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INTRODUCTION 
 

Mastitis is a female disease that easily develops 

during lactation [1]. Breast milk contains a variety of 

nutrients for the growth and development of the 

newborn, and it is very beneficial for the digestion 

and absorption of the baby [2]. Mastitis seriously 

damages the physical and mental health of women and 

affects breastfeeding [3]. If treatment is not timely, 

the development of mastitis is even life-threatening 

[4]. Mastitis is usually caused by the interaction of 

pathogenic microorganisms, the environment, 

nutrition and organism functional states [5–7]. Among 

them, pathogenic microorganisms are the main factor 

that causes mastitis [8]. Most pathogens, especially 

Escherichia coli, cause acute clinical mastitis with 

obvious clinical symptoms [9]. Lipopolysaccharide 

(LPS) is the main component of the cell wall of gram- 

 

negative bacteria and activates many types of cells 

(macrophages and epithelial cells) to produce 

proinflammatory mediators [10–12]. LPS has been 

widely used to establish inflammatory models in vivo 

and in vitro [13]. In addition, the mastitis model of 

mice established by injecting LPS into the mammary 

duct has similar symptoms to those caused by E. coli 
infection [14, 15]. Moreover, the LPS-induced 

mastitis model has been widely used to screen anti-

mastitis drugs [16]. 

 

Dehydroandrographolide (Deh) is an extract of 

andrographolide [17] that has antibacterial, anti-

inflammatory and antiviral effects [18–21]. However, 

the effect of Deh on intestinal flora has not been 

reported. The intestinal flora is closely related to 

human health [22]. There are a large number of 

probiotics in the intestinal flora to maintain health 
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[23]. Therefore, it is important to maintain the normal 

intestinal microbial balance in the treatment of 

mastitis [24]. This study focused on Deh as the 

research object and used LPS to establish a mouse 

mastitis model. We observed and verified the effect of 

Deh on mastitis and intestinal flora in mice and 

further explored the mechanism of Deh on EpH4-Ev 

cells (a normal mouse mammary epithelial cell line) 

through in vitro experiments. These findings support 

the screening of leading compounds with anti-

inflammatory effects in the future. 

 

RESULTS 
 

Dehydroandrographolide (Deh) alleviates mammary 

injury in LPS-induced mastitis mice 

 

First, we took pictures of the mammary glands and 

observed damage to the mammary glands in mice. 

Then, we collected the mammary glands and stained 

them with H&E. Dexamethasone (Dex) was used as a 

positive control to effectively alleviate mastitis [11]. 

The results showed that the mammary glands of the 

control and Deh groups had no pathological changes 

(Figure 1A, 1B), while those of the LPS group had 

obvious edema and hyperemia (Figure 1C). The 

pathological symptoms of the LPS + Deh group and 

LPS + Dex group were significantly improved (Figure 

1D–1E). The H&E results were also consistent with 

the previous results. There was no neutrophil 

infiltration in the Control or Deh groups (Figure 1A, 

1B). In the LPS group, there was substantial 

neutrophil infiltration in the acini (Figure 1C). In the 

LPS + Deh and LPS + Dex groups (Figure 1D, 1E), 

neutrophil infiltration in the acini was significantly 

decreased. The histological scores showed that Deh 

significantly alleviated LPS-induced mouse mastitis, 

which was consistent with the results of the positive 

control group (Figure 1F). 

 

Deh reduces the inflammatory response in the 

mammary glands of mastitis mice 
 

MPO, COX2, iNOS, IL-6, IL-1β and TNF-α are 

important indicators of inflammation. Our results 

showed that the MPO activity and the protein levels of 

COX2, iNOS, IL-6, IL-1β and TNF-α in the 

mammary glands of the LPS group were significantly 

higher than those in the LPS + Deh and LPS + Dex 

groups (Figure 2A–2G). This result indicates that Deh 

significantly reduces the inflammatory response of the 

mammary gland. 

 

Sequencing quality, microbial abundance and 

microbial differences 
 

The number of effective tags in the control and Deh 

groups was in accordance with the following  

 

 
 

Figure 1. Dehydroandrographolide (Deh) alleviates LPS-induced mammary injury in mice. (A–E) The histological effect of Deh on 
LPS-induced mastitis in mice and the effect of Deh on neutrophil infiltration in the mouse mammary gland. (F) Histological score of the mouse 
mammary gland. The values are presented as the mean ± SD (*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 
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experimental standards (Supplementary Figure 1A, 

1B). The Shannon curve results showed that the curve 

of each sample was flat, and the amount of 

sequencing data was sufficient (Supplementary Figure 

1D). The results of the rank abundance curve showed 

that the species composition between each group of 

samples was rich and uniform (Supplementary Figure 

1C). The PCA and PCoA results showed that the 

microbial composition of each mouse was similar 

(Supplementary Figure 1E, 1F). 

