based on immunohistochemical staining 

analysis (Figure 4B–4C). A review of the literature 

found that six of the 12 upregulated genes (KPNA2, 

CDK1, TARBP1, PRC1, FEN1, and MCM6) were 

overexpressed in HCC tissue compared to levels in non-

tumor tissue based on immunohistochemical staining 

[14–23]. We detected the expression of the other six 

genes (MCM3, SPATS2, RRM2, NT5DC2, LRRC1, and 

RNASEH2A) in 30 pairs of HCC and para-carcinoma 

tissue by immunohistochemical staining assays. MCM3 

and RNASEH2A immunoreactivity was observed in 

both the cell nucleus and cytoplasm, whereas the other 

four proteins (SPATS2, RRM2, NT5DC2, and LRRC1) 

were all localized to the cytoplasm of HCC cells (Figure 

5A–5B). The expression of four proteins (MCM3, 

RRM2, NT5DC2, and RNASEH2A) was significantly 

upregulated in HCC tissues compared to that in non-

tumor tissues (Figure 5A–5C). The positive expression 

rate of SPATS2 and LRRC1 was higher in HCC tissues, 

but there was no statistical difference (P = 0.054 and P = 

0.265 respectively; Figure 5C). Further increasing the 

number of samples might thus be required. In addition, 

based on the expression of these 12 genes, we could 

effectively distinguish HCC patients from healthy 

controls in the TCGA cohort by PCA analysis (Figure 

4D). Furthermore, all of these genes, except LRRC1, 

were upregulated in most cancers, except the kidney 

chromophobe, in the TCGA pan-cancer cohort (Figure 

6A–6D, Supplementary Figure 3). Survival analysis 

showed that the levels of these 12 genes were also 

associated with OS (Figure 6E) and DFS (Figure 6F) in a 

range of different cancer types. 

 

Functional analyses of upregulated hub genes 

 

Studies have shown that KPNA2 can inhibit cell 

apoptosis and promote cell proliferation, migration, and 

invasion in HCC [24–26]. CDK1 can increase cellular 

viability and promote proliferation in HCC cell lines 

[15, 27]. Further, PRC1 can promote cell proliferation, 

migration, and invasion, promote tumor growth and 

metastasis, increase chemoresistance, and inhibit 

apoptosis in HCC [17–20]. It was also reported that 

RRM2 promotes HCC cell proliferation, inhibits 

apoptosis in vitro, and promotes tumor growth in vivo 

[28, 29]. FEN1 promotes HCC cell migration, invasion 

in vitro and promotes tumor growth and lung metastasis 

in vivo [21]. Meanwhile, LRRC1 enhances HCC cell 

proliferation in vitro and promotes tumor growth in vivo 

[30]. It was also reported that MCM6 increases the 

proliferative and migratory/invasive capability of HCC 

cells in vitro, in addition to increasing the tumor 

volume, weight, and the number of pulmonary 

metastases in vivo [22, 23]. 

 

To examine the biological functions of MCM3, 

SPATS2, TARBP1, NT5DC2, and RNASEH2A in 

HCC, we transfected Huh7 and SK-Hep-1 cells with 

siRNA targeting these five genes. qRT-PCR and western 

blot assays verified the interference efficiency 

(Supplementary Figure 4A–4C). We found that silencing 

MCM3 expression suppressed Huh7 and SK-Hep-1 cell 

proliferation according to CCK-8 assays and reduced the 

percentage of S-phase cells according to EdU-

incorporation assays (Figure 7) but had no effect on the 

migration and invasion of HCC cells (Supplementary 

Figure 6A–6C and Supplementary Figure 6E). SPATS2 

knockdown suppressed the proliferation, migration,  

and invasion of Huh7 and SK-Hep-1 cells (Figure 7, 

Figure 8A–8B, Figure 8D, and Figure 8F). Silencing 
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Figure 3. Identification of 12 upregulated hub genes among HCC datasets. (A) Among the 176 upregulated genes, 57 genes with 

higher protein levels in HCC tissues based on GSE124535 datasets were obtained. (B) We identified 12 upregulated hub genes by considering 
genes that were negatively associated with overall survival (OS) and disease-free survival (DFS) in HCC patients and genes that were 
hypomethylated. (C–F) Analysis of the association between CDK1 (C), FEN1 (D), KPNA2 (E), and LRRC1 (F) expression and OS/DFS among HCC 
patients in the TCGA cohort. (G–J) Analysis of the association between CDK1 (C), FEN1 (D), KPNA2 (E), and LRRC1 (F) expression and cancer 
stage/tumor grade among HCC patients in the TCGA cohort. p-values are shown in Supplementary Table 3. 
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RNASEH2A expression decreased the migratory and 

