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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a hematopoietic 

malignancy that affects all age groups, but 

predominantly occurs in the elderly with a median age of 

65 years [1]. The prognosis of older patients is worse 

than younger patients because of higher degree of 

resistance to conventional chemotherapy, increased 

frequency of genetic mutations, decreased performance 

status (PS), comorbid conditions, and limited treatment 

options [2–5]. The complete remission (CR) rates for 

AML patients above 60 years that have undergone 

anthracycline-based induction chemotherapy ranges  

 

from 39% to 63%, but, the median overall survival (OS) 

and disease-free survival (DFS) remained poor (7-12 

months) [6]. Furthermore, the median OS for patients 

above 65 years receiving anti-leukemia therapy was 6 

months and the 5-year survival rate was below 5% after 

initial diagnosis [7]. 

 

Consequently, treating elderly AML patients is 

challenging. Previously, we conducted a phase II 

clinical study in elderly patients with the characteristic 

regimen of decitabine in combination with modified 

CAG (D-CAG), and obtained an objective response rate 

(ORR) of 82.4% and a CR rate of 64.7%; the median 
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ABSTRACT 
 

We evaluated the risk status and survival outcomes of 125 elderly acute myeloid leukemia (AML) patients 
treated with decitabine in combination with low-dose cytarabine, aclarubicin, and G-CSF (D-CAG). The risk 
status was evaluated by determining the frequency of recurring gene mutations using next-generation 
sequencing (NGS) analysis of 23 selected genes and cytogenetic profiling of bone marrow samples at diagnosis. 
After a median follow-up of 12 months (range: 2-82 months), 86 patients (68.8%) had achieved complete 
remission after one cycle of induction, and 94 patients (75.2%) had achieved it after two cycles. The median 
overall survival (OS) and disease-free survival (DFS) were 16 and 12 months, respectively. In 21 AML patients 
aged above 75 years, the median OS and DFS were longer in the low- and intermediate-risk group than the 
high-risk group, but the differences were not statistically significant. The median OS and DFS were similar in 
patients with or without TET2, DNMT3A, IDH2, TP53 and FLT3 mutations. Multivariate analysis showed that 
patient age above 75 years, high-risk status, and genetic anomalies, like deletions in chromosomes 5 and/or 7, 
were significant variables in predicting OS. D-CAG regimen tends to improve the prognosis of a subgroup of 
elderly patients with high-risk AML. 
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OS for patients aged ≥70 years and 60-69 years was 10 

and 12 months, respectively [8]. Moreover, we 

demonstrated that D-CAG was as effective as the 

standard induction and intensive consolidation regimen 

for AML patients aged 55–69 years [9]. 

 

Some frequently mutated genes in AML have been 

identified as predictors of treatment response because of 

recent advances in next-generation sequencing (NGS) 

and the availability of AML-focused gene panels [10]. 

Risk stratification models based on NPM1, CEBPA, 
FLT3-ITD, RUNX1, ASXL1, and TP53 mutations have 

been developed to predict survival and treatment 

response based on extensive studies in younger patients 

undergoing intensive chemotherapy [11]. NGS has 

improved our understanding of the molecular genetics 

underlying AML, and several gene mutations have been 

incorporated into existing prognostic models to 

precisely determine the risk status of AML patients. 

 

In this study, we investigated the relationship between 

risk status, pre-treatment gene mutations, and survival 

outcomes of treatment with the D-CAG regimen in 

elderly AML patients. 

 

RESULTS 
 

Patient characteristics 
 

The baseline characteristics of AML patients analyzed 

in this study are shown in Table 1. The study cohort 

consisted of 42 (33.6%) cases of AML with recurrent 

cytogenetic abnormalities (AML-RCA), 20 (16%) cases 

of AML with myelodysplasia-related changes (AML-

MRC), nine (7.2%) cases of therapy-related AML (t-

AML), and 54 (43.2%) cases of AML, not otherwise 

specified (AML, NOS). Cytogenetic examination 

revealed normal cytogenetics in 69 patients and 

complex karyotypes in 19 patients. The patients were 

classified into low-risk (12 patients; 9.6%), 

intermediate-risk (50 patients; 40.0%), and high-risk (63 

patients; 50.4%) categories based on their cytogenetic 

characteristics and molecular abnormalities that were 

identified using NGS analysis of BM samples collected 

at diagnosis prior to any treatment. 

 

Mutational analyses 
 

NGS analysis revealed mutations in 19 different genes 

in 115 (92%) patients. Among these 115 patients, 34 

(27.2%) had mutations in a single gene, 35 (28%) had 

mutations in two genes, 28 (22.4%) had mutations in 

three genes, 17 (13.6%) had mutations in four genes, 

and one had mutations in six genes. The most 

frequently mutated gene was TET2 (26.4%). The 

remaining mutated genes in the order of decreasing 

frequency were: ASXL1, 24.8%; FLT3, 23.2%; NPM1, 

21.6%; DNMT3A, 19.2%; NRAS, 17.6%; CEBPA, 

14.4%; IDH2, 12%; TP53, 12%; RUNX1, 8.8%; IDH1, 

8.0%; and KIT, 5.6%; mutations in ETV6, SRSF2, 

U2AF1, PHF6, EZH2, CBL and CSF3R were rare 

(<5.0%); mutations were not identified in KRAS, JAK2, 

ZRSR2 and GATA2 genes (Figure 1A, Table 2). In 

comparison to patients with complex karyotypes, 

mutations in DNMT3A (21.7% vs. 0, P= 0.0341), TET2 

(34.8% vs. 10.5%, P= 0.0485), NPM1 (14.5% vs. 0, P= 

0.0047) and FLT3 (23.2% vs. 0, P= 0.0184) were more 

common in patients with normal karyotype. 

