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INTRODUCTION 
 

Alzheimer’s disease (AD) is a multifactorial age-related 

neurodegenerative disease whose pathology starts 

decades before the clinical symptoms appear [1]. 

Pathological biomarker research made it possible to 

diagnose the disease at the preclinical stage and predict 

cognitive decline before the onset of dementia [2]. In 

2018, the National Institute on Aging and Alzheimer’s 

Association (NIA-AA) created a new “ATN” scheme 

for defining and staging the disease across its entire 

spectrum. The scheme recognizes three general groups 

of biomarkers: biomarkers of β-amyloid (Aβ) deposition 

are labeled “A”; biomarkers of pathologic tau are 

labeled “T”; biomarkers of neurodegeneration are 

labeled “N”. Besides the biomarkers mentioned above, 

new biomarkers can be added to the three existing ATN 

groups, and new biomarker groups reflecting different 

aspects of pathology can be added beyond ATN when 

they become available. Indeed, the NIA-AA research 
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ABSTRACT 
 

Accumulating data suggest cerebrospinal fluid (CSF) neurogranin (Ng) as a potential biomarker for cognitive 
decline and neurodegeneration in Alzheimer disease (AD). To investigate whether the CSF Ng can be used for 
diagnosis, prognosis, and monitoring of AD, we examined 111 cognitively normal (CN) controls, 193 mild 
cognitive impairment (MCI) patients and 95 AD patients in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohort. Correlations were tested between baseline CSF Ng levels and baseline core AD biomarkers and 
longitudinal glucose metabolism, brain atrophy and cognitive decline. We detected that CSF Ng levels increased 
with disease severity, and correlated with phosphorylated tau and total tau levels within each diagnostic group. 
High baseline CSF Ng levels correlated with longitudinal reductions in cortical glucose metabolism within each 
diagnostic group and hippocampal volume within MCI group during follow-up. In addition, high baseline CSF Ng 
levels correlated with cognitive decline as reflected by decreased cognitive scale scores. The CSF Ng levels 
predicted future cognitive impairment (adjusted hazard ratio:3.66, 95%CI: 1.74-7.70, P = 0.001) in CN controls. 
These data demonstrate that CSF Ng offers diagnostic utility for AD and predicts future cognitive impairment in 
CN individuals and, therefore, may be a useful addition to the current AD biomarkers. 
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framework suggested that neurogranin (Ng) in 

cerebrospinal fluid (CSF) as a marker of synaptic 

degeneration should be investigated for potential added 

value in predicting cognitive decline [3]. 

 

Ng is a calmodulin-binding postsynaptic protein and 

plays a critical role in plasticity, synapse repair, and 

long-term potentiation [4, 5]. It is expressed within 

dendritic spines on postsynaptic neurons [6]. Increased 

concentrations of CSF Ng signify a loss of synaptic 

integrity [7, 8]. Synaptic dysfunction, an early and 

prominent pathologic feature of AD [9, 10], correlates 

with cognitive deficits and occurs prior to neuronal 

degeneration [11–13]. Thus, a reduction of synaptic 

protein such as Ng in the brain relates to synaptic 

dysfunction and the CSF levels of Ng can be used for 

disease diagnosis and prognosis. Previous studies suggest 

that CSF Ng levels are elevated in AD [14] and correlate 

with amyloid load, brain atrophy and cognitive decline 

[15, 16]. Increased CSF levels of Ng are specific to AD 

and not seen in other neurodegenerative diseases [17, 18].  

 

In the present study, we present results on CSF Ng in the 

Alzheimer’s Disease Neuroimaging Initiative (ANDI) 

cohort of cognitively normal (CN) controls, patients with 

mild cognitive impairment (MCI) and patients with AD. 

We tested the specific hypotheses that the CSF Ng levels 

were altered in patients with AD and had diagnostic 

utility for AD, that the CSF Ng correlated with AD core 

biomarkers (CSF Aβ, phosphorylated tau (p-tau) and 

total tau (t-tau)), cognitive decline and imaging evidence 

of neurodegeneration and that the CSF Ng levels 

predicted future cognitive impairment at the early 

asymptomatic stage. 

