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INTRODUCTION 
 
Vitamin D is an essential fat-soluble vitamin that 
consists of two equally inactive forms, vitamin D2, also 
called ergocalciferol and vitamin D3 or cholecalciferol. 
Vitamin D2 can be obtained from vegetable dietary 
sources and food supplements, whereas vitamin D3 not 
only can be obtained from dietary sources, but it can also 
be produced by the human skin after exposure to 
ultraviolet B radiation in sunlight, with cutaneous 
production being the main source in the general 
population. As illustrated in Figure 1, either vitamin D2 
or D3 must also be activated by transformations in the 

liver and kidney. Many variables influence the amount 
of ultraviolet B radiation from sunlight that reaches the 
skin and its effectiveness at facilitating the synthesis of 
vitamin D3. These variables include time of day, season, 
latitude, altitude, clothing, sunscreen use, pigmentation, 
and age. The activation of these vitamins into active 
metabolites occurs in two stages: the first stage is the 
hydroxylation of carbon 25 of vitamin D2 or D3 
catalyzed by 25-hydroxylase leading to calcidiol  
(also called 25(OH)D or 25-hydroxyvitamin D) in the 
liver. The second stage is the transformation of 
25(OH)D onto calcitriol (also called 1,25(OH)2D3 or 
1,25-dihydroxyvitamin D), the most active form of 
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ABSTRACT 
 
Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian 
organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an 
accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D 
exerts in the aged brain paying special attention to the neurogenic process. Neurogenesis occurs in the adult 
brain in neurogenic regions, such as the dentate gyrus of the hippocampus (DG). This region generates new 
neurons that participate in cognitive tasks. The neurogenic rate in the DG is reduced in the aged brain because 
of a reduction in the number of neural stem cells (NSC). Homeostatic mechanisms controlled by the Wnt 
signaling pathway protect this pool of NSC from being depleted. We discuss in here the crosstalk between Wnt 
signaling and vitamin D, and hypothesize that hypovitaminosis might cause failure in the control of the 
neurogenic homeostatic mechanisms in the old brain leading to cognitive impairment. Understanding the 
relationship between vitamin D, neurogenesis and cognitive performance in the aged brain may facilitate 
prevention of cognitive decline and it can open a door into new therapeutic fields by perspectives in the 
elderly. 
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Vitamin D, catalyzed by 1α-hydroxylase mainly in the 
kidney. Although, classical function of vitamin D was 
always limited to calcium and phosphorus homeostasis, 
the discovery of vitamin D receptor (VDR), present in 
most tissues and cells in the body, including the brain  
[1, 2], meant an increase in the number of studies 
focusing on vitamin D functions. VDR can regulate a 
large number of genes through 1,25(OH)2D3. The 
binding of 1,25(OH)2D3 to VDR generates a cytosolic 
complex that regulates gene transcription and many 
biological functions (Figure 1). VDR/1,25(OH)2D3 
complex can interact with retinoid X receptor (RXR) in 
the cytosol to form a heterodimeric complex which is 
recruited to the VDRE (Vitamin D Receptor Element) 
placed in the promoters of target genes to activate its 
regulation [3] (Figure 1). The best well known function 
of 1,25(OH)2D3 is the regulation of calcium homeostasis 
and bone mineralization. However, ontology analysis  
 

 
 

Figure 1. Metabolism of vitamin D. Vitamin D3 is synthesized 
in the skin from provitamin D3 (7-dehydrocholesterol) under the 
influence of UV light. Vitamin D2 (ergocalciferol) is obtained from 
vegetable dietary sources where it derives from the plant sterol 
ergosterol. Vitamin D is metabolized first to calcidiol (25(OH)D), 
and later to the active form calcitriol (1,25(OH)2D3). Interaction of 
1,25(OH)2D3 with the vitamin D receptor (VDR), which is an 
intracellular transcription factor, facilitates its binding to DNA 
sequences. The binding of the complex VDR/1,25(OH)2D3 to these 
regulatory sequences (vitamin D response elements (VDREs)) 
regulate transcription of genes involved in many different cellular 
homeostatic functions. 

describe 11,031 putative VDR target genes identified, 
43% of which were involved with metabolism, 19% with 
cell and tissue morphology, 10% with cell junction and 
adhesion, 10% with differentiation and development,  
9% with angiogenesis, and 5% with epithelial to 
mesenchymal transition [4]. The number, the location 
and the VDR expression regulation are determined  
by cell type [5–7]. These genes are involved in  
several processes such as cell proliferation, cancer, 
immune response, glucose homeostasis, cardiovascular 
homeostasis and activity of the nervous system [8–11]. 
 