invasive capability but did not affect the proliferative 

capacity of Huh7 and SK-Hep-1 cells (Figure 8A–8C, 

Figure 8E, and Supplementary Figure 5). Both NT5DC2 

and TARBP1 knockdown did not affect HCC cell 

proliferation, migration, and invasion (Supplementary 

Figures 5 and 6). The expression of NT5DC2 could  

not be knocked down in SK-Hep-1 cells, and thus, we 

only performed functional analysis of this marker using 

Huh7 cells. 

Methylation and gene copy number analyses of 

upregulated hub genes 

 

We further determined the methylation status of the 

aforementioned 12 upregulated genes in the TCGA 

cohort and analyzed the correlation between mRNA 

expression and DNA methylation levels. The 12 genes 

had lower methylation levels in primary HCC compared 

to those in normal liver tissues (Figure 9A–9D, 

Supplementary Figure 7A–7D, and Supplementary 

 

 
 

Figure 4. Verification of the expression of 12 hub genes in HCC. (A) Heatmaps of the levels of 12 hub genes comparing HCC and 

normal liver tissues in the TCGA cohort. Red and blue colors indicate higher and lower expression, respectively. (B–C) Eight hub genes were 
upregulated in HCC compared to expression in normal tissues based on immunohistochemical staining analysis of the Human Protein Atlas 
database. Antibody numbers and patient/healthy control ID numbers were annotated. (D) Three-dimensional (3D) principle component 
analysis (PCA) score plot showing that HCC patients can be effectively distinguished from healthy controls based on the expression of these 
12 genes. 
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Figure 7I–7L). Additionally, DNA methylation levels of 

all hub genes were negatively associated with mRNA 

expression (Figure 9E–9H, Supplementary Figure 7E–

7H, and Supplementary Figure 7M–7P), suggesting that 

DNA methylation might regulate the mRNA expression 

of these genes. Further, the associations between copy 

number and the mRNA expression levels of the 12 genes 

were also tested. The mRNA levels of seven genes 

including CDK1, FEN1, KPNA2, MCM3, RRM2, 

SPATS2, and TARBP1 were found to be positively 

related to copy number (Figure 9I–9L, Supplementary 

Figure 8), indicating that gene copy number might also 

contribute to the upregulation of these genes. 

Additionally, the methylation level of KPNA2, LRRC1, 

and MCM3 was positively associated with OS for HCC 

patients (Figure 9M–9O), and the methylation level of 

KPNA2 and MCM3 was negatively associated with 

pathologic T stage for this cohort (Figure 9P–9Q). This 

suggested that the methylation status of these three genes 

is related to clinical features among HCC patients. 

 

Correlation between hub gene levels and immune 

cell infiltration 

 

We then performed an interrelation analysis comparing 

infiltrating immune cells in HCC tissues and the 

expression of upregulated genes, except LRRC1, using 

Timer software. Among these 11 genes, the expression 

levels of all but TARBP1 were positively related to the 

infiltration levels of B cells, CD8+ T cells, CD4+ T cells, 

 

 
 

Figure 5. The expression levels of MCM3, SPATS2, NT5DC2, RNASEH2A, LRRC1, and RRM2 in HCC tissues. (A–B) 

Immunohistochemical staining analysed expression levels of MCM3, SPATS2, NT5DC2, RNASEH2A, LRRC1, and RRM2 in HCC and non-tumor 
tissues. (C) Positive expression percentage of the six genes in HCC and non-tumor tissues was showed. Fewer than 30 samples due to de-
fragmentation. *P < 0.05; **P < 0.01; ***P < 0.001. 
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macrophages, neutrophils, and dendritic cells in HCC 

tissues, suggesting that higher expression levels of  

these 10 genes indicate an advantage for cancer 

immunotherapy (Figure 10A–10C and Supplementary 

Figure 9). 