 

RESULTS 
 

Basic characteristics 
 

The baseline characteristics of participants are shown in 

Table 1. A total of 399 individuals were included in this 

study (111 with CN diagnosis, 193 with MCI diagnosis 

and 95 with AD diagnosis). There were no significant 

differences in age and educational level across the three 

groups. The MCI group had fewer females than the CN 

group (P = 0.004). Significant differences in the 

frequency of the APOE ε4 allele were detected across 

the three groups (AD > MCI > CN, P<0.001). As 

expected, there were significant differences in CSF Aβ, 

p-tau and t-tau levels and cognitive scale scores across 

the three groups (P <0.001). The subjects with AD had 

the lowest CSF Aβ levels, the highest CSF t-tau and p-

tau levels, and the lowest ADNI_MEM and ADNI_EF 

scores. The CSF Ng levels did not differ by age in non-

demented participants (P = 0.400). In the Aβ+ group, 

mean CSF Ng levels were higher in female individuals 

compared with those in male individuals (P=0.003) 

(Supplementary Figure 1). Clinical follow-up data were 

available for 109 subjects with CN (76 remained stable, 

33 progressed to MCI) and 187 subjects with MCI (80 

remained stable (stable MCI, sMCI), 107 progressed to 

AD (progressive MCI, pMCI)). Details of the 

information for each group are reported in the 

Supplementary Table 1 and Table 2.  

 

Diagnostic utility of CSF Ng in AD 
 

Mean CSF Ng levels were higher in AD subjects 

compared with sMCI subjects (P = 0.011) or CN 

controls (P < 0.001). Mean CSF Ng levels were higher 

in pMCI subjects compared with sMCI subjects (P = 

0.028) or CN controls (P < 0.001). Mean CSF Ng levels 

were higher in sMCI subjects compared with CN 

controls (P = 0.042) (Figure 1A). When comparing by 

Aβ status, Ng values were differentially increased in 

Aβ+ CN (P = 0.032) and Aβ+ MCI individuals (P < 

0.001), whereas in the dementia stage, Ng levels were 

elevated regardless of Aβ status (P = 0.243) (Figure 

1B). Similarly, mean CSF Ng levels were higher in 

those with A+T+ (Mean [SD]: 608.7 [345.0] pg/mL, n = 

230) compared with those with A-T- (Mean [SD]: 260.5 

[175.6] pg/mL; n = 99) (P < 0.001) (Figure 1C). The 

diagnostic accuracy (area under the receiver operating 

characteristic curve [AUC]) of CSF Ng in 

differentiating patients with AD from CN was 

comparable to that of the core CSF biomarkers (Figure 

2A). The mean (SD) AUC was 0.82 (0.03) for Aβ, 0.79 

(0.03) for p-tau, 0.81 (0.03) for t-tau, and 0.71 (0.04) for 

Ng. The CSF Ng levels also had diagnostic accuracy in 

differentiating patients with A+T+ from A-T-, the mean 

(SD) AUC was 0.85 (0.02) (Figure 2B). 

 

Correlations of CSF Ng with core CSF biomarkers, 

imaging markers and cognitive scores 

 

The CSF Ng levels correlated with CSF p-tau (β = 0.61, 

β = 0.58 and β = 0.72) and t-tau (β = 0.50, β = 0.74 and 

β = 0.81) levels in subjects with CN, MCI and AD, 

respectively (P < 0.001). No correlations were observed 

between CSF Ng levels and CSF Aβ levels in patients 

with AD (β = -0.13, P = 0.117) or CN controls (β = -

0.12, P = 0.163). The CSF Ng levels negatively 

correlated with CSF Aβ levels in subjects with MCI (β 

= -0.22, P = 0.001). Significant association of baseline 

CSF Ng levels and 18F-Fluorodeoxyglucose positron 

emission tomography (FDG-PET) was identified in 

subjects with CN (β = -0.06, P = 0.002), MCI (β = -

0.04, P = 0.017) and AD (β = -0.15, P = 0.009). The 

CSF Ng levels were negatively correlated with 

hippocampal volume in subjects with MCI (β = -0.02, P 

= 0.017). The CSF Ng levels also related to the decline 

of ADNI_MEM (β = -0.05, P<0.001 and β = -0.07, 
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Table 1. Baseline characteristics of the study participants. 