 

Deh does not disrupt the intestinal microbiological 

balance 
 

The line discriminant analysis (LDA) effect size 

results showed that there were no significantly 

different microbial groups among the different groups 

(Figure 3A). Figure 3B is the phylogenetic tree of the 

species. The species distribution histogram showed 

that the relative species content between the two 

groups did not change much, and Deh did not change 

the relative species content (Figure 3C). The results of 

KEGG and GO analysis showed that there was no 

significant difference in functional genes and 

metabolic pathways between the two groups (Figure 

3D, 3E). Although Deh did not change the main 

structure of the intestinal flora, it did affect the levels 

of some flora. At the genus level, the abundances of 

the family XIII AD3011 group, [Eubacterium] 

xylanophilum group, Akkermansia and Muribaculum 

in the Deh group were lower than those in the control 

group (Figure 4A–4D). At the species level, 

Parabacteroides sp. YL27, [Eubacterium] xylano-

philum group, Family XIII AD3011 group and 

Akkermansia in the Deh group were lower than those 

in the Control (Supplementary Figure 2A–2D). 

 

Effect of Deh on cell survival 
 

CCK8 assay results showed that Deh concentration did 

not affect cell activity when it was less than 250 μM. At 

500 μM, Deh decreased cell activity, but there was no 

significant difference (Figure 5A). 
 

The effect of Deh on IL-6, IL-1β and TNF-α in LPS-

induced EpH4-Ev cells 
 

The qRT-PCR results showed that Deh did not cause 

inflammation in EpH4-Ev cells. Moreover, the gene 

levels of IL-6, IL-1β and TNF-α in the Deh + LPS 

group were significantly lower than those in the LPS 

group (Figure 5B–5D). The Deh-mediated inhibition 

of IL-6, IL-1β and TNF-α was concentration 

dependent. After adding an AMPK inhibitor, we 

found that Deh did not inhibit IL-6, IL-1β and TNF-α 

(Figure 5E–5G). Compared with the levels in the LPS 

+ Deh group, IL-1β and TNF-α in the LPS + Deh + 3-

MA group increased significantly, and IL-6 also 

increased (Figure 5E–5G). These results indicate that 

Deh inhibits the LPS-induced inflammatory response 

in EpH4-Ev cells through the AMPK/autophagy 

signaling pathway. 

 

 
 

Figure 2. Deh inhibits the expression of COX2, iNOS, IL-6, IL-1β and TNF-α in mastitis mice. (A) MPO activity in the mammary 
gland. (B–D) The protein expression of IL-6, IL-1β and TNF-α. (E, G) Protein levels of COX2 and iNOS. The values are presented as the mean ± 
SD (*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 
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Deh promotes autophagy through the 

AMPK/Beclin/ULK1 pathway in EpH4-Ev cells 

 

Previous studies have shown that p-AMPK promotes 

autophagy through phosphorylation of AMPK, Beclin 

and ULK1. Autophagy plays an important role in 

inhibiting the inflammatory response. To further study 

the anti-inflammatory mechanism of Deh, we first 

detected whether Deh activated autophagy through 

AMPK signaling in EpH4-Ev cells. Our results 

showed that Deh significantly promoted the 

phosphorylation of AMPK, Beclin and ULK1 at 3 h, 6 

h and 12 h (Figure 6A–6D). Moreover, Deh 

significantly promoted the degradation of p62 and 

increased LC3B (Figure 6E, 6F). The immuno-

fluorescence results showed that autophagy was 

highest in the Deh group at 24 h (Figure 6G). We 

further detected the protein levels of p-AMPK, p-

Beclin and p-ULK1 after adding the AMPK inhibitor 

CC. The results showed that the protein levels of p-

AMPK, p-Beclin and p-ULK1 in the Deh + CC group 

were significantly lower than those in the Deh group 

(Figure 7A–7D); Deh did not enhance the autophagic 

flux of EpH4-Ev cells (Figure 7F). In addition, the 

Co-IP results suggested that Deh significantly 

promoted the phosphorylation of AMPK, while the 

phosphorylation of AMPK significantly enhanced the 

phosphorylation of Beclin and ULK1 (Figure 7E). 

These results showed that Deh activates autophagy  

by AMPK. 