 

A combination of the three upregulated hub genes 

can provide diagnostic and prognostic value for 

HCC patients 

 

We finally selected three upregulated hub genes 

(KPNA2, TARBP1, and RNASEH2A) for which 

expression was systematically increased from normal 

liver to cirrhosis and HCC tissues based on the 

GSE89377 dataset (Figure 10D–10F). Combined 

expression signatures of these three genes were 

negatively related to OS and DFS for HCC patients in 

the TCGA cohort (Figure 10G–10H). The signature 

score was calculated based on the mean log2(TPM+1) 

value of each gene. Further, we could effectively and 

accurately distinguish HCC patients from healthy 

controls by PCA analysis based on the three-gene 

expression signature (Figure 10I). 

 

DISCUSSION 
 

HCC remains a dominant cause of cancer-related death 

despite dramatic improvements in its treatment. Here, 

 

 
 

Figure 6. Detection of the expression of 12 hub genes in other types of cancer. (A–D) Boxplot of CDK1 (A), FEN1 (B), KPNA2 (C), and 

LRRC1 (D) expression in different types of cancer and normal tissues from the TCGA pan-cancer cohort. (E–F) Survival analysis examining the 
correlation between 12 hub genes and overall survival (OS) (E) or disease-free survival (DFS) (F) among different types of cancer patients in 
the TCGA cohort. Red wireframe indicates statistical differences. Red and blue colors show that gene expression was negatively and positively 
correlated with OS/DFS, respectively. 
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we screened DEGs in HCC tissues and investigated 

these genes in-depth based on expression levels, 

survival, methylation status, DNA copy number, and 

immune cell infiltration. We finally identified three hub 

genes that could provide comprehensive diagnostic and 

prognostic value for HCC patients. 

 

GO enrichment and functional pathway analyses of 176 

upregulated genes showed that these genes were mainly 

involved in cell cycle, the Aurora B pathway, positive 

regulation of cell cycle, cell cycle G1/S phase transition, 

and the PLK1 pathway. Aurora B is a crucial regulator 

of accurate mitosis and its abnormal expression is 

associated with cancer progression [31, 32]. The PLK1 

pathway also participates in the regulation of cell 

mitosis and acts as an oncogenic factor to promote 

cancer development [33, 34]. PPI network analysis 

demonstrated the most important regulatory functions of 

the upregulated genes, including sister chromatid 

cohesion, mitotic prometaphase, M phase, cell cycle, 

and DNA conformational changes. This was consistent 

with GO analysis results. These results indicate that the 

upregulated genes are mainly involved in tumor growth 

modulation, suggesting their relevance to HCC 

pathogenesis and progression. 

 

Combining survival and DNA methylation analyses, we 

obtained 12 upregulated hub genes. The majority of 

these were previously proven to play important roles in 

cancer progression [16, 30, 35–42], indicating the 

consistency of our data with other research reports. 

Their levels were also positively associated with cancer 

stages and tumor grade, suggesting significant roles in 

the development of HCC. Furthermore, we showed that 

all 12 genes could predict HCC patient prognosis and 

that a combination of them could serve as a biomarker 

to accurately distinguish patients from healthy controls. 

Indeed, we provide foundational data suggesting that all 

of these genes could serve as promising prognostic 

indicators and therapeutic targets. 

 

 
 

Figure 7. MCM3 and SPATS2 promotes HCC cell proliferation. (A–B) Proliferation of HCC cells with MCM3 or SPATS2 knockdown 

according to CCK-8 analysis. (C–D) EdU assays showing the proportion of S-phase cell after downregulating the expression of MCM3 or 
SPATS2. Nuclei of S-phase cells were pink. (E–H) Statistical analysis of EdU incorporation. *P < 0.05; **P < 0.01; ***P < 0.001. 
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The observed hypomethylation of the 12 genes and the 

negative correlation between methylation status and 

mRNA levels in HCC indicate that DNA 

hypomethylation could account for such abnormal 

expression patterns. Nevertheless, the copy numbers of 

only seven genes (CDK1, FEN1, KPNA2, MCM3, 

RRM2, SPATS2, and TARBP1) were found to be 

positively associated with mRNA levels. This indicates 

that DNA methylation and copy number might 

coordinately modulate the expression of these genes. 

 

Cancer immunotherapy, and especially multiple immune 

checkpoint inhibitors, has received increasing attention 

and has become a promising treatment strategy in recent 

years [43, 44]. The levels of all hub genes identified in 

this study, except TARBP1 and LRRC1, were able to 

predict immune cell infiltration in HCC tissues. Reports 

have shown that the clinical efficacy of checkpoint 

inhibitors is significantly dependent on the number of 

pre-existing tumor-infiltrating immune cells [45, 46]. 