Characteristics CN (n=111) MCI (n=193) AD (n=95) 

Age a, mean (SD) years 75.6 (5.2) 74.4 (7.5) 74.5 (7.9) 

Female b,e, N (%) 55 (49.5) 63 (32.6) 42 (44.2) 

Education a, mean (SD) years 15.8 (2.8) 15.7 (3.0) 14.5 (3.2) 

APOE ε4 carriers b,c,d,e, N (%) 27 (24.3) 103 (53.4) 67 (70.5) 

ADNI_MEM a,c,d,e, mean (SD) 0.94 (0.50) -0.14 (0.57) -0.85 (0.53) 

ADNI_EF a,c,d,e, mean (SD) 0.64 (0.60) -0.05 (0.75) -0.99 (0.89) 

CSF Ng a,d,e, mean (SD), pg/mL 351.5 (292.2) 491.7 (350.8) 551.3 (325.8) 

CSF Aβ a,c,d,e, mean (SD), pg/mL 207.2 (53.0) 165.1 (51.7) 143.0 (37.0) 

CSF p-tau a,c,d,e, mean, (SD), pg/mL 25.5 (14.8) 35.8 (18.5) 41.5 (19.6) 

CSF t-tau a,c,d,e, mean, (SD), pg/mL 68.9 (29.2) 102.3 (59.6) 121.6 (55.9) 

Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE, apolipoprotein E; 
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI_MEM, memory domain summary score; ADNI_EF, executive domain 
summary score; CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-β; t-tau, total tau; p-tau, phosphorylated tau. 
aKruskal-Wallis test. 
bChi-square (χ2) tests. 
cSignificant differences between AD and MCI (p < 0.05). 
dSignificant differences between AD and CN (p < 0.05). 
eSignificant differences between MCI and CN (p < 0.05). 
 

P = 0.044) and ADNI_EF (β = -0.04, P = 0.013 and β = 

-0.10, P = 0.008) scores in subjects with MCI and AD 

(Table 2).  

 

Ability of CSF Ng levels to predict future cognitive 

impairment 
 

We assessed the ability of CSF biomarkers to predict 

future cognitive impairment in cognitively normal 

controls over time. The CSF Ng levels provided higher 

predictive accuracy than the core CSF biomarkers 

(Figure 3A). The mean (SD) AUC was 0.73 (0.05) for 

Ng, 0.62 (0.06) for Aβ, 0.67 (0.05) for p-tau, and 0.71 

(0.06) for t-tau. The cox proportional hazards regression 

models were also developed to estimate the predictive 

value of CSF biomarkers (as categorical variables) in 

the conversion risk from CN to MCI (Table 3). After 

adjustment for age, sex, educational level, and APOE ε4 

 

 
 

Figure 1. Scatterplots of CSF Ng levels by clinical diagnosis and biological status. (A) Mean CSF Ng levels were higher in AD subjects 
compared with sMCI subjects (P = 0.011) or CN controls (P < 0.001). Mean CSF Ng levels were higher in pMCI subjects compared with sMCI 
subjects (P = 0.028) or CN controls (P < 0.001). Mean CSF Ng levels were higher in sMCI subjects compared with CN controls (P = 0.042).  
(B) When comparing by Aβ status, Ng values were differentially increased in Aβ+ CN (P = 0.032) and Aβ+ MCI individuals (P < 0.001), whereas 
in the dementia stage, Ng levels were elevated regardless of Aβ status (P = 0.243). (C) Mean CSF Ng levels were higher in those with A+T+ 
(Mean [SD]: 608.7 [345.0] pg/mL, n = 230) compared with those with A-T- (Mean [SD]: 260.5 [175.6] pg/mL; n = 99) (P < 0.001). Mann-
Whitney U test/Kruskal-Wallis test was used for all group comparisons. * p<0.05, *** p<0.001. Abbreviations: CN, cognitively normal; MCI, 
mild cognitive impairment; sMCI, stable MCI; pMCI, progressive MCI, MCI progressing to dementia due to AD; AD, Alzheimer’s disease; CSF: 
cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-β; A-, amyloid-β negative (CSF Aβ>192 pg/mL); A+, amyloid-β positive (CSF Aβ<192 pg/mL); 
T-, tau negative (CSF p-tau<23 pg/mL); T+, tau positive (CSF p-tau>23 pg/mL). 
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genotype, only CSF Ng showed the ability to predict 

cognitive impairment. Compared with the low level of 

CSF Ng, high level was associated with 3.66-fold 

increased risk of MCI (95% CI: 1.74-7.70, P = 0.001) 

(Figure 4). This association was almost identical after 

additional adjustment for CSF Aβ (Hazard ratio: 3.31, 

95%CI: 1.52-7.25, P = 0.003). Furthermore, we 

examined whether CSF biomarkers predicted conversion 

from MCI to AD over time. The mean (SD) AUC was 

0.69 (0.04) for Aβ, 0.68 (0.04) for p-tau, 0.65 (0.04) for 

t-tau, and 0.60 (0.04) for Ng in differentiating patients 

with pMCI from sMCI (Figure 3B). The cox 

proportional risk regression model showed, with the 

exception of CSF Ng, all CSF biomarkers predicted 

conversion from MCI to AD during follow-up 

(Supplementary Table 3). 

