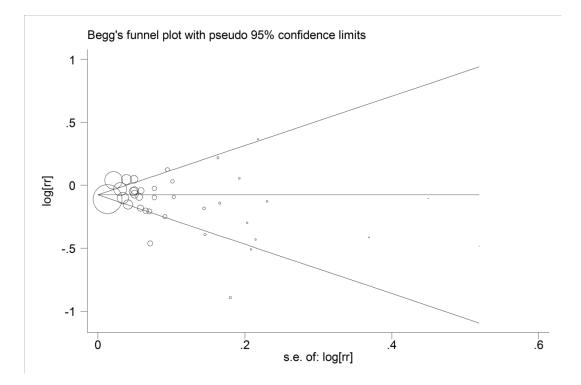
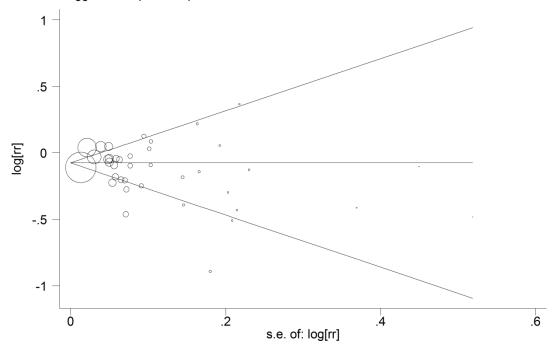

SUPPLEMENTARY FIGURES


Supplementary Figure 1. The sensitivity analysis of the included studies.

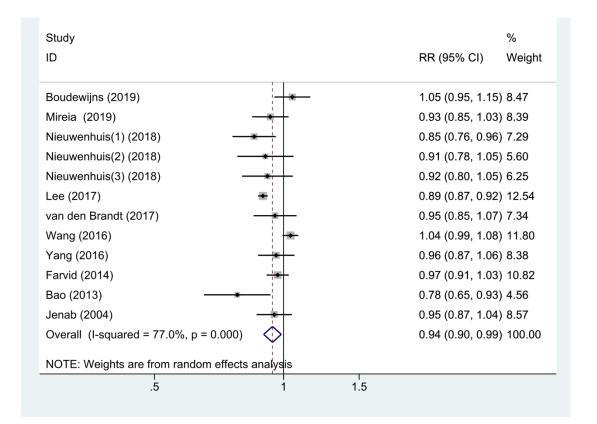
Supplementary Figure 2. The sensitivity analysis of the included studies published after 2010.

Supplementary Figure 3. The sensitivity analysis of the included studies published in/before 2010.

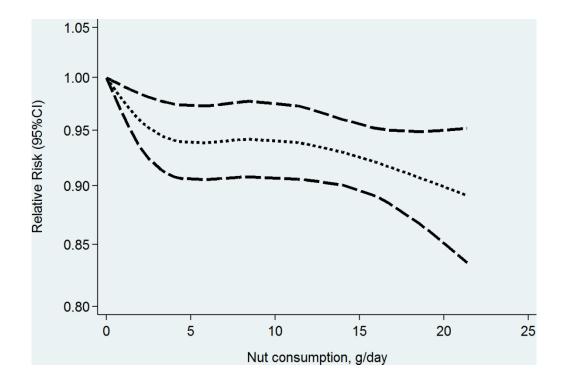
Supplementary Figure 4. Funnel plots with 95% confidence interval of the total studies on cancer risk.