Our data suggested that higher expression levels of these 

10 genes could indicate an advantage for checkpoint 

inhibitor therapy, potentially providing guidance for 

cancer immunotherapy. To better screen prognostic and 

diagnostic markers, we finally identified three hub genes 

(KPNA2, TARBP1, and RNASEH2A) for which 

expression could collectively and precisely predict 

patient prognosis. The combination of these three genes 

will be more meaningful and convenient for clinical 

applications than the 12 genes. 

 

 
 

Figure 8. RNASEH2A and SPATS2 promotes HCC cell migration and invasion. (A–B) HCC cell migration and invasion were detected 

after downregulating the expression of RNASEH2A or SPATS2 by Transwell and Boyden assays. (C–F) Statistical analysis of Transwell and 
Boyden assay results. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 9. Methylation and gene copy number analyses of upregulated hub genes. (A–D) Methylation levels of CDK1 (A), FEN1 (B), 

KPNA2 (C), and LRRC1 (D) in primary hepatocellular carcinoma (HCC) tumors and normal tissues from the TCGA cohort. (E–H) Correlation 
analysis of methylation levels of CDK1 (E), FEN1 (F), KPNA2 (G), and LRRC1 (H) and their mRNA expression in HCC based on the TCGA cohort. 
(I–L) Correlation analysis of gene copy numbers of CDK1 (I), FEN1 (J), KPNA2 (K), and LRRC1 (L) and their mRNA expression in HCC based on 
the TCGA cohort. (M–O) Survival analysis of the correlation between methylation levels of KPNA2 (M), LRRC1 (N), and MCM3 (O) and overall 
survival (OS) in HCC patients from the TCGA cohort. (P–Q) Analysis of the association between KPNA2 (P) and MCM3 (Q) methylation and 
pathologic T stage in HCC patients of the TCGA cohort. 
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Figure 10. Correlation between levels of hub genes and immune cell infiltration and identification of three hub genes. (A–C) 

Correlation between CDK1 (A), FEN1 (B), and KPNA2 (C) levels and immune cell infiltration in hepatocellular carcinoma (HCC) tissues. Each 
dot represents a sample in the TCGA cohort. (D–F) KPNA2 (D), TARBP1 (E), and RNASEH2A (F) mRNA levels in normal, cirrhosis, and HCC 
samples from GSE89377. (G–H) Analysis of the correlation between three-hub gene expression signatures and overall survival (OS) (G) or 
disease-free survival (DFS) (H) for HCC patients of the TCGA cohort. (I) HCC patients could be effectively distinguished from healthy controls 
by principle component analysis (PCA) based on expression of the three genes. 
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In conclusion, by integrating bioinformatic analyses, we 

obtained a combination of several hub genes with 

potential clinical significance for HCC. More work is 

required to better reveal their functions and the 

underlying mechanisms with respect to HCC 

progression, as well as their potential applications for 

disease diagnosis and prognosis. 

 

MATERIALS AND METHODS 
 

Microarray data 

 

The mRNA expression data, methylation data, and 

corresponding clinical information for HCC patients 

were obtained from The Cancer Genome Atlas (TCGA; 

https://tcga-data.nci.nih.gov/tcga/) cohort. The GEPIA2 

website was used to screen DEGs between HCC samples 

and normal tissue and to visualize the expression patterns 

and chromosomal locations of the upregulated genes. 

 

Additionally, four microarray datasets (GSE124535, 

GSE112790, GSE121248, and GSE89377) were 

downloaded from the Gene Expression Omnibus  

(GEO; http://www.ncbi.nlm.nih.gov/geo) databases. 

GSE124535 data are based on GPL20795 platforms and 

include mRNA and protein expression information from 

35 paired HCC and non-tumor tissues. GSE112790 data 

are based on GPL570 platforms and include mRNA 

expression information from 183 HCC patients and 15 

adjacent liver tissues. GSE121248 data are based on 

GPL570 platforms and include mRNA expression 

information from 70 HCC and 37 adjacent normal 

tissues. GSE89377 data are based on GPL6947 

platforms and include mRNA expression information 

from 107 samples covering different stages of HCC 

development. GEO2R was used to screen DEGs 

between HCC samples and non-tumor controls. We 

used the criteria of a p-value < 0.01 and [log2FC] > 1 to 

define DEGs, as well as an online Venn diagram  

tool (http://bioinfogp.cnb.csic.es/tools/venny/) to screen 

overlapping DEGs. 