 

DISCUSSION 
 

In this study, we found that (1) CSF Ng levels were 

elevated in AD, pMCI and sMCI groups compared with 

CN group and the diagnostic utility of CSF Ng levels 

differentiating patients with AD from CN controls was 

comparable to that of core CSF biomarkers; (2) CSF Ng 

levels associated with CSF p-tau and t-tau levels within 

each diagnostic group and with CSF Aβ levels within 

MCI group; (3) high baseline CSF Ng levels correlated 

with longitudinal reduction of cognitive scale scores 

within MCI and AD groups, decreased cortical glucose 

metabolism within each diagnostic group, and 

hippocampal volume atrophy within MCI group; (4) 

CSF Ng levels predicted conversion from CN to MCI. 

Taken together, these findings suggest that CSF Ng is a 

very early and potentially presymptomatic biomarker for 

AD. This biomarker may be helpful in AD diagnosis, 

predicting disease progression and staging severity of 

AD even in its preclinical stage. Our study also provided 

clues to how Ng participated in the pathophysiological 

process in AD, to monitor drug effects on synaptic 

degeneration in clinical treatment trials, and provided 

evidence for drug development. 

 

We found that mean CSF Ng levels were higher in 

female individuals compared with those in male 

individuals in the Aβ+ group. A potential explanation of 

this difference maybe that sex is a crucial variable in 

disease heterogeneity of AD. The cumulative evidence 

indicates that women exhibit steeper cognitive decline 

and higher rates of brain atrophy after diagnosis of MCI 

or AD [19]. Women may show more serious synaptic 

degeneration after the pathology of AD (accumulation 

of Aβ plaques) appear. CSF levels of Ng are 

significantly increased in subjects with AD as compared 

to subjects with sMCI and CN controls. This is 

consistent with previous reports in both ADNI study 

[14, 20, 21] and other cohorts [15, 22–24]. There was 

no significant difference between AD and pMCI groups, 

whereas, CSF Ng levels are higher in patients with MCI 

who progress to AD than in patients with MCI who 

remain stable. A recent study showed that elevated Ng 

levels were associated with cognitive decline in 

participants with MCI [25]. Thus, the CSF Ng levels 

 

 
 

Figure 2. Receiver operating characteristic curves for the diagnostic utility of CSF biomarkers. (A) Receiver operating 
characteristic curves for the diagnostic utility of CSF biomarkers in differentiating AD from controls by clinical diagnosis (AD versus CN). The 
diagnostic accuracy (area under the receiver operating characteristic curve [AUC]) of CSF Ng in differentiating patients with AD from controls 
was comparable to that of the core CSF biomarkers. (B) Receiver operating characteristic curves for the diagnostic utility of CSF Ng in 
differentiating AD from controls by biological status (A+T+ versus A-T-). Abbreviations: CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-
β; p-tau, phosphorylated tau; t-tau, total tau. 
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Table 2. Correlations of CSF Ng with core CSF biomarkers, imaging markers and cognitive scores.a 

Model CN  MCI  AD  

Cross-sectionalb β (95%CI) P  β (95%CI)  P β (95%CI) P 

CSF Aβ -0.13 (-0.26, -0.04)  0.117 -0.22 (-0.28, -0.16)  0.001 -0.12 (-0.20, -0.04) 0.163 

CSF p-tau 0.61 (0.54, 0.68)  <0.001 0.58 (0.52, 0.64)  <0.001 0.72 (0.65, 0.79) <0.001 

CSF t-tau 0.50 (0.42, 0.58)  <0.001 0.74 (0.69, 0.79)  <0.001 0.81 (0.74, 0.88) <0.001 

Longitudinalc β (95%CI)  P  β (95%CI)  P β (95%CI) P 

FDG-PETd -0.06 (-0.08, -0.04) 0.002 -0.04 (-0.06, -0.02) 0.017 -0.15 (-0.20, -0.10) 0.009 

Hippocampal volumee -0.01 (-0.02, -0.00) 0.091 -0.02 (-0.03, -0.01) 0.017 -0.01 (-0.02, -0.00) 0.470 