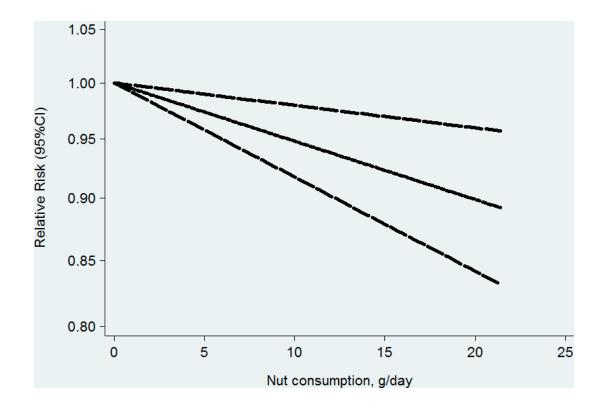

Study ID	RR (95% CI)	% Weight
CH Mireia (2019) Boudewijns (2019) Nieuwenhuis(1) (2018) Nieuwenhuis(2) (2018) Nieuwenhuis(3) (2018) Nieuwenhuis(4) (2018) Hashemian(1) (2018) van den Brandt (2017) Lee (2017) Hashemian(3) (2017) Yang (2016) Wang (2016) Farvid (2014) Bao (2013) Hedelin (2011) Thiebaut (2009) Sonestedt (2008) Yeh (2006) Jenab (2004) Singh & Fraser (1998) Mills (1989) Subtotal (I-squared = 74.9%, p = 0.000)	0.93 (0.85, 1.03) 1.05 (0.95, 1.15) 0.91 (0.81, 1.02) 0.91 (0.78, 1.05) 0.76 (0.66, 0.88) 1.09 (0.89, 1.33) 0.91 (0.75, 1.12) 0.95 (0.85, 1.07) 0.89 (0.87, 0.92) 0.80 (0.72, 0.89) 0.95 (0.84, 1.07) 0.96 (0.87, 1.06) 1.04 (0.99, 1.08) 0.97 (0.91, 1.03) 0.78 (0.65, 0.93) 0.88 (0.56, 1.38) 1.04 (0.97, 1.13) 0.97 (0.84, 1.13) 0.97 (0.84, 1.13) 0.60 (0.40, 0.91) 0.95 (0.87, 1.04) 0.83 (0.63, 1.10) 0.93 (0.89, 0.97)	5)4.03 2)3.80 5)3.17 3)3.31 3)2.45 2)2.47 7)3.73 2)4.86 3)3.59 5)4.88 3)4.55 5)3.59 5)4.73 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.78 5)2.75 5 5)2.75 5 5)2.75 5 5)2.75 5 5)2.75 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CC Lee(1) (2018) Lee(2) (2017) Alejandro D (2015) Liu (2014) Takayama (2013) Moller (2013) Jackson (2013) Wang (2012) Ibiebele (2012) Raimondi (2010) Pan (2004) Yu (2002) Hoshiyama & Sasaba (1992) Chen (1991) Trichopoulos (1985) Soliman (2010) Subtotal (I-squared = 75.9%, p = 0.000)	0.63 (0.55, 0.72 0.81 (0.71, 0.93 0.41 (0.29, 0.58 0.83 (0.74, 0.93 0.87 (0.63, 1.20 1.03 (0.84, 1.25 1.06 (0.72, 1.54 0.90 (0.37, 2.17 0.81 (0.72, 0.93 0.74 (0.50, 1.10 1.13 (0.94, 1.36 0.66 (0.32, 1.36 0.65 (0.43, 0.99 1.44 (0.94, 2.21 1.24 (0.90, 1.71 0.62 (0.22, 1.71 0.84 (0.74, 0.96	3)3.38 3)1.22 3)3.75 3)1.38 5)2.51 1)1.10 7)0.25 3)3.53 3)1.01 5)2.69 5)0.36 9)0.93 10.90 1.41 10.19 5)27.94
Overall (I-squared = 77.5%, p = 0.000)	0.90 (0.86, 0.94) 100.00
	1 2.2	

Supplementary Figure 5. Subgroup analyses of the associations between nut intake and cancer risk stratified by study types. Abbreviations: RR, relative risk; CI, confidence interval, CH, cohort study; CC, case-control study.


Study ID	RR (95% CI)	% Weight
Men Boudewijns (2019) Lee (2018) Nieuwenhuis(1) (2018) Nieuwenhuis(2) (2018) Wang (2016) Jackson (2013) Moller (2013) Raimondi (2010) Yeh (2006) Jenab (2004) Mills (1989) Subtotal (I-squared = 73.1%, p = 0.000)	1.05 (0.95, 1.1) 0.71 (0.60, 0.8) 0.79 (0.64, 0.9) 0.87 (0.76, 0.9) 1.04 (0.99, 1.0) 1.06 (0.72, 1.5) 1.03 (0.84, 1.2) 0.74 (0.50, 1.1) 0.73 (0.44, 1.2) 1.08 (0.93, 1.2) 0.83 (0.63, 1.1) 0.92 (0.84, 1.0)	4)4.22 7)3.58 3)4.82 3)5.88 4)1.86 5)3.73 0)1.72 1)1.20 5)4.48 0)2.67
Women Lee (2018) Nieuwenhuis(1) (2018) Nieuwenhuis(2) (2018) van den Brandt (2017) Yang (2016) Alejandro D (2015) Farvid (2014) Liu (2014) Bao (2013) Takayama (2013) Ibiebele (2012) Hedelin (2011) Thiebaut (2009) Yeh (2006) Jenab (2004) Pan (2004) Subtotal (I-squared = 81.8%, p = 0.000)	0.49 (0.38, 0.63) 1.03 (0.83, 1.24) 1.07 (0.85, 1.33) 0.95 (0.85, 1.07) 0.96 (0.87, 1.06) 0.41 (0.29, 0.53) 0.97 (0.91, 1.03) 0.83 (0.74, 0.93) 0.78 (0.65, 0.93) 0.78 (0.65, 0.93) 0.87 (0.63, 1.24) 0.81 (0.72, 0.93) 0.88 (0.56, 1.33) 1.04 (0.97, 1.13) 0.42 (0.21, 0.84) 0.87 (0.77, 0.93) 1.13 (0.94, 1.34) 0.87 (0.79, 0.93)	3) 3.47 3) 3.40 7) 5.00 5) 5.25 3) 2.03 3) 5.73 3) 5.02 3) 4.02 0) 2.26 3) 4.81 3) 1.44 3) 5.54 4) 0.70 0) 4.89 5) 3.92
Overall (I-squared = 79.7%, p = 0.000)	0.89 (0.84, 0.9	5) 100.00
NOTE: Weights are from random effects analysis .223 1 2.2		

Supplementary Figure 6. Subgroup analyses of the associations between nut intake and cancer risk stratified by gender. Abbreviations: RR, relative risk; Cl, confidence interval.


Begg's funnel plot with pseudo 95% confidence limits


Supplementary Figure 7. Funnel plots with 95% confidence interval of the cancer type subgroup analysis.

Supplementary Figure 8. Meta-analysis of the studies conducted to assess the dose-response relationship between nut intake and cancer risk. Abbreviations: RR, relative risk; CI, confidence interval.

Supplementary Figure 9. Dose–response meta-analysis of nut intake and cancer risk (nonlinear models). Abbreviations: RR, relative risk; CI, confidence interval.

Supplementary Figure 10. Dose–response meta-analysis of nut intake and cancer risk (linear models). Abbreviations: RR, relative risk; CI, confidence interval.