In the human brain, VDR and vitamin D-metabolizing 
enzymes are expressed by cerebral structures such as 
prefrontal cortex, hippocampus, cingulate gyrus, 
thalamus, hypothalamus, and substantia nigra [12, 13]. In 
neurons, vitamin D plays different key roles participating 
in the suppression of oxidative stress, inhibition of 
inflammation, neuroprotection, down-regulating 
inflammatory mediators and up-regulating many 
neurotrophins [13, 14]. Proteomics and gene array 
analyses show that low levels of vitamin D during 
gestation influence the regulation of genes involved in 
nervous system development. These genes play 
significant roles in the cytoskeletal maintenance, 
mitochondrial function, synaptic plasticity and cellular 
proliferation and growth [15]. Regarding neurotrophins, 
vitamin D exerts neurotrophic support participating in the 
synthesis of neurotrophic factors. It participates in the 
synthesis of nerve growth factor (NGF) upregulates,  
the synthesis of glial cell line-derived neurotrophic  
factor (GDNF) and neurotrophin 3 (NT-3), and also 
downregulates levels of neurotrophin 4 (NT-4) [9, 16, 17]. 
 
Although there are probably around 50 known 
metabolites of vitamin D, measurement of serum 
25(OH)D is clinically used to define the vitamin D 
status. The threshold to define adequate stores of 
25(OH)D in humans has not been clearly established. 
Diversity of opinions among researchers has generated 
different thresholds of vitamin D for human health. 
Thus, the Institute of Medicine has stablished the 
optimal concentration of 25(OH)D serum level being 50 
nM (20 ng/mL) for skeletal health [18], insufficiency 
between 30–50 nM, and deficiency below 30 nM (12 
ng/ml), whereas the International Osteoporosis 
Foundation considers that the adequate values of 
25(OH)D for skeletal health are higher than 75 nM (30 
ng/mL) [19]. Despite the lack of consensus, it is clear 
that low levels of vitamin D have detrimental 
consequences for human health [20]. 
 
Though the main source of vitamin D is the sunlight, its 
deficiency has a high prevalence worldwide and affects 
half of the world population without excluding those in 
countries with sun exposure over all the year [21, 22] 
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thus leading to a great variety of health problems. In 
addition to the widely studied actions of 1,25(OH)2D3 
on intestinal calcium absorption and bone physiology, 
studies in animal models show that 1,25(OH)2D3  
exerts tumor-suppressive actions (anti-angiogenic, anti-
invasive, antimetastatic) [23] in several cancers and 
epidemiological studies report that vitamin D exerts 
protective effects against several neoplasia, particularly 
colorectal cancer [24]. Vitamin D deficiency is 
associated as well with several brain diseases such as 
schizophrenia, autism spectrum disorders, multiple 
sclerosis, dementia and Alzheimer’s disease [25–33]. 
 
Vitamin D deficiency and accelerated aging 
 
Several studies start to consider vitamin D deficiency as 
a risk factor for accelerated aging [11, 34–36] especially 
in the elderly [37] since the body reduces its ability to 
synthesize 1,25(OH)2D3. The skin’s ability to synthesize 
vitamin D significantly decreases with age, being 
reduced by more than 50% at 70 years of age compared 
to 20, whereas other functions such as the intestinal 
absorption of vitamin D are not affected [38]. 
Moreover, several studies have reported that 
hypovitaminosis D is common in aged individuals with 
previous diseases [39]. 
 
Aging is considered to be controlled by multiple genes 
and environmental factors, and vitamin D is postulated 
as one of these key factors. Keisala et al. show a direct 
connection between VDR and aging demonstrating that 
the phenotype of VDR KO mice includes premature 
aging and a shorter life span [40]. In addition, VDR KO 
mice manifest some of the health problems observed 
during the human aging process such as infertility, 
muscle atrophy, immune deficiency, osteoporosis and 
sensitivity to cancer [10, 41, 42]. Additional studies 
reveal that in addition to a shorter lifespan, VDR mutant 
mice show other signs of accelerated aging such as skin 
thickening and wrinkling, alopecia, ectopic 
calcification, progressive loss of hearing and balance 
[43, 44]. It is proposed that vitamin D regulates aging 
by controlling several cell activities such as autophagy, 
which acts to slow down the aging process by removing 
dysfunctional mitochondria. Vitamin D also moderates 
oxidative stress, inflammation, calcium signaling, 
epigenetics and DNA disorders, including telomere 
shortening that leads the processes of aging [11, 45–49]. 
 
All of this suggests that vitamin D is essential for the 
maintenance of homeostasis during aging and its 
deficiency might accelerate its progression. These 
evidences together with the reduced capacity of human 
skin to produce vitamin D3 during aging allow to 
propose a feedback positive loop between vitamin D 
deficiency and aging: aging provokes more vitamin D 

deficiency and vitamin D deficiency accelerates the 
aging process. In the next paragraphs of this review, 
we will focus on the effect that vitamin D exerts in the 
aged brain paying special attention to the neurogenic 
process. 
 