ADNI_MEM -0.03 (-0.04, -0.02) 0.063 -0.05 (-0.07, -0.03) <0.001 -0.07 (-0.10, -0.04) 0.044 

ADNI_EF -0.02 (-0.03, -0.01) 0.254 -0.04 (-0.06, -0.02) 0.013 -0.10 (-0.13, -0.07) 0.008 

Abbreviations: CSF, cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau; FDG-PET, 
18F-Fluorodeoxyglucose positron emission tomography; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI_MEM, 
memory domain summary score; ADNI_EF, executive domain summary score.  
aAll models are adjusted for age, sex, educational level, APOE ε4 genotype and intracranial volume (for Hippocampus only). 
All variables were z-scale transformed to normalize the distributions. 
bMultiple regression model. 
cMixed effects linear model. 
dIndividuals who underwent positron emission tomography (n = 193) included CN controls (n = 53), subjects with MCI (n = 95) 
and patients with AD (n = 45). 
eIndividuals who underwent magnetic resonance imaging (n = 338) included CN controls (n = 105), subjects with MCI (n = 162) 
and patients with AD (n = 71). 
 

 
 

Figure 3. Receiver operating characteristic curves for the predictive utility of CSF biomarkers. (A) Receiver operating 
characteristic curves for predicting future cognitive impairment in cognitively normal controls over time (CN to MCI). (B) Receiver operating 
characteristic curves for predicting future cognitive impairment in MCI subjects over time (MCI to AD). Abbreviations: CSF: cerebrospinal 
fluid; Ng, neurogranin; Aβ, amyloid-β; p-tau, phosphorylated tau; t-tau, total tau. 
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Table 3. CSF biomarker variables as predictors of time to conversion from CN to MCI.a 

Biomarker Unadjusted hazard ratio (95% CI) P Adjusted hazard ratio (95% CI)b P 

CSF Ng  3.34 (1.66, 6.73) 0.001 3.66 (1.74, 7.70) 0.001 

CSF Aβ 0.42 (0.21, 0.84) 0.014 0.52 (0.24, 1.10) 0.085 

CSF p-tau 0.73 (0.52, 1.03) 0.076 0.77 (0.53, 1.11)  0.159 

CSF t-tau 0.70 (0.49, 1.01)  0.057 0.70 (0.46, 1.04) 0.079 

Abbreviations: CN, cognitively normal; MCI, mild cognitive impairment; CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, 
amyloid-β; t-tau, total tau; p-tau, phosphorylated tau. 
aCox proportional hazards regression models tested the effects of CSF biomarkers on the conversion rate from CN to MCI. The 
CSF biomarker measures were analyzed as categorical variables (dichotomized at the cut-off value; CSF Ng: 389 pg/mL, CSF 
Aβ: 192 pg/mL, CSF p-tau: 23 pg/mL, CSF t-tau: 93 pg/mL). 
bModels are adjusted for age, sex, educational level, APOE ε4 genotype. 
 

appear to have a diagnostic as well as a prognostic value. 

Further, CSF Ng levels were differentially increased in 

Aβ+ individuals compared with that in Aβ- individuals 

within CN and MCI groups. Amyloid plaques are toxic 

to the brain parenchyma, inducing various processes 

responsible for synaptic loss [26]. Therefore, Aβ+ did 

have an effect on Ng levels. The mechanism of Ng 

secretion from neurons to CSF is currently unknown, but 

enzymatic cleavage of Ng may be of relevance [27]. C-

terminal Ng is increased in CSF in AD, which 

strengthens the potential of neurogranin as an AD CSF 

biomarker [24]. 

 

 
 

Figure 4. Baseline CSF Ng levels as the predictor of conversion from CN to MCI. The Kaplan-Meier curve showed the predictive 
value of the CSF Ng for progression from cognitively normal to MCI. The CSF Ng was analyzed as categorical variables (dichotomized at 389 
pg/mL), and analysis was adjusted for age, sex, educational level, and APOE ε4 genotype. Abbreviations: CN, cognitively normal; MCI, mild 
cognitive impairment; CSF: cerebrospinal fluid; Ng, neurogranin. 
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We observed positive correlations between CSF Ng 

levels and CSF p-tau and t-tau levels in each diagnostic 

group and negative correlations between CSF Ng levels 

and CSF Aβ levels in MCI group. This relationship 

gives support to the utility of CSF Ng as a biomarker, for 

it is sensitive to AD-related biological changes. There is 

evidence that tau pathology is involved in synapse 

degeneration and contributes to cognitive decline [28, 

29]. The absence of correlation between CSF Ng levels 

and CSF Aβ levels showed that there were no 

correlations between both the synapse loss and clinical 

stage and the amount of amyloid plaques [30–32]. AD is 

a continuum pathology, there is no clear discrimination 

in amyloid plaque numbers between patients with AD 

and cognitively intact elderly who died from other 

reasons [33]. The current data also allowed us to 

examine the associations of CSF Ng levels with two 

other key biomarkers for AD: hippocampal atrophy 

measured by volumetric MRI and cortical glucose 

metabolism assessed by FDG-PET. We found a 

relationship between high CSF Ng levels and reduced 

cortical glucose metabolism. Associations between high 

CSF Ng levels and increased rate of hippocampal 

atrophy only present in MCI group.  