 

Functional enrichment analysis, establishment of 

protein-protein interaction (PPI) network, and 

modular analysis of upregulated genes 

 

Functional enrichment analysis was performed using 

Metascape (http://metascape.org/gp/index.html#/main/ 

step1). Specifically, we submitted our 176 upregulated 

genes into this platform. Gene Ontology (GO) terms for 

biological process, cellular component, and molecular 

function categories, as well as Kyoto Encyclopedia of 

Genes and Genomes pathways, were found to be 

enriched and a p-value < 0.05 was considered 

statistically significant. The most enriched term within a 

cluster was represented. 

Metascape can be used to automatically analyze the 

biological significance of a large number of genes. We 

use Metascape and Cytoscape software to construct the 

PPI network comprising the 176 upregulated genes. We 

identified all significantly enriched terms, which were 

then hierarchically clustered into a tree based on Kappa-

statistical similarities among their gene memberships. 

Next, a 0.3 kappa score was applied as the threshold to 

divide the tree into term clusters, and a subset of 

representative terms were selected from this cluster and 

converted into a network layout. More specifically, each 

term was represented by a circle node, where its size was 

proportional to the number of input genes that fell into 

that term, and its color represented its cluster identity. 

Terms with a similarity score > 0.3 were linked by an 

edge (the thickness of the edge represents the similarity 

score) and the network was visualized with Cytoscape 

(v3.1.2) (http://www.cytoscape.org/) with a “force-

directed” layout and with edges bundled for clarity. We 

used Molecular Complex Detection (MCODE), a plug-in 

in Cytoscape, to filter the modules from the PPI network 

and to obtain the most important module based on the 

MCODE score and node number. 

 

Survival analysis 

 

The association between the expression levels of DEGs 

and OS or DFS was analyzed using the Kaplan–Meier 

survival method based on the TCGA HCC cohort. 

Cancer samples were divided into two groups based on 

the expression of genes to plot survival curves. A p-

value < 0.05 was regarded as statistically significant. 

 

Validation of the 12 upregulated genes 

 

An expression heatmap of the 12 genes in HCC and 

normal liver tissues based on the TCGA cohort was 

produced using UALCAN software (http://ualcan.path. 

uab.edu/index.html). To detect translational levels of the 

12 genes, we obtained immunohistochemistry sections 

of HCC and normal tissues from the Human  

Protein Atlas database (https://www.proteinatlas.org/). 

Furthermore, we constructed expression box plots for the 

12 genes in different types of tumors and normal tissues 

based on data from the TCGA pan-cancer cohort using 

Timer software (https://cistrome.shinyapps.io/timer/). 

 

Methylation and gene copy number analyses 

 

We compared the methylation levels of 12 genes 

between normal and primary tumor tissues based on 

information from the TCGA HCC cohort, which 

included human cancer methylation data from 

microarray and sequencing technology. We also 

examined the association between the expression  

levels of the 12 genes and their DNA methylation 

https://tcga-data.nci.nih.gov/tcga/
http://www.ncbi.nlm.nih.gov/geo
http://bioinfogp.cnb.csic.es/tools/venny/
http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1
http://www.cytoscape.org/
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
https://cistrome.shinyapps.io/timer/
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patterns or copy numbers using cBioPortal software 

(http://www.cbioportal.org/). 

 

Correlation between gene expression and immune 

cell infiltration 

 

We used Timer software (https://cistrome.shinyapps.io/ 

timer/), which includes different types of cancer samples 

accessible in the TCGA cohort, to examine the 

correlation between expression of the 12 genes and 

tumor-infiltrating immune cells (TIICs; B cells, CD4+ T 

cells, CD8+ T cells, neutrophils, macrophages, and 

dendritic cells). Timer applies a deconvolution method 

to infer the abundance of TIICs from gene expression 

profiles. In brief, the informative immune signature 

genes that are negatively associated with tumor purity 

(percentage of malignant cells in a tumor tissue) for each 

tumor type were selected. Then, constrained least 

squares fitting on the immune signature genes was used 

to infer the abundance of TIICs [47, 48]. 