Hippocampal neurogenesis in the aged brain 
 
Neurogenesis occurs during development of the central 
nervous system and remains during the infant and adult 
stages. New neurons are generated from neural stem 
cells (NSC) which produce glial cells as well. NSC are 
ubiquitously distributed along the adult central nervous 
system [50], however, once the brain has completely 
developed, neurogenesis predominantly occurs in two 
specific regions of the adult mammalian brain: the 
subventricular zone (SVZ) and the dentate gyrus of 
hippocampus (DG) [51, 52]; nonetheless, there are other 
minor scattered sites in the brain where neurogenesis 
occurs such as the hypothalamus or the striatum of 
several species [53–55]. Within these regions an 
environment of extracellular signaling molecules 
creates a neurogenic niche that preserves the necessary 
conditions to support neurogenesis during a lifetime. 
Different cell types derived from the NSC progeny can 
be distinguished within these niches: undifferentiated 
neural progenitor cells (NPC) produced by activated 
NSC, and neuronal progenitor cells (neuroblasts) that 
differentiate into mature neurons. Since the potentiality 
of NPC is almost identical to that of NSC, they can 
produce either neuronal progenitors or glial progenitors 
[56–58] and the fate of NSC may determine the 
neurogenic capacity of the hippocampus in the long 
term. NSC activated in the DG undergo a series of 
asymmetric divisions that produce neurons until they 
eventually differentiate into astrocytes [59]; thus, the 
proportion of glial cells produced from NSC over 
neurons in the DG varies with age and a biased 
differentiation of NSC towards an astroglial phenotype 
has been shown in the DG of aged mice, which leads to 
a depletion of the NSC pool and a reduction of 
neurogenesis [59, 60]. Extracellular, matrix-bound and 
membrane-bound signals determine NSC fate toward a 
neuronal or glial phenotype within the niche [61]. One 
of these signals is the brain morphogenetic protein 
(BMP) signaling inhibitor Noggin, which is a key 
molecule protecting NSC in the aged brain because of 
its role in the regulation of BMP signaling [60]. Other 
signaling molecules involved in fate determination are 
those that initiate the epidermal growth factor receptor 
(EGFR) or the basic fibroblast growth factor (bFGF) 
pathways [61–65], which might be stimulated by 
intracellular signaling molecules such as classical and 
novel protein kinase C isozymes [66, 67]. 
Since the year 1965 in which a study about the 
generation of neurons in the postnatal mammalian brain 
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was reported, neurogenesis in the adult has been a 
controversial point [68]. The persistence of 
hippocampal neurogenesis in the adult mammalian 
brain has been demonstrated in rodents and other 
mammalian species, however, a dramatic decline of the 
rate at which new neurons are generated in older 
animals has also been observed [51, 69, 70]. 
Proliferating cells in the subgranular zone (SGZ) of the 
hippocampus rapidly decline in early childhood [71, 
72]. Moreover, the amount of gliogenesis increases 
whereas that of neurogenesis decreases during aging 
[70, 73]. Nowadays, the debate continues determining 
whether human hippocampal neurogenesis remains 
active during physiological aging. The greatest 
culmination of this debate has recently come with two 
very contradictory studies [74, 75]. Both studies were 
based in the same premise and used a variety of similar 
antibodies to detect markers of NSC, proliferating cells, 
migrating neural cells, and various stages of neuronal 
maturation. One of them concludes that there are 
undetectable levels of hippocampal neurogenesis in 
adult brains [74] whereas two other studies conclude 
that human hippocampal neurogenesis persists 
throughout adulthood [76] and even in aged adults [75]. 
Today, the argument that adult neurogenesis persists in 
the human hippocampus has more adepts, based on 
BrdU marker and carbon dating but a deeper study on 
hippocampal adult neurogenesis should be done. 
Ideally, non-invasive in vivo techniques could be used 
to detect neurogenesis such as magnetic resonance 
imaging and positron emission tomography in living 
humans. This field is under development and there are 
already some studies describing in vivo imaging of 
endogenous NPC using these techniques [77]. 
 
A key point in the regulation of neurogenesis within 
neurogenic niches is whether NSC adopt a quiescent 
state or enter an active state. NSC are exposed to a large 
variety of signals from the environment, either 
inhibitory or stimulating, which they integrate resulting 
in either the maintenance of the quiescent state (qNSC) 
or the transition into an activated state (aNSC) [78]. 
These are extracellular matrix, cell-bound or soluble 
paracrine signals. Interestingly some of these signals 
regulate stem cells in different tissues in a similar 
manner; i.e. BMPs promote quiescence whereas 
activation of the Wnt signaling pathway promotes 
activity of various types of stem cells [78]. 
 
Recent studies demonstrate that the number of 
hippocampal NSC decreases with age and 
concomitantly, these cells undergo a transition into a 
senescent state characterized by a complex morphology. 
The capacity of these senescent cells to undergo 
activation is greatly reduced. Thus, NSC remain 
quiescent for longer periods of time in the DG of aged 

adults [79, 80]. The quiescence maintenance is probably 
the major factor contributing to the preservation of the 
neurogenic rate during aging since it protects NSC 
reservoir from full depletion. However, a basal 
activation rate is required for the continuous generation 
of new neurons. Within this context, the niche plays a 
major role in reducing qNSC activation in the aged 
brain. Recent works have demonstrated that 
inflammatory signals within the aged DG niche may 
increase quiescence in NSC [79] and have elucidated 
some of the cellular and molecular mechanisms 
underlying this phenomenon [80], which include the 
hypomethylation of genes involved in the Wnt signaling 
pathway stabilizing the expression profile of some of its 
components [80]. 
 