Conversely, the rate of TP53 mutations was 

significantly higher in patients with complex 

karyotypes than those with the normal karyotype 

(57.9% vs. 2.9%, P< 0.0001; Table 2). Ten out of 

fifteen patients (66.7%) with TP53 mutations belonged 

to the t-AML or the AML-MRC group. We divided the 

patients based on their age into three subgroups (60-66, 

67-74 and 75-86 years) using ROC curve analysis. 

Mutations in IDH1 were more common in patients aged 

67–74 years than those aged 60–66 years (18.0% vs. 

3.1%, P=0.0248; Figure 1B). The rate of RUNX1 
mutations were significantly higher in patients aged 

75–86 years than those aged 60-66 year age group 

(14.3% vs. 4.6%, P= 0.0264; Figure 1B). 

 

Clearance of mutations after induction treatment 

 

We compared the frequency of mutations in the BM 

samples of 27 patients at diagnosis and after one cycle 

of induction treatment, and observed that clearance of 

leukemia-specific mutations correlated with 

morphological response and relapse. We observed 

significant reduction in variant allele frequency (VAF) 

of TP53, NPM1 and FLT3 mutations among responders 

after one cycle of D-CAG treatment, but no significant 

change was observed among the non-responders (Figure 

2). Persistence of these gene mutations correlated with 

worse outcomes. Driver mutations persisted after 

chemotherapy and increased in size at the time of 

relapse. New mutations were also found at relapse, 

thereby suggesting that disease progression was coupled 

with step-wise genetic evolution. 

 

Association between cytogenetics, gene mutations 

and clinical outcomes 
 

After a median follow-up of 12 months (range: 2-82 

months), 86 (68.8%) and 94 patients (75.2%) treated 

with D-CAG achieved CR after one cycle and two 

cycles of induction, respectively. Patients in the low- or 

intermediate-risk groups showed a higher CR rate than 

patients in the high-risk group, but the differences were 

not statistically significant (91.7% vs. 78.4% vs. 69.4%, 

P= 0.2053; Table 3). 
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Table 1. Patient demographic and baseline characteristics at diagnosis. 

Characteristic 
 

n 125 

Age, median (range) 66.0 (60-86) 

Age ≥ 70, n (%) 41 (32.8) 

Gender, n (%) 
 

Male 67 (53.6) 

Female 58 (46.4) 

Prior diagnosis of MDS, n (%) 8 (6.4) 

WHO 2016 AML classification, n (%) 
 

AML with recurrent genetic abnormalities 42 (33.6) 

AML with myelodysplasia-related changes 20 (16) 

Therapy-related myeloid neoplasms 9 (7.2) 

AML not otherwise specified 54 (43.2) 

ECOG performance status score, n (%) 

 0-1 106 (84.8) 

2-3 19 (15.2) 

BM blasts (%), median (range) 64.0 (20-90.8) 

NCCN risk stratification, n (%)  
 

Low-risk 12 (9.6) 

Intermediate-risk  50 (40) 

High-risk 63 (50.4) 

WBC (×109/L), median (range) 11.7 (0.5-239) 

Hemoglobin (g/L), median (range) 79 (46-137) 

Platelets (×109/L), median (range) 72.0 (6-257) 

Abbreviations: ANC: absolute neutrophil count; BM: bone marrow; ECOG PS:  Eastern Cooperative Oncology Group 
performance status; MDS: myelodysplastic syndrome; WBC: white blood cell count; WHO: World Health Organization. 
 

At the final analysis on July 30, 2019, the median OS 

and DFS of all patients were 16 and 12 months, 

respectively. The median OS was 19, 14 and 9 months 

for patients aged 60–66 years, 67–74 years, and ≥75 

years, respectively (P=0.007, Figure 3). The one-year 

and 2-year OS rates were 59.8% and 36.5%, 

respectively. The one-year and 2-year DFS rates were 

49.3% and 28.2%, respectively. Patients aged 60–66 

years showed significantly longer OS than patients ≥75 

years (median OS: 19 months vs. 9 month, P= 0.0042, 

Table 3, Figure 3). However, DFS was statistically 

similar for both groups (median DFS: 15 months vs. 7 

months, P= 0.0526, Table 3). The OS and DFS rates 

were significantly longer in patients belonging to the 

low- and intermediate-risk groups than in patients 

belonging to the high-risk group (median OS: 

Undefined vs. 20 months vs. 11 months, P= 0.0022; 

median DFS: 15 months vs. 15 months vs. 8 months,  

P= 0.0041, respectively; Table 3, Figure 4). Patients 

with complex karyotypes showed significantly shorter 

median OS and DFS compared to patients with non-

complex karyotypes (n=19; median OS: 9 months vs. 19 

months, P= 0.0041; median DFS: 5 months vs. 15 

months, P= 0.0001, respectively; Table 3, Figure 5). 

Moreover, patients with abnormalities in chromosomes 

5 and/or 7 (-5/5q- and/or -7/7q-) showed significantly 

shorter median OS and DFS compared to patients 

without these abnormalities (-5/5q- and/or -7/7q-, n=18; 

median OS: 8.5 months vs. 19 months, P< 0.0001; 

median DFS: 6 months vs. 15 months, P< 0.0001, 

respectively; Table 3, Figure 5). Patients with 

monosomal karyotypes (n=12) showed similar median 

OS, but significantly shorter median DFS compared to 

other patients (median OS: 13 months vs. 17 months, 

P= 0.3143; median DFS: 5 months vs. 14 months, P= 

0.0004; Table 3, Figure 5). 