 

Principal component analysis (PCA) 

 

We performed PCA using GEPIA2 websites to 

distinguish HCC patients from healthy controls based on 

levels of the upregulated genes. PCA is capable of 

reducing the dimensionality of redundant and noisy 

information from complex massive datasets. We 

transformed the original variables into three new 

orthogonal variables called principal components (PCs). 

A PC score plot was obtained to represent clear 

clustering of the target points. 

 

siRNA transfection 

 

siRNA was purchased from RiboBio (Guangzhou, 

China) and was transfected into HCC cells using 

Lipofectamine RNAiMAX (Invitrogen) at a working 

concentration of 100 nM according to manufacturer 

instructions. 

 

Cell culture, quantitative reverse transcription 

polymerase chain reaction (qRT-PCR), Western 

blotting, Cell Counting Kit (CCK)-8 assay, 5-ethynyl-

2′-deoxyuridine (EdU)-incorporation assay, transwell-

migration, and Boyden-invasion assays 

 

The details of these assays were described previously 

[49]. Primer sequences are listed in Supplementary  

Table 4. Antibodies are listed in Supplementary Table 5. 

 

Immunohistochemical staining 

 

Immunohistochemical staining of the HCC tissue 

microarray (Chaoxing Biotechnology, Shanghai, China) 

was carried out following the manufacturer’s protocol. 

The score standard for the intensity of staining was as 

follows: 0, negative; 1, weak; 2, medium; 3, strong. The 

extent of staining was scored as: 0, 0%; 1, 1–25%; 2, 

26–50%; 3, 51–75%; 4, 76–100%. Total scores of 2 or 

lower were defined as the negative group, whereas total 

scores of 3 or higher were defined as the positive group. 

Antibodies are listed in Supplementary Table 5. 

 

Statistical analysis 

 

We used SPSS 16.0 software (Chicago, IL, USA) to 

perform data analysis. A Student’s t test was utilized to 

assess significance of data from two groups, and one-

way analysis of variance (ANOVA) followed by 

Dunnett’s multiple comparison was performed to 

evaluate differences between multiple groups. 

Correlation analysis was undertaken using Pearson or 

Spearman tests. Overall and disease-free survival were 

evaluated using the Kaplan–Meier method. P < 0.05 was 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Survival analysis based on upregulated hub genes. (A–H) Survival analysis of the association between 

MCM3 (A), MCM6 (B), NT5DC2 (C), PRC1 (D), RNASEH2A (E), RRM2 (F), SPATS2 (G), and TARBP1 (H) expression and overall survival (OS) or 
disease-free survival (DFS) based on hepatocellular carcinoma (HCC) patients in the TCGA cohort.  
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Supplementary Figure 2. Analysis of clinical features associated with upregulated hub genes. (A–H) Analysis of the association 

between MCM3 (A), MCM6 (B), NT5DC2 (C), PRC1 (D), RNASEH2A (E), RRM2 (F), SPATS2 (G), and TARBP1 (H) expression and cancer 
stage/tumor grade based on hepatocellular carcinoma (HCC) patients in the TCGA cohort. p-values are shown in Supplementary Table 3. 
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Supplementary Figure 3. Expression of upregulated hub genes in different types of cancer. (A–H) Expression of MCM3 (A), MCM6 

(B), NT5DC2 (C), PRC1 (D), RNASEH2A (E), RRM2 (F), SPATS2 (G), and TARBP1 (H) in different types of cancer and normal tissues from the 
TCGA pan-cancer cohort. 
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Supplementary Figure 4. Transfection efficiency verification. (A–C) Transfection efficiency of siRNA for the five genes in HCC cells 

according to qRT-PCR (A–B) and western blotting (C) assays. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Supplementary Figure 5. RNASEH2A, TARBP1, and NT5DC2 does not affect HCC cell proliferation. (A–B) Proliferation of HCC cells 

with RNASEH2A, TARBP1, or NT5DC2 knockdown according to CCK-8 analysis. ns: no statistical differences. 
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Supplementary Figure 6. MCM3, TARBP1, and NT5DC2 does not affect HCC cell migration and invasion. (A–B, and G) HCC cell 

migration and invasion were evaluated after downregulating the expression of MCM3, TARBP1, or NT5DC2 by Transwell and Boyden assays. 
(C–F, and H–I) Statistical analysis of Transwell and Boyden assay results. ns: no statistical differences. 
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Supplementary Figure 7. Methylation analysis of upregulated hub genes. (A–D, I–L) Methylation levels of MCM3 (A), MCM6 (B), 