In general, most studies yield to the aging-induced 
quiescence conclusion and therefore it seems reasonable 
to hypothesize that in order to control NSC aging, it is 
important to regulate the balance between quiescence 
and activation of NSC by understanding the role of the 
signals within the niches that can lead NSC to exit 
quiescence [81]. Interestingly, in addition to the 
inflammatory signals and cascades that modulate NSC 
quiescence and activation, the Wnt signaling pathway 
seems to play a crucial role in regulating the balance 
quiescence/activation. Several Wnt signaling proteins 
participate in this process [78, 80]. 
 
Neurogenesis and Wnt signaling 
 
Wnt signaling pathways in the central nervous system 
Typically, Wnt proteins play essential roles in different 
signaling pathways in cellular proliferation, 
differentiation and cell migration during central nervous 
system development but recently, studies have shown 
that Wnt signaling is not only implicated in embryonic 
development but also in the adult state. Wnt ligands are 
constitutively expressed in the adult brain and have a 
role at least in the maintenance of adult brain 
neurogenesis [82, 83]. The active role of Wnt during 
brain development is regulating neurogenesis and 
synaptogenesis of the neural tube [84]. Therefore, 
constitutive expression of Wnt ligands in the 
hippocampus of the adult brain might suggest an 
important role for Wnt in the maintenance and protection 
of adult hippocampal neurogenesis during adulthood. 
Moreover, it has been suggested that its deregulation is 
crucial in neurogenesis during aging [85] and in several 
neurological disorders such as Alzheimer’s disease, 
Parkinson’s disease or Schizophrenia [86] 
 
The importance of Wnt signaling can be inferred from 
the conservation of this pathway in the different 
organisms across evolution including humans. There are 
three Wnt stimulated pathways very well characterized: 
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the canonical β-catenin dependent Wnt pathway, the 
noncanonical β-catenin independent pathways: planar 
cell polarity pathway (PCP) and calcium pathway 
(CaP). These pathways are activated by the binding of a 
Wnt ligand (Wnt 1-19) to a Frizzled (Fzd) receptor and 
the LDL-Receptor-related protein coreceptor (LRP5/6) 
resulting in the activation of Disheveled (DVL) protein 
which initiate different signaling cascades [87–89]. 
 
In the Wnt canonical pathway, Fzd and DVL activation 
avoid the degradation of β-catenin (Figure 2). In the 
absence of Wnt, β-catenin is continuously degraded by 
a protein complex composed of the scaffold proteins 
Axin and adenomatous polyposis coli (APC), and the 
kinases casein kinase 1 (CK1) and glycogen synthase 
kinase 3 beta (GSK3β). CK1 and GSK3β sequentially 
phosphorylate β-catenin, resulting in β-catenin being 
recognized and ubiquitinated by the β-Trcp ubiquitin 

ligase, followed by proteasomal degradation. Binding of 
Wnt to a Fzd receptor complex induces the binding  
of Dvl to Fzd and the recruitment of Axin to the 
membrane, which impairs the destruction complex 
through the inactivation of GSK3β, promotes the release 
of β-catenin, and its accumulation in cytoplasm and 
nuclei leading to β-catenin-activated gene expression 
[90–92]. Inhibitors of this pathway are the Dickkopf 
proteins 1-4 (DKK 1-4) and the secreted frizzled related 
proteins 1-5 (SFRP 1-5) [88]. This branch of the Wnt 
signaling pathway plays key roles in regulating cell fate, 
proliferation and survival [93]. The noncanonical 
pathways PCP and CaP are activated by Wnt4, Wnt5a 
and Wnt11. These pathways control gene expression 
through different mechanisms involving RhoA/Rock 
kinases or the calmodulin kinase CamKII respectively 
[94]. This branch is more associated with differentiation, 
cell polarity and migration [93] 

 
 
 

 
 

Figure 2. Activation of the Wnt canonical pathway induces β-catenin-regulated gene expression. Left panel: binding of Wnt to a 
Frizzled receptor (Fzd) allows its association to Dishevelled proteins (DVL) sequestering Axin and avoiding the formation of the complex 
composed of Axin, the adenomatous polyposis coli (APC), the kinases casein kinase 1 (CK1) and glycogen synthase kinase 3 beta (GSK3β), 
which phosphorylates β-catenin, resulting in β-catenin being ubiquitinated by the β-Trcp ubiquitin ligase, followed by proteasomal 
degradation. Right panel: in the absence of Wnt β-catenin is degraded, whereas Wnt-mediated activation of Fzd induces expression of genes 
regulated by β-catenin [92]. 
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Wnt and adult neurogenesis 
In multiple mammalian tissues canonical Wnt signals 
within the niche act as self-renewal short range signals 
for stem cells tissues [89]. There is also increased 
evidence about Wnt involvement in adult neurogenesis. 
It has been demonstrated that adult hippocampal 
progenitor cells express different Wnt ligands which 
can regulate adult hippocampal neurogenesis acting on 
both canonical and non-canonical signaling pathways. 
Recent studies indicate that two major branches of the 
Wnt signaling pathway, the Wnt/β-Catenin and 
Wnt/PCP pathways, play essential roles in various steps 
of adult neurogenesis [86]. However, at least 19 Wnt 
proteins and 10 Fzd receptors have been found [95]. 
This diversity of signals and receptors complicate the 
comprehension of the impact of their different roles in 
mammals. 
 