 

Patients in the 60-66 and 67-74 age groups showed 

better OS and DFS for the low- and intermediate-risk 

group patients compared to the high-risk group patients. 
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Figure 1. Genetic landscape of elderly AML patients. (A) Heatmap showing associations between different gene mutations. Each 
column represents one patient. (B) Gene mutations in 125 AML patients ≥ 60 years of age at primary diagnosis. Bar chart showing the 13 
most commonly mutated genes in elderly AML patients aged 60-66, 67-74, and 75-86 years at primary diagnosis. 
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Table 2. Mutations. 

 
Mutations n (%) 

Normal cytogenetic 

(n=69) n (%) 

Complex karyotypes 

(n=19) n (%) 
P 

DNA methylation DNMT3A 24 (19.2) 15 (21.7) 0 0.0341 

 
TET2 33 (26.4) 24 (34.8) 2 (10.5) 0.0485 

 
IDH1 10 (8) 6 (8.7) 0 0.3332 

 
IDH2 15 (12) 12 (17.4) 0 0.0619 

RNA splicing SRSF2 5 (4) 0 0 
 

 
U2AF1 4 (3.2) 0 0 

 

 
ZRSR2 0 0 0 

 
Epigenetic modifiers ASXL1 31 (24.8) 16 (23.2) 6 (31.6) 0.5509 

 
EZH2 2 (1.6) 0 0 

 
Transcription factors RUNX1 11 (8.8) 6 (8.7) 0 0.3332 

 
NPM1 27 (21.6) 21 (14.5) 0 0.0047 

 
CEBPA 18 (14.4) 11 (15.9) 2 (10.5) 0.7256 

 
biallelic CEBPA 10 (8) 6 (8.7) 4 (22.2) 0.0882 

 
ETV6 5 (4) 3 (4.3) 0 

 

 
GATA2 0 0 0 

 
Activited signaling FLT3 29 (23.2) 16 (23.2) 0 0.0184 

 
FLT3-ITD 20 (16) 13 (18.8) 0 0.0624 

 
FLT3-TKD 11 (8.8) 3 (4.3) 0 

 

 
NRAS 22 (17.6) 16 (23.2) 1 (5.3) 0.1054 

 
KRAS 0 0 0 

 

 
CBL 1 (0.8) 0 1 (5.3) 

 

 
JAK2 0 0 0 

 

 
KIT 7 (5.6) 1 (1.4) 1 (5.3) 

 
Tumor suppressors CSF3R 1 (0.8) 0 0 

 

 
TP53 15 (12) 2 (2.9) 11 (57.9) <0.0001 

 
PHF6 3 (2.4) 0 0 

 
 

 
 

Figure 2. Change in TP53mut (A), FLT3mut (B), and NPM1mut (C) VAF in responders and non-responders to D-CAG with paired samples at 
diagnosis and after 1 cycle. 
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Table 3. Response and clinical outcome. 

Clinical features CR n (%) 
Median OS 

(months) 

Median DFS 

(months) 

1-year 

OS (%) 

2-year 

OS (%) 

All patients (n=125) 94 (75.2) 16 12 59.8  36.5  

Age (years)  P=0.5473 P=0.0070 P=0.1220 
 

  60-66 (n=65) 51 (78.5) 19 15 70.6  45.1  

 67-74 (n=39) 29 (74.4) 14 11 53.2  36.6  

 75-86 (n=21) 14 (66.7) 9 7 40.6  20.3  

Patients aged 60-66 years (n=65) P=0.3612 P=0.0134 P=0.4344 
 

 Low- and intermediate-risk (n=37) 31 (83.8) 28 15 84.0  53.7  

High-risk (n=28) 20 (71.4) 13 14 52.8  35.2  

Patients aged 67-74 years (n=39) P=1.0000 P=0.0681 P=0.0014 
 

 Low- and intermediate-risk (n=17) 13 (76.5) 32 19 69.0  40.0  

High-risk (n=22) 16 (72.7) 12 6 52.6  22.8  

Patients aged 75-86 years (n=21) P=0.6557 P=0.2110 P=0.1048 
 

 Low- and intermediate-risk (n=8) 6 (75.0) 18 13 19.4  N/A 

High-risk (n=13) 8 (61.5) 9 6 10.3  N/A 

Numbers of mutations P=0.0035 P=0.1570 P=0.6556 
 

 0-1 (n=44) 26 (59.1) 12 18 47.0  26.9  

2 (n=35) 32 (91.4) 18 11 69.6  39.3  

≥3 (n=46) 36 (78.3) 17 14 64.2  34.7  

DNMT3A P=0.1208 P=0.6243 P=0.7438 
 

 mut (n=24) 15 (62.5) 13 13 53.0  26.5  

wt (n=101) 79  (78.2) 16 12 61.4  39.1  

TET2 P=1632 P=0.6365 P=0.6875 
 

 mut (n=33) 28 (84.8) 17 13 65.6  38.6  

wt (n=92) 66 (71.7) 15 11 57.7  37.3  

IDH1 P=0.7028 P=0.8188 P=0.2503 
 

 mut (n=10) 7 (70) Undefined Undefined 51.4  N/A 

wt (n=115) 87 (75.7) 16 12 60.5  37.6  

IDH2 P=0.7603 P=0.1423 P=0.8574 
 

 mut (n=15) 12 (80) 20 13 86.7  40.5  

wt (n=110) 82 (74.5) 15 11 55.7  37.3  

ASXL1 P=1.0000 P=0.4425 P=0.0801 
 

 mut (n=31) 24 (77.4) 16 8 56.5  31.4  

wt (n=94) 70 (74.5) 16 14 60.6  39.7  

RUNX1 P=1.0000 P=0.7141 P=0.4392 
 

 mut (n=11) 8 (72.7) 18 18 71.6  42.9  

wt (n=114) 86 (75.4) 16 12 58.7  37.5  

NPM1 P=0.4602 P=0.3479 P=0.1092 
 

 mut (n=27) 22 (81.5) 19 18 65.6  41.4  

wt (n=98) 72 (73.5) 15 10 57.8  36.8  

CEBPA P=0.3451 P=0.2662 P=0.0994 
 

 biallelic mut (n=10) 9 (90) 15.5 9.5 60.0  20.0  
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monoallelic mut (n=8) 7 (87.5) 19 18 75.0  46.9  