 

Logistic regression analysis was used to assess the 

impact of CSF analytes on risk for disease progression. 

The AUC (reflect predictive probabilities of the logistic 

regression models) of the CSF Ng model was great in 

predicting progression from CN to MCI. High CSF Ng 

levels are strongly associated with risk of MCI in 

cognitive normal participants, suggesting that CSF Ng is 

a marker of clinical progression in asymptomatic 

population. The CSF Ng levels reflect synaptic loss in a 

very early stage but not in later stages of the AD 

spectrum. Our data showed that synaptic dysfunction 

was, to some extent, involved in AD pathophysiology. 

Low CSF Aβ is considered a biomarker of an individual 

in the Alzheimer’s continuum [3]. Thus, we examined 

whether CSF Aβ was an effect modifier in the analysis 

of CSF Ng for risk of MCI. The result indicated that the 

association between elevated CSF Ng levels and risk of 

MCI was independent of CSF Aβ, suggesting that 

elevated CSF Ng levels might be a risk factor for 

cognitive decline for those on the AD pathway and for 

those who are not. A previous study suggests that 

elevated CSF neurofilament light (NFL) levels but not 

CSF Ng levels are a risk factor for MCI [34]. This 

finding contradicts our results and a potential 

explanation may be a difference of the participants 

between the two studies. Their study included the 

community-based population, but our study used the 

ADNI cohort. 

 

There were several limitations of our study. Firstly, CSF 

biomarkers included in the cox regression models as 

dichotomous variables might conceal an underlying 

continuum. Secondly, the newly published NIA-AA 

criteria conducts an ATN classification system and the 

ATN system is flexible in that new biomarkers can be 

added to the three existing ATN groups [3]. Whether Ng 

can be the preferred “N” in the ATN groups need to be 

further explored. Finally, the restricted sample selection 

in the ADNI should be taken into consideration for 

interpreting the data. 

 

Taken together, our findings suggest that the CSF Ng 

can be used as a biomarker for synaptic pathology in 

AD, and CSF Ng is a valuable biomarker of early 

neurodegeneration. In addition to the “core CSF 

biomarkers” Aβ, p-tau, and t-tau, the CSF Ng might 

have added value. 

 

MATERIALS AND METHODS 
 

Participants 
 

Data used in this article were obtained from the ADNI 

database (adni.loni.usc.edu) [35]. ADNI was launched 

in 2003 as a public–private partnership, and the 

principal investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and University of 

California, San Francisco. The primary goal of ADNI 

has been to test whether serial magnetic resonance 

imaging, PET and additional biological markers and 

clinical and neuropsychological assessments can be 

combined to measure the progression of MCI and early 

clinical AD. To date, it has three phases: ADNI1, ADNI 

GO and ADNI2, consisting of individuals recruited 

from over 50 sites across the USA and Canada. All 

individuals included were between the ages of 55 and 

90 years, had completed at least 6 years of education, 

were considered to be CN, MCI or AD dementia 

diagnosed individuals, and underwent serial evaluations 

of functional, biomedical, neuropsychological and 

clinical status at various intervals [36]. For up to date 

information, see http://www.adni-info.org. 

 

We included all CN controls, MCI patients and AD 

patients with available baseline CSF Ng samples. CN 

controls had Mini-Mental State Examination (MMSE) 

score between 25 and 30; clinical dementia rating (CDR) 

score of 0. CN controls were grouped into those that 

remained cognitively stable for at least 1 follow-up and 

those who progressed to MCI during follow-up. Subjects 

with MCI had MMSE score between 24 and 30; CDR 

score of 0.5; objective memory loss as shown on scores 

on delayed recall of the Wechsler memory scale logical 

memory II [> 1 standard deviations (SD) below the 

normal mean]; preserved activities of daily living, and 

the absence of dementia. In our study, patients with MCI 

were grouped into those that remained cognitively stable 

http://www.adni-info.org/
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for at least 1 follow-up (sMCI) and those who 

progressed to AD dementia during follow-up (pMCI). 