The overexpression of Wnt ligands that activate the 
canonical Wnt β-catenin pathway such as Wnt3 
increases neurogenesis of adult hippocampal progenitor 
cells in vitro and in vivo, suggesting that Wnt signaling 
enhances proliferation of neural stem cells derived from 
adult CNS [96, 97]. In agreement with this, Wnt3 
signaling inhibition blocks neurogenesis in the DG and 
decreases long-term retention of episodic memory in 
adult rats [98]. Accordingly, the deletion of Wnt7a 
reduced drastically the numbers of newborn neurons in 
the DG of adult mouse brains preventing NPC 
proliferation and differentiation through the canonical 
Wnt/β-catenin pathway [99]. In addition, the 
implication of Wnt pathway is not only revealed by Wnt 
ligands but also by their Fzd receptors. Fzd1 
knockdown reduces the generation of newborn neurons 
in the DG and changes the migration of neurons [100]. 
Another Wnt canonical signaling regulator that 
participates in adult neurogenesis is GSK3β. 
Overexpression of this kinase inhibits neurogenesis in 
the adult DG whereas its inhibition facilitates NSC 
proliferation and neuronal differentiation (reviewed in 
Marchetti et al. 2020 [86]). Finally, Wnt-signaling must 
be finely tuned via Wnt-antagonists such as some 
Dikkopf (DKK) proteins. Dkk1 is a potent inhibitor of 
SVZ- and SGZ-neurogenesis [83]. 
 
An additional role for non-canonical Wnt signaling 
pathway has also been reported. Wnt5a knockdown in 
the mouse DG impaired neuronal differentiation of 
progenitor cells and reduced dendritic development of 
adult-born neurons. In cultured adult hippocampal 
progenitors, knockdown of noncanonical Wnt5a 
reduced neuronal differentiation and morphological 
development of adult neurons, whereas treatment with 
Wnt5a had the opposite effect. Arredondo et al. 
determined that Wnt5a signals through CaMKII induce 
neurogenesis and promotes dendritic development of 

newborn neurons through activating Wnt/JNK and 
Wnt/CaMKII signaling suggesting that Wnt5a act as a 
niche factor in the adult hippocampus that promotes 
neuronal differentiation and development [101]. 
 
Altogether these evidences support the relevance of 
Wnt signaling pathway on adult neurogenesis. 
However, the understanding of the complex regulation 
of Wnt signaling in neurogenesis in the adult brain 
remains unclear. 
 
Wnt and the aged brain 
It has been proposed that neurogenesis could be finely 
regulated by the expression of specific Wnt receptors in 
different cell types in young adults and this regulation is 
altered in the aged brain [102]. In the young adult, 
hippocampal astrocytes express Wnt3, which stimulates 
the canonical β-catenin pathway in neuroblasts 
promoting proliferation and differentiation via paracrine 
signaling [97]. Autocrine Wnt signals in NSC and NPC 
within the DG maintain their proliferative activity [103, 
104] via the β-catenin pathway. Furthermore, mature 
granule neurons in the DG express the Wnt inhibitor 
sFRP3. The expression of this inhibitor can be greatly 
reduced depending on neuronal activity leading to 
proliferation of NPC and maturation of newly generate 
neurons [105]. Non canonical PCP Wnt signaling also 
plays an important role in neurogenesis in the young 
adult by inducing neuroblast differentiation and 
migration [106]. Wnt activity is different in the aged 
DG compared to the young adult. A reduction in 
canonical Wnt activity has been described in the 
hippocampus of aged animals. Wnt3 expression of 
hippocampal astrocytes and the number of Wnt3-
secreting astrocytes is reduced during aging [107]. 
Decreased Wnt levels together with an elevated 
expression of Wnt antagonists, such as DKK1, could 
partially explain the decline in neurogenesis found in 
aged adults [107–109]. Loss of the Wnt antagonist 
DKK1 in aged KO mice results in a restoration of the 
decline in neurogenesis found in non-mutant aged  
mice. [109] 
 
An attenuation of Wnt signaling has also been found in 
the SVZ. Zhu et al. detected decreased canonical Wnt 
activity in the SVZ of old mice compared to younger 
mice that could be responsible for the reduced adult 
neurogenesis in rodents [110]. A negative regulator of 
Wnt is the p38 mitogen-activated kinase (p38 MAPK), 
which inactivates GSK3β leading to the attenuation of 
Wnt signaling. Kase et al. have identified p38 MAPK as 
a key factor in the proliferation of NPC in adult 
neurogenic niches. p38 expression in adult NSC/NPC is 
downregulated during aging. Deletion of p38α in 
NSC/NPC specifically reduces the proliferation of NPC 
but not stem cells. Overexpression of p38α in NSC/NPC 
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in the aged mouse SVZ restores NPC proliferation  
and neurogenesis and prevents age-dependent SVZ 
atrophy [111]. 
 