wt (n=107) 78 (72.9) 16 12 58.8  39.9  

FLT3 P=0.8065 P=0.2247 P=0.8653 
 

 mut (n=29) 21 (72.4) 12 18 46.8  32.8  

wt (n=96) 73 (76.0) 17 12 63.3  37.2  

NRAS P=1.0000 P=0.7962 P=0.7377 
 

 mut (n=22) 17 (77.3) 28 19 58.7  52.8  

wt (n=103) 77 (74.8) 15 11 60.0  34.9  

KIT P=1.0000 P=0.4152 P=0.1337 
 

 mut (n=7) 5 (71.4) 14 7.5 60.0  N/A 

wt (n=118) 89 (75.4)  16 12 59.7  39.2  

TP53 P=1.0000 P=0.0657 P=0.0649 
 

 mut (n=15) 11 (73.3) 10 7 46.7  15.6  

wt (n=110) 83 (75.5) 18 14 66.3  39.7  

Cytogenetics 
 

 
  

 

 

P=0.5641 P=0.0041 P=0.0001 
 

 complex karotypes (n=19) 13 (68.4) 9 5 35.5  11.8  

others (n=106) 81 (76.4) 19 15 64.6  41.5  

 

P=0.7713 P<0.0001 P<0.0001 
 

 -5/5q-, -7/7q- (n=18) 13 (72.2) 8.5 6 27.8  5.6  

others (n=107) 81 (75.7) 19 15 65.8  44.5  

 
P=0.2911 P=0.3143 P=0.0004 

 
 monosomal (n=12) 11 (91.7) 13 5 57.1  19.0  

others (n=113) 83 (73.5) 17 14 60.1  40.3  

risk status P=0.3727 P=0.0022 P=0.0041 

  Low-risk (n=12) 11 (91.7) Undefined 15 88.9  71.1 

Intermediate-risk (n=50) 39 (78.0) 20 15 74.0  47.9  

High-risk (n=63) 44 (69.8) 11 8 44.1  25.8  

Abbreviations: CR: complete remission; OS: overall survival; DFS: disease-free survival; mut: mutated status; wt: wild type. 
 

 
 

Figure 3. Kaplan–Meier curves associated with overall survival within age arms (60-66 vs 67-74 vs ≥ 75 years). 
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But, these differences were not statistically significant 

except that median DFS for the low- and intermediate-

risk groups was significantly longer than the high-risk 

group for patients aged 67-74 years (median DFS: 19 

months vs. 6 months, P= 0.0014; Figure 6). 

 

We also analyzed 21 patients who were ≥75 years, 

including 8 low- or intermediate-risk patients and 13 

high-risk patients. The median OS and DFS were 

relatively longer in the low- and intermediate-risk group 

compared to the high-risk group, but the differences 

were not statistically significant (median OS: 18 months 

vs. 9 months, P= 0.2110; median DFS: 13 months vs. 6 

months, P= 0.1048; Figure 6). This suggests that D-

CAG is feasible for the treatment of AML patients 

above 75 years, especially those harboring high-risk 

karyotypes and genetic mutations. 

 

The median OS for patients with 0 or 1, 2 or ≥3 gene 

mutations was not statistically significant (12 months 

vs. 18 months vs. 17 months, P= 0.1570). Moreover, OS 

and DFS for patients with or without mutations in genes 

such as ASXL1 and RUNX1 were similar (Table 3). 

Patients with wild-type TP53 (n=110) showed relatively 

longer OS and DFS compared to patients harboring 

TP53 mutations (n=15), but the differences were not 

statistically significant (median OS: 18 months vs. 10 

months, P= 0.0657; median DFS: 14 months vs. 7 

months, P= 0.0649; Table 3, Figure 7). Patients with 

TP53 mutations (VAF <20%) showed relatively longer 

survival than patients with TP53 mutations (VAF 

≥20%), but, the data was not statistically significant 

after excluding two patients with low VAF (<20%) 

TP53 mutations (median OS: 18 months vs. 9 months, 

P= 0.1047; median DFS: 14 months vs. 7 months, P= 

0.0511). Ten out of 15 patients with TP53 mutations 

were associated with -5/5q- and/or -7/7q- chromosomal 

deletions, whereas, the remaining 5 patients had isolated 

TP53 mutations. The patients with isolated TP53 

mutations showed relatively longer median OS and DFS 

compared to patients with TP53 mutations and 

concomitant -5/5q- and/or -7/7q- chromosomal 

deletions (median OS: undefined vs. 9 months, P= 

0.0740; median DFS: 15 months vs. 7 months, P= 

0.3662; Table 3, Figure 7). The median OS and DFS 

was comparatively similar for patients with wild-type 

and isolated TP53 mutations (median OS: 18 months vs. 

undefined, P= 0.5146; median DFS: 14 months vs. 15 

months, P= 0.7177; Table 3, Figure 7), but, significantly 

lower in patients with TP53 mutations and concomitant 

-5/5q- and/or -7/7q- chromosomal deletions (median OS: 

9 months vs. 18 months, P= 0.0016; median DFS: 7 

months vs. 14 months, P= 0.0023, respectively; Table 3, 

Figure 7). The median OS and DFS was statistically 

similar for AML patients with or without FLT3 

mutations (median OS: 12 months vs. 17 months, P= 

0.2247; median DFS: 18 months vs. 12 months, P= 

0.8653, respectively; Table 3, Figure 8). Patients with 

FLT3-ITD mutations in the absence of NPM1 mutations 

(n=8) and the other patients (n=117) showed 

statistically similar median OS and DFS (median OS: 

12 months vs. 16 months, P= 0.3967; median DFS: 25 

months vs. 12 months, P= 0.8556, Figure 8).  