Patients with AD fulfilled the National Institute of 

Neurological Communicative Disorders and Stroke-

Alzheimer Disease and Related Disorders Association 

criteria for probable AD, had MMSE scores between 20-

26 and a Clinical Dementia Rating scale of 0.5 or 1.0. As 

to “ATN” categories: amyloid positive and negative (A+ 

versus A-) were separated by a cutoff value of 192 

pg/mL for CSF Aβ level; tau pathology positive and 

negative (T+ versus T-) were separated by a cutoff value 

of 23 pg/mL for CSF p-tau level [37–40]. 

 

CSF measurements 

 

CSF Ng was analyzed by electrochemiluminescence 

technology using Ng7, which is a monoclonal antibody 

specific for Ng, as coating antibody and polyclonal Ng 

anti-rabbit (ab 23570, Upstate) as detector antibody [16]. 

Values are given as pg/mL. CSF Aβ, p-tau and t-tau 

were measured using the multiplex xMAP Luminex 

platform (Luminex Corp, Austin, TX) with Innogenetics 

(INNO-BIA AlzBio3; Ghent, Belgium; for research use–

only reagents) immunoassay kit-based reagents. Values 

are given in pg/mL for both tau and Aβ [40].  

 

Neuroimaging and cognition 

 

Magnetic resonance (MR) images were collected from a 

variety of 1.5/3.0 Tesla MR system, using protocols 

optimized for each MR scanner. The FreeSurfer pipeline 

was used to generate hippocampus estimates [41]. We 

used averaged volume measurements for the right and 

left hippocampi. 

 

Mean FDG uptake was obtained per subject within a set 

of predefined and previously validated regions of 

interest (right and left inferior temporal and lateral 

parietal regions, and a bilateral posterior cingulate cortex 

region) based on a literature as described elsewhere in 

detail [42]. Each subject’s summary FDG index was the 

mean of the region of interest relative to the mean of a 

pons and cerebellar vermis reference region. 

 

Summary cognitive scores were chosen over individual 

cognitive tests to use more comprehensive and robust 

measures of domain-specific cognitive performance. 

Summary metric for the memory cognitive domain was 

ADNI-MEM (derived from: Rey Auditory Verbal 

Learning Test (RAVLT, 2 versions), AD Assessment 

Schedule-Cognition (ADAS-Cog, 3 versions), Mini-

Mental State Examination (MMSE), and Logical 

Memory data) [43] and for the executive cognitive 

domain was ADNI-EF (derived from: Wechsler Adult 

Intelligence Scale-Revised Digit Symbol Substitution, 

Digit Span backwards, Trail Making Test parts A and 

B, animal and vegetable Category Fluency, and Clock 

Drawing Test) [44].  
 

Statistical analysis 
 

Tests of inter-group differences were performed using 

Chi-square analysis for frequencies or Mann-Whitney U 

test/Kruskal-Wallis test for continuous measures. Linear 

regression models were constructed to examine the 

cross-sectional associations between CSF Ng levels and 

core CSF biomarkers (CSF Aβ, p-tau and t-tau) at 

baseline. Longitudinal associations between CSF Ng 

levels and cognitive, metabolic and structural data were 

assessed using linear mixed-effects model. Each CSF 

variable, hippocampal volume, FDG-PET and cognitive 

scale scores were z-scale transformed to ensure 

normality. Model was adjusted for age, sex, educational 

and APOE genotype (and adjusted for intracranial 

volume for hippocampal volume). Logistic regression 

analysis was used to assess the impact of different CSF 

analytes on the risk of disease progression. The 

receiver-operator curves and the area under the curves 

were derived from the predictive probabilities of the 

logistic regression models. Cox proportional hazard 

regression models access whether the CSF biomarkers 

(as categorical) predict cognitive impairment. The cut-

off value of CSF Ng was obtained from receiver 

operating characteristic curve. Participants were 

followed up until a diagnosis of MCI/AD, death, or last 

follow-up visit. Time to event was defined as time from 

baseline CN to first visit defined as MCI/ baseline MCI 

to first visit defined as AD.  

 

All tests were two-sided, statistical significance was set 

at P < 0.05. All statistics were performed using R 3.6.2 

and IBM SPSS Statistics 25. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Comparisons of CSF Ng levels by sex status within Aβ group. In the Aβ+ group, mean CSF Ng levels were 
higher in female individuals (Mean [SD]: 598.6 [318.8] pg/mL; n=108) compared with those in male individuals (Mean [SD]: 502.9 [380.6] 
pg/mL; n=165) (P=0.003). **P<0.01. Abbreviations: Aβ, amyloid-β; CSF, cerebrospinal fluid; Ng, neurogranin. 
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Supplementary Tables 
 

Supplementary Table 1. Baseline characteristics of cognitively normal controls with longitudinal assessments. 