An effect of Wnt on the transition from qNSC to aNSC 
that is altered in the aged brain has also been proposed. 
However, this subject is still an open question. Some 
evidences point out at a role for canonical Wnt 
signaling in promoting activation of NSC in the SVZ 
and DG. Wnt signals produced by astrocytes and NSC 
induce proliferation and self-renewal of NSC in both 
niches [97, 99]. Also, elimination of sfrp3 expressed in 
hippocampal granule neurons results in aberrant NSC 
activation. Accordingly, sfrp3 gradients regulate qNSC 
activation regionally. A similar effect is observed upon 
elimination of DKK1, a Wnt inhibitor expressed by 
NPC within the hippocampus [105, 109, 112]. In 
addition, some studies suggest that non-canonical Wnt 
signaling maintains quiescence of SVZ NSC by 
facilitating anchoring of NSC within the niche in a 
mechanism mediated by Rho GTPase Cdc42 [113]. All 
these suggests that activation requires a switch from 
non-canonical to canonical Wnt signaling [78]. Wnt 

signaling molecules have been found to be altered in the 
pathogenesis of aging. In fact, p38-MAPK is necessary 
for suppressing the expression of sfrp3 and other Wnt 
antagonists like DKK1, which inhibit the proliferation 
of NPCs, and therefore, an age-related reduction in p38 
leads to decreased adult neurogenesis via 
downregulation of Wnt signaling [111]. 
 
Studies using mathematical models show that in mice in 
which the Wnt antagonist DKK1 has been deleted, NSC 
spend longer periods of time in quiescence but they are 
more likely to be activated than depleted via their 
differentiation towards astroglial cells [114]. The study 
concludes that, high NSC-Wnt activity leads to longer 
time in quiescence while enhancing the probability of 
activation. 
 
Crosstalk between Wnt signaling and vitamin D 
 
The activation of VDR depends on the presence of 
1,25(OH)2D3 which triggers the direct regulation of 
genes with VDRE (as illustrated in Figure 3). But in 
some cases, 1,25(OH)2D3 can also indirectly regulate 

 

 
 

Figure 3. Vitamin D interferes with β-catenin induced gene expression via different pathways in different cell types. Left 
panel: in cancer cells vitamin D impairs the Wnt/β-catenin signaling pathway. One of these mechanisms relays on the association of the 
complex VDR/1,25(OH)2D3 to β-catenin to induce VDR-regulated gene expression avoiding β-catenin dependent gene expression. Right panel: 
in some other non-cancer cell types vitamin D exerts an activating effect of the Wnt signaling pathway by upregulating the expression of the 
Fzd co-activator Lrp5 or by repressing the expression of the Wnt inhibitors DKK1 y Sfrp2 [116, 171]. 
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genes that do not contain VDRE in their promoters 
because 1,25(OH)2D3/VDR can also regulate other 
pathways through β-catenin which is required for gene 
expression in response to Wnt signaling (Figure 3). The 
relationship of this crosstalk is complex and not fully 
understood in all tissues and cells. The crosstalk 
between 1,25(OH)2D3 and Wnt/β-catenin pathway has 
been reported in cancer cells, for example in vitro 
functional validation studies on melanoma and colon 
cancer cells showed that elevated 1,25(OH)2D3/VDR 
signaling inhibit Wnt/β-catenin signaling genes [24, 
115, 116]. Besides, interactions between vitamin D and 
Wnt/β-catenin pathway has also been reported in 
different cellular contexts such as colon cancer cells 
[117], in which 1,25(OH)2D3 acts upregulating the 
extracellular Wnt inhibitor DKK1 antagonizing of 
Wnt/β-catenin pathway [118], promoting VDR/ 
β-catenin interactions [119], thus reducing the  
β-catenin-dependent gene expression or facilitating the 
sequestration of β-catenin by E-cadherin at plasma 
membrane adherents junction [117, 119, 120]. Similar 
mechanisms have been described in other cell types 
[121, 122]. 
 
The 1,25(OH)2D3-induced repression of β-catenin is not 
the only mechanism of action of 1,25(OH)2D3 in the Wnt 
signaling pathway (Figure 3, left). Interestingly, an 
upregulation of the Wnt/β-catenin pathway by VDR has 
been described in osteoblasts and keratinocytes in which 
1,25(OH)2D3 effects are similar to those of Wnt: 
1,25(OH)2D3 induces the expression of the Wnt 
coreceptor Lrp5 in mouse osteoblast [123] while 
represses Wnt inhibitors Dkk-1 and Sfrp2 in 
mesenchymal stem cells (Figure 3, right). In skin, 
deficiency of VDR produces hair loss and a gradual 
decrease in epidermal stem cells, while the transcriptional 
effects of β-catenin are impaired thus normal postnatal 
hair cycling is only possible with combined action of 
these two pathways [124]. VDR acts as a Wnt effector 
and β-catenin as a co-activator to induce transcription of 
genes involved in the hair follicle differentiation [125]. 
Theses evidences show that Wnt/β-catenin and 
1,25(OH)2D3 can work together or are linked to regulate 
their target genes. The mechanism of action diverges 
depending on the biological system. While vitamin D can 
act as an antagonist of the Wnt/β-catenin pathway in 
some cancer cells, it can also act as co-activator of 
Wnt/β-catenin pathway in other physiological cell types. 
 
Considering the cross talk between vitamin D and Wnt 
pathway and the considerable number of reports 
demonstrating a role for Wnt signaling in the regulation 
of neurogenesis, it would be reasonable to hypothesize 
that vitamin D may play a role in adult neurogenesis 
affecting brain tasks associated with neurogenesis such 
as cognitive performance. 