 

Univariable analyses showed that age (≥75 years), 

complex karyotypes, -5/5q- and/or -7/7q- chromosomal 

deletions, and high-risk status were independent 

prognostic factors associated with shorter OS (Table 4). 

Factors such as monosomal karyotypes, total number of 

gene mutations, mutated TP53 and FLT3, and FLT3-

ITD mutations in the absence of NPM1 mutations did 

not show prognostic significance in the univariable 

 

 
 

Figure 4. Overall survival and disease free survival according to risk groups (low-risk vs intermediate-risk vs high-risk).  
(A) Overall survival in low-, intermediate- and high-risk patients. (B) Disease free survival in low-, intermediate- and high-risk patients. 
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analysis. Multivariate analysis showed that age (over 75 

years), high-risk status, and -5/5q- and/or -7/7q- 

chromosomal deletions were significant variables that 

predicted poor prognosis or decreased OS (Table 4). 

Adverse events 
 

The most frequently observed adverse events during  

D-CAG therapy were myelosuppression and infections. 

 

 
 

Figure 5. Overall survival and disease free survival according to cytogenetics. (A) Overall survival in AML patients with complex 
cytogenetics compared to others. (B) Disease free survival in AML patients with complex cytogenetics compared to others. (C) Overall survival 
in AML patients with abnormalities in -5/5q- and/or -7/7q- chromosomal deletions compared to others. (D) Disease free survival in AML 
patients with abnormalities in -5/5q- and/or -7/7q- chromosomal deletions compared to others. (E) Overall survival in AML patients with 
monosomal karyotype compared to others. (F) Disease free survival in AML patients with monosomal karyotype compared to others. 
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All the AML patients treated with D-CAG experienced 

thrombocytopenia and neutropenia. Febrile neutropenia 

occurred in 82.4% of the patients, but sepsis was reported 

only in 6 cases. Non-hematological toxicities were 

usually mild to moderate (Table 5). For patients achieving 

CR, the median times for showing stable neutrophil 

(0.5×109 neutrophils/L) and platelet (20×109/L) counts 

were 14 days and 16 days, respectively. 

 

 
 

Figure 6. Overall survival and disease free survival of the AML patients according to risk groups (favorable and intermediate 
vs poor) within age arms (60-66 vs 67-74 vs ≥ 75 years). (A) Overall survival of the AML patients aged 60-66 years according to risk 
groups. (B) Disease free survival of the AML patients aged 60-66 years according to risk groups. (C) Overall survival of the AML patients aged 
67-74 years according to risk groups. (D) Disease free survival of the AML patients aged 67-74 years according to risk groups. (E) Overall 
survival of the AML patients aged ≥75 years according to risk groups. (F) Disease free survival of the AML patients aged ≥75 years according to 
risk groups. 
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Figure 7. Overall survival and disease free survival according to TP53 mutations. (A) Overall survival in TP53 mutated compared to 
TP53 wild-type patients. (B) Disease free survival in TP53 mutated compared to TP53 wild-type patients. (C) Overall survival in isolated TP53 
mutated patients compared to those with TP53 mutations and concomitant -5/5q- and/or -7/7q- chromosomal deletions. (D) Disease free 
survival in isolated TP53 mutated patients compared to those with TP53 mutations and concomitant -5/5q- and/or -7/7q- chromosomal 
deletions. (E) Overall survival in isolated TP53 mutated compared to TP53 wild-type patients. (F) Disease free survival in isolated TP53 
mutated compared to TP53 wild-type patients. (G) Overall survival in patients with TP53 mutations and concomitant -5/5q- and/or -7/7q- 
chromosomal deletions compared to TP53 wild-type patients. (H) Disease free survival in patients with TP53 mutations and concomitant -
5/5q- and/or -7/7q- chromosomal deletions compared to TP53 wild-type patients. 
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DISCUSSION 
 

The poor prognosis in elderly AML patients is 

attributed to several factors, such as, high frequency of 

adverse cytogenetics, higher incidence of early deaths 

during chemotherapy, and higher rates of drug 

resistance and cancer relapse [12]. The optimal regimen 

to treat elderly AML patients still remains controversial. 

Elderly patients receiving standard or intensive 

chemotherapy experience more frequent treatment-

related mortality (TRM) than younger patients because 

of myelosuppression, infections, and hemorrhage [13–

15]. The risk of early death in elderly AML patients 

undergoing standard-dose induction chemotherapy is 

about 10-20% [16]. Eisfeld A. K. et al reported a CR 

rate of 81%, 50% and 32% in response to standard 

chemotherapy in favorable-, intermediate- and high-risk 

elderly AML patients, respectively; 3-year OS and DFS 

rates for patients belonging to the favorable-risk group 

were 45% and 46%, respectively; however, the 3-year 

OS and DFS rates for patients with adverse genetic 

features were only 4% and 2%, respectively [17]. 