Characteristics Non-converters (n=76) Converters (n=33) P 

Age, years, mean (SD) 75.6 (5.5) 75.8 (4.5) 0.666a 

Female, N (%) 41 (53.2) 14 (41.2) 0.241b 

Education, mean (SD) years 15.8 (2.9) 15.8 (2.7) 0.997a 

APOE ε4, carriers, N (%) 16 (20.8) 12 (35.3) 0.105b 

ADNI_MEM, mean (SD) 1.02 (0.49) 0.77 (0.49) 0.033a 

ADNI_EF, mean (SD) 0.59 (0.71) 0.56 (0.71) 0.937a 

CSF Ng, mean (SD), pg/mL 280.2 (201.0) 508.2 (379.4) < 0.001a 

CSF Aβ, mean (SD), pg/mL 214.6 (50.6) 192.9 (55.4) 0.065a 

CSF p-tau, mean, (SD), pg/mL 23.6 (13.5) 29.0 (14.9) 0.007a 

CSF t-tau, mean, (SD), pg/mL 61.7 (22.0) 82.8 (30.1) 0.001a 

Abbreviations: APOE, apolipoprotein E; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI_MEM, memory domain 
summary score; ADNI_EF, executive domain summary score; CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-β; t-tau, 
total tau; p-tau, phosphorylated tau. 
aMann-Whitney U test. 
bChi-square (χ2) tests. 
 

Supplementary Table 2. Baseline characteristics of stable versus progressive MCI patients.  

Characteristics sMCI (n=80) pMCI (n=107) P 

Age, years, mean (SD) 74.6 (7.4) 74.2 (7.5) 0.666a 

Female, N (%) 25 (31.3) 38 (35.5) 0.542b 

Education, mean (SD) years 15.5 (3.0) 15.9 (3.0) 0.383a 

APOE ε4 carriers, N (%) 38 (47.5) 65 (60.7) 0.072b 

ADNI_MEM, mean (SD) 0.05 (0.59) -0.29 (0.50) < 0.001a 

ADNI_EF, mean (SD) 0.01 (0.80) -0.14 (0.82) 0.258a 

CSF Ng, mean (SD), pg/mL 427.4 (302.6) 539.2 (374.9) 0.028a 

CSF Aβ, mean (SD), pg/mL 186.5 (57.1) 149.3 (41.3) < 0.001a 

CSF p-tau, mean, (SD), pg/mL 29.6 (15.1) 39.5 (17.6) < 0.001a 

CSF t-tau, mean, (SD), pg/mL 89.4 (53.4) 108.8 (51.0) < 0.001a 

Abbreviations: MCI, mild cognitive impairment; sMCI, stable MCI; pMCI, progressive MCI, MCI progressing to dementia due to 
AD; APOE, apolipoprotein E; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI_MEM, memory domain summary 
score; ADNI_EF, executive domain summary score; CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, amyloid-β; t-tau, total tau; 
p-tau, phosphorylated tau. 
aMann-Whitney U test. 
bChi-square (χ2) tests. 
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Supplementary Table 3. CSF biomarker variables as predictors of time to conversion from MCI to AD.a 

Biomarker Unadjusted hazard ratio (95% CI) P Adjusted hazard ratio (95% CI)b P 

CSF Ng 1.40 (0.95, 2.07) 0.090 0.90 (0.72, 1.11) 0.309 

CSF Aβ 0.29 (0.16, 0.51) < 0.001 0.55 (0.41, 0.75) < 0.001 

CSF p-tau 2.49 (1.54, 4.04) < 0.001 2.31 (1.34, 3.93) 0.002 

CSF t-tau 1.77 (1.20, 2.60) 0.004 1.63 (1.09, 2.44) 0.016 

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease; CSF: cerebrospinal fluid; Ng, neurogranin; Aβ, 
amyloid-β; t-tau, total tau; p-tau, phosphorylated tau. 
aCox proportional hazards regression models tested the effects of CSF biomarkers on the conversion rate from MCI to AD. The 
CSF biomarker measures were analyzed as categorical variables (dichotomized at the cut-off value: CSF Ng: 412 pg/mL, CSF 
Aβ: 192 pg/mL, CSF p-tau: 23 pg/mL, CSF t-tau: 93 pg/mL). 
bModels are adjusted for age, sex, educational level, APOE ε4 genotype. 