Axis vitamin D deficiency, cognitive decline and 
neurogenesis in the aged brain 
 
Nowadays, it is well established that hippocampal 
neurogenesis is involved in learning and memory; 
studies where hippocampal neurogenesis was ablated in 
rodents have shown diminished performance in tests that 
require memory such as the Morris water maze, spatial 
and object recognition and pattern separation [99, 126, 
127]. Furthermore, adult hippocampal neurogenesis has 
been linked to cognitive abilities both in rodents and in 
non-human primates [128]. In the human hippocampus, 
neurogenesis is still a controversial subject. Recent study 
suggests that hippocampal neurogenesis declines at 
young ages to disappear in the adult [74] and a similar 
decline has also been observed in the hippocampus of 
other large brain species [129]. However, several 
evidences show that new neurons can be generated daily 
throughout the lifespan [75, 76] suggesting a possible 
functional role for hippocampal neurogenesis in human 
cognitive capacity [70, 74]. Some studies define 
potential cognitive functions of new neurons of the 
hippocampal formation including the ability to 
discriminate among similar experiences. In fact, 
neurogenesis functions in fear conditioning are 
especially striking in discriminative paradigms, where 
shock is associated with only one of two similar-
appearing situations. Consistent with a discrimination 
function, adult mice where hippocampal neurogenesis is 
ablated or deficient are frequently capable of initial 
learning in spatial tasks but have difficulty performing a 
spatial reversal or discriminating nearby locations or 
cues [126]. Another potential cognitive function of 
hippocampal neurons is incorporating time into episodic 
memories and enabling forgetting of old memories. 
Increasing neurogenesis after the formation of a memory 
was enough to induce forgetting in adult mice. 
Accordingly, during infancy, when hippocampal 
neurogenesis levels are high and freshly generated, 
memories tend to be rapidly forgotten (infantile 
amnesia), decreasing neurogenesis after memory 
formation mitigated forgetting [130]. Hippocampus-
dependent cognitive abilities decline with age in human 
at the same time that adult hippocampal neurogenesis 
[51, 131, 132]. Most of these studies use rodent models 
and they suggest a similar scenario may occur in humans 
although recent data suggest that maybe age-related 
decline is not so pronounced in humans [70]. 
Furthermore, cognitive functions can be regulated by 
certain positive and negative modulators of hippocampal 
neurogenesis. Inflammatory signals negatively affect 
neurogenesis and therefore, considering that chronic 
neuroinflammation is a common feature of normal 
aging, hippocampal neurogenesis and cognitive 
processes would be negatively affected across the 
lifespan [133–135]. On the contrary exercise training 
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and environmental enrichment have been suggested as 
positive factors since it has been demonstrated that both 
situations stimulate hippocampal neurogenesis [136–
138] and improve cognitive function [139–141]. 
Besides, recent evidences demonstrated that exercise 
program can be intergenerationally inherited. Among 
others, these inherited effects include: improving the 
performance of non-spatial and spatial cognitive tasks, 
increasing the number of specific cell populations of 
adult hippocampal neurogenesis and producing changes 
in hippocampal gene expression [142]. 
 
Vitamin D deficiency is a risk factor for accelerated 
aging and cognitive decline [11, 34–36]. In addition, 
several studies suggest that low levels of vitamin D are 
associated with a substantial cognitive decline in the 
elderly [143, 144]. Aging processes in vitamin D 
deficient subjects could also promote the beginning of 
many age-related disorders such as a decline in 
cognition, depression, osteoporosis, hypertension and 
cardiovascular disease, diabetes, cancer, muscle 
weakness, and Alzheimer’s disease [145–151]. In light 
of these findings some authors propose to use 25(OH)D 
sufficiency as a biomarker of delayed aging [152] and 
some others propose vitamin D supplementation as a 
possible therapeutic agent for the treatment of age-
related disorders such as cognitive decline [153]. Recent 
findings suggest vitamin D deficiency as a risk for 
cognitive decline in elderly people. Low vitamin D 
levels (<25 nmol/L) have been associated with a 
cognitive decline in aged individuals studied over a 6-
year period [154]. Similarly, in a different study, low 
25(OH)D levels (<35 nmol/L) were associated with 
poorer performance on cognitive test in older European 
men [155]. In addition, other studies show that 
25(OH)D (<50 nmol/L) is strongly associated with 
executive functioning and the attention processing 
speed but no association between 25(OH)D and 
memory were found [156]. Whereas another clinical 
study with 1604 elderly men found no significant 
association between low vitamin D levels (<50 nmol/L) 
and cognitive decline after adjusting for co-variates 
[157]. In agreement with this latter study, Lee et al. did 
not find a direct correlation between vitamin D 
deficiency and cognitive impairment although they did 
not discard that vitamin D could be an important 
covariable factor [158]. 
 