Numerous FLT3 tyrosine kinase inhibitors (TKIs) have 

been developed over the last several years to treat AML 

patients with FLT3 mutations. Older patients treated 

with FLT3 TKIs in combination with hypomethylating 

agents (HMA) show an overall response rate (ORR) 

between 26% and 67% [18–20]. Venetoclax, an oral 

BCL-2 inhibitor, has been approved for the treatment of 

older AML patients ineligible for intensive 

chemotherapy by the United States Food and Drug 

Administration (FDA) in combination with low-dose 

cytarabine (LDAC) or hypomethylating agents (HMA) 

such as azacitidine and decitabine. The CR plus CR 

with incomplete hematological recovery rates for older 

patients treated with venetoclax plus LDAC or HMA 

are 54% and 67%, respectively, and the median OS are 

10.4 months and 17.5 months, respectively, which are 

significantly higher compared with clinical outcomes 

when treated with LDAC or HMA alone [21, 22]. The 

patients analyzed in this study did not receive any 

treatment with FLT3 TKI inhibitors and/or venetoclax 

because these medications have not yet been approved 

in China for AML treatment. 

 

The standard treatment regimen for elderly AML 

patients includes hypomethylating agents, such as 

decitabine or azacitidine in combination with 

chemotherapeutic agents [23, 24]. In our previous 

clinical study, we demonstrated improved clinical 

 

 
 

Figure 8. Overall survival and disease free survival according to FLT3 mutations. (A) Overall survival in FLT3 mutated compared to 
FLT3 wild-type patients. (B) Disease free survival in FLT3 mutated compared to FLT3 wild-type patients. (C) Overall survival in patients with 
FLT3-ITD mutations in the absence of NPM1 mutations compared to others. (D) Disease free survival in patients with FLT3-ITD mutations in 
the absence of NPM1 mutations compared to others. 
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Table 4. Univariate and multivariate analysis. 

Variable 
Univariate analysis Multivariate analysis 

HR (95% CI) P HR (95% CI) P 

OS 
    

age (≥75 yrs vs <75 yrs) 1.995 (1.159~3.435) 0.013 1.901 (1.099~3.288) 0.022 

complex karotypes 2.209 (1.254~3.893) 0.006 0.689 (0.252~1.887) 0.469 

-5/5q- and/or -7/7q- 3.268 (1.855~5.757) <0.001 3.206 (1.157~8.885) 0.025 

monosomal karyotypes 1.421 (0.704~2.871) 0.327 N/A N/A 

risk status 1.967 (1.310~2.952) 0.001 1.620 (1.058~2.482) 0.027 

numbers of mutations (0-1) N/A 0.174 N/A N/A 

numbers of mutations (2) 1.461 (0.863~2.473) 0.158 N/A N/A 

numbers of mutations (≥3) 0.889 (0.496~1.593) 0.693 N/A N/A 

Mutations 
    

DNMT3A  1.148 (0.652~2.021) 0.631 N/A N/A 

TET2  1.125 (0.717~1.764) 0.609 N/A N/A 

IDH1  0.891 (0.325~2.442) 0.822 N/A N/A 

IDH2 0.587 (0.282~1.224) 0.155 N/A N/A 

ASXL1  1.217 (0.729~2.032) 0.453 N/A N/A 

RUNX1  0.858 (0.373~1.977) 0.72 N/A N/A 

NPM1  0.767 (0.435~1.352) 0.359 N/A N/A 

CEBPA  0.959 (0.527~1.745) 0.892 N/A N/A 

FLT3  1.370 (0.814~2.306) 0.236 N/A N/A 

FLT3-ITD mut/NPM1 wt 1.424 (0.616~3.292) 0.408 N/A N/A 

NRAS  0.926 (0.509~1.684) 0.8 N/A N/A 

KIT  1.507 (0.547~4.151) 0.428 N/A N/A 

TP53  1.759 (0.944~3.277) 0.075 N/A N/A 

Abbreviations: OS: overall survival; HR: hazard ratio. 
 

Table 5. Toxicities. 

 
Grade 1-2 n (%) Grade 3-4 n (%) 

Hematological Toxicities 
  

Thrombocytopenia 7 (5.6) 118 (94.4) 

Neutropenia 18 (14.4) 107 (85.6) 

Febrile neutropenia  74 (59.2) 29 (23.2) 

Non-hematological Toxicities 
  

Hepatobiliary disorders 27 (21.6) 3 (2.4) 

Nausra, Vomiting 22 (17.6) 0 

Mucositis 26 (20.8) 0 

Skin disorders 3 (2.4) 0 

Cardiac disorders 7 (5.6) 0 

Sepsis 6 (4.8) 0 
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outcomes in elderly AML patients treated with D-CAG 

regimen; CR rates were comparable for patients with or 

without adverse karyotypes; OS was comparatively 

similar for patients aged ≥70 years old and 60–69 years 

when treated with D-CAG induction therapy [8]. In 

vitro experiments show that decitabine and cytarabine 

synergistically induce apoptosis of human leukemia cell 

lines [25]. Genome-wide studies show that aclarubicin 

uniquely alters the epigenetic gene expression in mouse 

and human leukemia cells via histone eviction [26]. 

Aclarubicin accumulates in the mitochondria and 

inhibits respiratory function, thereby causing 

mitochondrial dysfunction, which promotes cytotoxicity 

[27]. Thus, D-CAG is a regimen that synergistically 

employs multiple mechanisms to block the growth and 

survival of AML cells. 

 

NGS assays have been recently integrated into the 

routine laboratory work-up of AML cases at our center 

because of its ultra-high throughput, scalability, and 

speed. However, our previous studies lacked in-depth 

analysis of the genetic mutations. We investigated the 

significance of mutations on clinical outcomes in 

elderly AML patients that were treated with the D-CAG 

regimen. The risk status was defined according to the 

updated NCCN guidelines for AML by performing 

NGS assay of 23 selected genes and cytogenetic 

profiling of BM samples of elderly patients with AML 

before treatment. The elderly AML patients, unlike 

younger patients, are associated with a higher 

percentage of adverse karyotypes and mutations. In our 

study, nearly 15.2% elderly patients showed complex 

karyotypes and approximately 50% of the patients was 

classified as high-risk. 