NT5DC2 (C), PRC1 (D), RNASEH2A (I), RRM2 (J), SPATS2 (K), and TARBP1 (L) in primary hepatocellular carcinoma (HCC) tumors and normal 
tissues from the TCGA cohort. (E–H, M–P) Correlation analysis comparing methylation levels of MCM3 (E), MCM6 (F), NT5DC2 (G), PRC1 (H), 
RNASEH2A (M), RRM2 (N), SPATS2 (O), and TARBP1 (P) with their mRNA expression in HCC based on the TCGA cohort. 
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Supplementary Figure 8. Gene copy number analysis of upregulated hub genes. (A–H) Correlation analysis of gene copy numbers 

of MCM3 (A), MCM6 (B), NT5DC2 (C), PRC1 (D), RNASEH2A (E), RRM2 (F), SPATS2 (G), and TARBP1 (H) and their mRNA expression levels in 
hepatocellular carcinoma (HCC) based on the TCGA cohort. 
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Supplementary Figure 9. Correlation between levels of hub genes and immune cell infiltration. Correlation between MCM3 (A), 

MCM6 (B), NT5DC2 (C), PRC1 (D), RNASEH2A (E), RRM2 (F), SPATS2 (G), and TARBP1 (H) levels and immune cell infiltration in hepatocellular 
carcinoma (HCC) tissues. Each dot represents a sample in the TCGA cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. List of 176 common upregulated genes among hepatocellular carcinoma datasets. 

 

Supplementary Table 2. List of 57 common upregulated genes with higher protein levels among hepatocellular 
carcinoma datasets. 

Gene 

CLGN MCAM MCM4 

GPNMB PODXL MAP2 

AKR1B10 RFC4 MSH2 

KPNA2 SPATS2 LRRC1 

COL15A1 LAMC1 RNASEH2A 

CDK1 TARBP1 COL4A1 

FABP5 STMN1 CAP2 

SORT1 TP53I3 GPC3 

SULT1C2 COL4A2 MCM6 

ENAH IGF2BP2 MUC13 

MAD2L1 SRXN1 SPARC 

ATP6V1C1 PRC1 LAMA4 

MCM3 LGALS3 PLVAP 

NEDD4L RRM2 PEG10 

THY1 G6PD HKDC1 

CAPG MDK DTNA 

ROBO1 FEN1 ACSL4 

MPZL1 NT5DC2 TP53BP2 

ITGA6 MCM2 PSPH 

 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 3. Statistical analysis (p-values) of the expression of 12 upregulated genes comparing different 
cancer stages/tumor grades. 
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Supplementary Table 4. Primer sequences used in this study. 

Type Gene Sequence 

Primers 
MCM3 

F 5’ TCTGGGACCTTCAGGACTGT 3’ 

R 5’ TTGATGTCCCCACGGATGTG 3’ 

NT5DC2 
F 5’ AGGGGATGAGACGTTTGCTG 3’ 

R 5’ AAACAGGTTTCCCTGCCGAT 3’ 

SPATS2 
F 5’ CTTCGGGAGGTATTGCCAGG 3’ 

R 5’ GCTCCATGCTGACTCCAGTT 3’  

RNASEH2A 
F 5’ AGACAATACAGGCCGCTGTC 3’ 

R 5’ GGGTCTTTGAGTCTGCCACT 3’ 

TARBP1 
F 5’ TGGGAAACAGGAGAAAACTGCT 3’ 

R 5’ AGCAAGGGCATGTAGGCATT 3’ 

 

Supplementary Table 5. Antibodies used in this study. 

Gene Antibody 

MCM3 1:50 for IHC 1:1000 for WB, from Proteintech, Chicago, IL, USA 

NT5DC2 1:50 for IHC 1:1000 for WB, from Bioss, Beijing, China 

SPATS2 1:50 for IHC 1:1000 for WB, from Bioss, Beijing, China 

RNASEH2A 1:50 for IHC 1:1000 for WB, from Proteintech, Chicago, IL, USA 

TARBP1 1:1000 for WB, from Abcam, Cambridge, UK 

RRM2 1:50 for IHC, from Proteintech, Chicago, IL, USA 

LRRC1 1:50 for IHC, from Proteintech, Chicago, IL, USA 

 