Thus, the emerging evidences that suggest associations 
between lower serum vitamin D concentrations and 
poor cognitive performance have recently increased. 
Occasionally, vitamin D levels could be normal but 
insufficient to accomplish its function. This is the case 
of impaired VDR function. It is known that VDR gene 
polymorphisms decrease the VDR affinity for vitamin 
D but in contrast to vitamin D deficiency studies, little 

is known about the influence of VDR genes on 
cognition. Evidences point to the VDR gene variants 
being linked to changes in cognitive performance in old 
adults [159, 160]. A clinical study with 563 85-year-old 
participants showed cognitive differences depending on 
polymorphisms in the VDR gene [161]. VDR 
polymorphisms influence susceptibility for cognitive 
decline in average, 67.4 years old patients with 
Parkinson’s disease. Particularly, the functional VDR 
polymorphism Fokl, is associated with cognitive decline 
in patients with Parkinson’s disease, which worsen with 
each additional copy of the allele [162]. VDR is 
expressed in human brain [163] covering a large area 
including the hippocampus [164] which is partially 
involved in cognitive abilities and is particularly 
affected by neurodegenerative disorders. 
 
Besides the link between vitamin D effectivity (vitamin 
D deficiency or VDR polymorphism) and cognitive 
decline the mechanism underlying is poorly understood. 
1,25(OH)2D3 exerts a direct effect on NSC proliferation, 
survival, and neuron/oligodendrocyte differentiation 
participating in the process of remyelination [31–33]. 
Other studies using different models of knockout mice 
show an effect of vitamin D deficiency on adult 
hippocampal neurogenesis. 1α-hydroxylase knockout 
mice, which lacks the ability to produce the active form 
of vitamin D (1,25(OH)2D3) [165] and BALB/c mice 
fed a vitamin D deficient diet [166] show an increase in 
neuroblast proliferation in the hippocampal DG, but a 
decrease in the survival of adult hippocampal neurons. 
Moreover, it has also been observed alterations in 
neuronal differentiation not only in VDR deficient  
mice [167] but also in a mice model of Parkinson’s 
disease in which MPTP downregulates VDR expression 
[168]. An effect of vitamin D in neuronal differentiation 
of dopamine systems during development has  
been described [169]. Accordingly, nutritional 
supplementation with vitamin D in a mouse model of 
Alzheimer’s disease improves cognition concomitantly 
enhancing neurogenesis [170]. Also, it facilitates 
differentiation and neurite outgrowth of HN9.10e 
embryonic hippocampal cells [168]. 
 
Altogether these findings suggest a role for vitamin D in 
preserving cognitive function in older adults and indicate 
that vitamin D is not only related with aging but also 
with cognitive performance. Hence, it seems reasonable 
to hypothesize that the cellular mechanisms underlying 
the effects of vitamin D on cognitive performance in the 
elderly might be mediated by its capacity to stimulate 
neurogenesis. They also highlight a role for canonical 
Wnt signaling cascade as the molecular mechanisms 
triggering these effects. Considering the role that 
canonical Wnt signaling plays in stimulating 
neurogenesis in the aged brain and in maintaining the 
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balance between aNSC/qNSC avoiding depletion, it may 
be possible that a deficiency in vitamin D results in Wnt 
signaling imbalance, impairing the gradual activation of 
NSC required to maintain a neurogenic rate. However, 
more studies are required to demonstrate this hypothesis. 
Only a few human trials have been performed to analyze 
the benefits of vitamin D supplementation in cognitive 
performance. However, evidences suggest a beneficial 
role for vitamin D in brain physiology by the promotion 
of neurotransmission, neurogenesis, synaptogenesis, 
amyloid clearance and the prevention of neuronal  
death [153]. 

CONCLUSIONS 
 
In conclusion, vitamin D has been shown to exert an 
important role in neurogenesis and neuronal survival. In 
hippocampal progenitor cells, vitamin D may 
potentially act as a co-activator of Wnt/β-catenin 
pathway to preserve neurogenesis in the aged brain. 
Thus, the decrease of vitamin D during the senescence 
processes could have a role in the upregulation of Wnt 
antagonistic signals responsible of the decrease in 
neurogenesis that may precede the decline in cognitive 
performance (summarized in Figure 4), and more 

 

 
 

Figure 4. Hypothetical role of vitamin D in facilitating the activation of quiescent neural stem cells (qNSC) in the aged brain 
and its consequences in cognitive impairment. The effects of vitamin D on cognitive decline might be mediated by its capacity to 
stimulate neurogenesis in the old neurogenic niche. Several factors such as inflammation, and Wnt signaling inhibition facilitate the state of 
quiescence in NSC diminishing the neurogenic rate [78, 80]. High NSC-Wnt activity leads to longer time in quiescence while enhancing the 
probability of activation [114]. Vitamin D may activate canonical Wnt signaling through the repression of Wnt inhibitors such as DKK1 and 
prolonging the time NSC spend in quiescence, increasing their probability to be activated and avoiding being depleted via their differentiation 
towards astroglial cells [114]. It may be possible that a deficiency in vitamin D results in Wnt signaling imbalance, impairing the gradual 
activation of NSC required to maintain a neurogenic rate. Thus, hypovitaminosis D might impair these mechanisms leading to a reduction in 
neurogenesis resulting in cognitive decline. 
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studies are required to fully understand the relationship 
between vitamin D, neurogenesis and cognitive 
performance in the elderly. 
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