 

In our study, patients with complex karyotypes and 

high-risk status were associated with shorter OS. 

Univariate analysis shows that complex karyotypes and 

high-risk status are independent prognostic factors for 

OS. Moreover, the median OS and DFS of the high-risk 

patients above 75 years old are relatively shorter than 

those with low- and intermediate-risk status, but the 

differences are not statistically significant. This 

indicates that the D-CAG regimen might improve the 

prognosis and OS of elderly patients over 75 years in 

the high-risk group. 

 

We observed a higher proportion of mutations in the 

TET2, DNMT3A and IDH2 genes in the elderly patients 

analyzed in our study. Mutations in the genes encoding 

epigenetic modifiers, such as TET2, DNMT3A and 

IDH2, are more common in older patients, and are 

usually acquired early in the evolution of the disease, 

and often present in the founding clone. In this study, 

the median OS and DFS was comparable for patients 

with mutated or wild type TET2, DNMT3A and IDH2. 

Approximately 5-8% of all patients with AML harbor 

TP53 mutations. In this study, 12% of the older patients 

showed TP53 mutations, suggesting that these 

mutations are higher in the older AML patients. 

Hematological malignancies carrying TP53 mutations, 

abnormalities in chromosomes 5, 7, or 17p, and 

complex karyotypes are associated with poor prognosis, 

regardless of the treatment choice. The median OS was 

7.2 and 2.4 months, respectively, for elderly AML 

patients with TP53 mutations treated with azacitidine or 

conventional care [23]. The median OS in elderly 

patients with AML and TP53 mutations receiving 

standard cytotoxic chemotherapy is 4 to 6 months [28–

30]. In our study, 15 patients with TP53 mutations had a 

median OS of 10 months, which was relatively shorter 

than the median OS of 18 months for patients with wild 

type TP53, but the difference was not statistically 

significant. Lower VAF is associated with better 

survival in elderly AML patients with TP53 mutations 

[31, 32]. We performed survival analysis after 

excluding the two patients harboring TP53 mutations 

with VAF <20%, and did not observe statistical 

differences between patients with mutated and wild-

type TP53. In our study, ten patients with TP53 

mutations also harbored -5/5q- and/or -7/7q- 

chromosomal deletions, whereas, the remaining 5 

patients had isolated TP53 mutations. The median OS 

and DFS was relatively longer for patients with isolated 

TP53 mutations compared to patients with TP53 

mutations and concomitant -5/5q- and/or -7/7q- 

chromosomal deletions, thereby indicating worse 

prognosis for the latter group. Complex cytogenetics, 

monosomal karyotypes, -5/5q- and/or -7/7q- 

chromosomal deletions, and TP53 mutations frequently 

overlap with each other. Since only patients with -5/5q- 

and/or -7/7q- chromosomal deletions were associated 

with poorer survival in the multivariate analysis, we 

speculate that D-CAG tends to improve the prognosis of 

TP53 mutated patients. 

 

Approximately 20% of AML patients harbor FLT3 

mutations that are more common in younger patients 

with normal karyotype, and is associated with poor 

prognosis [33]. Dohner et al. reported that OS was 

significantly lower in the azacitidine-treated older AML 

patients with FLT3 mutations compared to those 

undergoing conventional care [23]. In our previous 

study, OS was significantly lower in eleven patients 

with FLT3-ITD mutations compared to other patients 

[8]. In this study, we detected FLT3 mutations in 23.2% 

of the patients using NGS. The median OS was similar 

for patients with or without FLT3 mutations. We further 

analyzed survival of eight patients with FLT3-ITD and 

without NPM1 mutations, and found no significant 

differences in OS and DFS between patients with the 

mutated gene and the others. Patients with persistent 
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mutations after chemotherapy showed significantly 

lower event-free survival and OS than those that cleared 

all mutations [34]. We confirmed clearance of TP53 and 

FLT3 mutations in some responders, thereby confirming 

that D-CAG eliminates mutant clones of TP53 and 

FLT3. 

 

The limitations of this study include small sample size, 

and limited analysis of pre-treatment, post-treatment, 

and relapsed samples for all cases. While our study 

indicates that D-CAG treatment regimen improves 

overall prognosis of elderly patients with AML, the 

findings need to be validated by prospective studies 

with larger cohort of patients and a longer follow-up. 

 

In conclusion, our study provides evidence for the 

clinical efficacy of the D-CAG treatment regimen in 

older AML patients and shows that D-CAG tends to 

improve the prognosis of a subgroup of elderly patients 

with high-risk AML. 

 

MATERIALS AND METHODS 
 

Study populations 
 

We enrolled 125 patients between the ages 60-86 years 

that were diagnosed with AML (except acute 

promyelocytic leukemia) in our hospital between 

September 2011 and October 2018 according to the 

WHO classification. The Eastern Cooperative Oncology 

Group Performance Status (ECOG PS) score of all 

patients was 0-3. The exclusion criteria included poor 

hepatic or renal function, defined as total serum 

bilirubin, aminotransferase, or creatinine concentrations 

more than two times the upper limit of normal range; 

poor cardiac function greater than Class II according to 

the New York Heart Association Functional 

Classification; presence of another malignancy without 

remission. The included patients had not received any 

previous chemotherapy other than hydroxyurea. The 

study procedures and informed consent forms were 

approved by the ethics committee of the First Affiliated 

Hospital of Nanjing Medical University, Jiangsu 

Province Hospital (number 2011-SR-085). We obtained 

informed consent from all patients included in this study 

or their legal guardians. 

 

This study was registered on the Chinese Clinical Trial 

Registry (ChiCTR No. 11001700). The target accrual 

number for this study was 100 and the duration was 

from September 2011 to September 2016. We enrolled 

89 patients in this observational study (ChiCTR number 

1001700), including 81 patients that participated in our 

previous study [8]. The remaining 36 patients came 

from an extension cohort, including 16 patients aged 

above 75 years. They were not enrolled in the clinical 

trial and were treated with D-CAG according to the 

2017 Chinese guidelines for diagnosis and treatment of 

adult acute myeloid leukemia [35]. These guidelines 

required AML patients above 60 years to receive 

decitabine combined with low-dose chemotherapeutic 

regimen, such as CAG. 

 

D-CAG treatment regimen 
 

The patients were treated with the D-CAG regimen as 

previously reported [8]. Briefly, patients were 

intravenously injected with 15 mg/m2 decitabine over 4 

h for five consecutive days (days 1-5), 10 mg/m2 

cytarabine every 12h for seven days (days 3-9), 10 

mg/m2/day aclarubicin for four days (days 3-6) from 

October 2010 to April 2016 or 8 mg/m2/day aclarubicin 

for four days (days 3-6) from May 2016 to May 2018, 

and 300 μg/day G-CSF for priming until the white 

blood cell (WBC) counts exceeded 20×109/L. Up to two 

cycles of induction chemotherapy were allowed if CR 

was not achieved. Patients who did not achieve CR after 

two cycles of D-CAG were offered alternative therapies 

or supportive therapy. The post-remission therapy 

included 4–6 cycles of D-CAG for the patients 

achieving CR. Upon final analysis on July 30, 2019, D-

CAG as post-remission therapy was administrated in 89 

patients for one cycle, 74 patients for two cycles, 40 

patients for three cycles, 33 patients for four cycles, 12 

patients for 5 cycles and 5 patients for 6 cycles, 

respectively. 

 

Cytogenetic analyses 
 

Bone marrow (BM) cells were directly harvested from 

unstimulated cultures. Metaphase cells were banded 

using an improved heat treatment and Giemsa R-

banding method. The karyotyping was based on 

conventional cytogenetic examination of ≥20 

metaphases. 

 

Next-generation sequencing 

 

A total of 23 genes, including DNMT3A, TET2, IDH1, 

IDH2, SRSF2, U2AF1, ZRSR2, ASXL1, EZH2, RUNX1, 

NPM1, CEBPA, ETV6, GATA2, FLT3, NRAS, KRAS, 

CBL, JAK2, KIT, CSF3R, TP53 and PHF6, were 

included in the targeted gene sequencing (TGS) panel. 

Genomic DNA (gDNA) was extracted from the BM 

aspirates of each patient using an Autopure extractor 

(Qiagen, Hilden, Germany). Then, 10 ng genomic DNA 

was PCR amplified using the Ion AmpliSeq Library kit 

2.0 (Ion Torrent, Thermo Fisher Scientific, USA). The 

206 amplicons included in this panel are summarized in 

Supplementary Table 1. Amplicon libraries were 

constructed using the KAPA Hyper Prep kit for 

Illumina Platforms (Kapa Biosystems, Wilmington, 
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MA, USA) [36], and sequenced on the Illumina Miseq 

platform. The sequencing reads were aligned to the 

human reference genome (genome build hg19) using 

the Burrows-Wheeler Aligner (BWA) [37]. Variant 

calling was performed using the Genome Analysis 

Toolkit (GATK) [38]. The Integrative Genomics 

Viewer (IGV) version 2.3.32 was used to visualize the 

sequencing reads and assess the variants [39]. We 

excluded from further analysis the synonymous and 

non-synonymous variants that occurred with a 

frequency >0.1% in the 1000 Genomes Project database 

(http://www.ncbi.nlm.nih.gov/variation/tools/1000geno

mes/) or in the normal Eastern Asian population  

from the Exome Aggregation Consortium (ExAC; 

http://exac.broadinstitute.org/). 

 

Definition of outcomes 
 

Treatment responses were assessed according to the 

NCCN clinical practice guidelines of AML (version 

2.2019). The complete remission (CR) was defined by 

transfusion independence, <5% blasts in the BM 

aspirate with spicules, absence of blasts with Auer rods, 

absence of residual extramedullary disease, as well as 

absolute neutrophil counts >1.0×109/L, and platelet 

counts ≥100×109/L in peripheral blood. Partial 

remission (PR) was defined by a 50% decrease in the 

percentage of blasts to 5-25% in the BM aspirate, and 

the normalization of blood counts as described above. 

No remission (NR) was indicated when the CR or PR 

criteria were not met as described above. The objective 

response rate (ORR) included rates of CR and PR. The 

overall survival (OS) was measured from the time of 

diagnosis to death or censorship at the last follow-up. 

The disease-free survival (DFS) was defined as the 

duration from CR until relapse or death or censorship at 

the last follow-up. The time to stable neutrophil 

recovery was measured from the end of protocol 

induction therapy until the first day when the absolute 

neutrophil counts recovered to ≥500/μl for two 

consecutive measurements on different days. The time 

to stable platelet recovery was measured from the end 

of protocol induction therapy until the first day that the 

platelet counts were ≥20,000/μl for at least seven 

consecutive days. Toxicities were defined and graded 

according to the National Cancer Institute (NCI) 

Common Toxicity Criteria [40]. 

 

Statistical analysis 
 

Data were analyzed using the Statistical Package for 

Social Sciences (SPSS version 20.0). Statistical 

significance was considered when the p value was 

<0.05. Differences in continuous variables were 

analyzed by t-tests and chi-squared tests. Fisher exact 

test was performed to compare the incidences. Kaplan–

Meier analysis was performed to estimate the survival 

probabilities, and proportional hazards model was used 

for univariate and multivariate analysis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Amplicons. 