 

The effect of Deh on autophagy in the EpH4-Ev cell 

inflammatory response model 
 

Previous results showed that Deh activates autophagy 

through the AMPK signaling pathway [21]. To verify 

that autophagy plays an important anti-inflammatory 

role in Deh, we next tested whether Deh promoted 

autophagy in an inflammatory response model of 

EpH4-Ev cells. We detected the protein levels of p-

AMPK, p-Beclin, p-ULK1, P62, LC3B and 

autophagic flux in the EpH4-Ev cell inflammatory 

response model. The results showed that the protein 

levels of p-AMPK, p-Beclin, p-ULK1 and LC3B in 

the Deh and Deh + LPS groups were significantly 

upregulated, and p62 was significantly downregulated  

 

 
 

Figure 3. Effect of Deh on the composition of intestinal flora. (A) Line discriminant analysis between the control and Deh groups. (B) 
Phylogenetic tree of the species. (C) The composition of intestinal flora in the control and Deh groups. (D, E) Functional genes and metabolic 
pathways in the control and Deh groups. 
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(Figure 8A–8F). The autophagic flux in the Deh and 

Deh + LPS groups was also significantly enhanced 

(Figure 8G). 

 

DISCUSSION 
 

Our study showed that Deh significantly alleviates 

mastitis, improves LPS-induced mammary damage, 

and does not damage the intestinal flora balance. In 

vitro, we found that Deh plays an anti-inflammatory 

role by activating autophagy through AMPK 

phosphorylation. 

 

Natural products are mainly natural animal and plant 

extracts [25]. Several studies have shown that many 

natural products have anti-inflammatory and 

antibacterial functions [26, 27]. Li et al. found that 

farrerol improves mastitis through the ERK1/2, P38 

and AKT signaling pathways [28]. Kan et al. also 

found that myricetin alleviates mastitis and enhances 

the blood-milk barrier [14]. In the present study, H&E 

staining and observation of mammary tissue showed 

that LPS seriously damaged the mammary gland. Deh 

significantly improved the congestion, edema and 

neutrophil infiltration of the mammary gland. Some 

studies have shown that MPO is an important marker 

of the inflammatory response that directly reflects the 

severity of the inflammatory response. Moreover, LPS 

increased COX2, iNOS, IL-6, IL-1β and TNF-α in the 

mammary gland. The increase in proinflammatory 

mediators in the mammary gland exacerbates mastitis 

and causes secondary damage to the mammary gland. 

Our results showed that Deh significantly inhibited 

the expression of COX 2, iNOS, IL-6, IL-1β and 

TNF-α. These results suggest that Deh alleviated LPS-

induced mastitis by reducing the release of pro-

inflammatory mediators. 

 

Some studies have shown that anti-inflammatory 

drugs or antibacterial drugs may change the intestinal  

 

 
 

Figure 4. Effect of dehydroandrographolide on low abundance flora. (A–D) The levels of Family XIII AD3011 group, [Eubacterium] 
xylanophilum group, Akkermansia and Muribaculum in the control and Deh croups. The values are presented as the mean ± SD (*p<0.05, 
**p<0.001, ***p<0.001 and ****p<0.0001). 
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Figure 5. Deh inhibits the gene expression of IL-6, IL-1β and TNF-α in EpH4-Ev cells. (A) Effect of Deh on the survival of EpH4-Ev 
cells. (B–G) Gene expression of IL-6, IL-1β and TNF-α. The values are presented as the mean ± SD (*p<0.05, **p<0.001, ***p<0.001 and 
****p<0.0001). 
 

 
 

Figure 6. Deh promotes autophagy by phosphorylating AMPK, Beclin and ULK1. (A–F) Protein levels of p-AMPK, AMPK, p-Beclin, 
Beclin, p-ULK1, ULK1, LC3B and P62. (G) Effects of Deh on autophagic flux at 0 and 24 h. The values are presented as the mean ± SD 
(*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 
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Figure 7. Deh activates autophagy through AMPK. (A–D) Protein levels of p-AMPK, AMPK, p-Beclin, Beclin, p-ULK1 and ULK1. (E) The 
interaction of p-AMPK with p-ULK1 and p-Beclin. (F) Deh affects autophagic flux through AMPK. The values are presented as the mean ± SD 
(*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 
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flora, destroy the balance in the flora and cause other 

serious consequences [29, 30]. Becattini et al. showed 

that antibiotics cause intestinal flora damage and 

disease [31]. Silverman et al. found that antibiotic 

treatment changed the composition and metabolic 

function of intestinal microflora, which may be 

related to necrotizing enterocolitis and antibiotic-

associated diarrhea [32]. Antibiotics cause the 

destruction of intestinal flora, and steroidal or non-

steroidal anti-inflammatory drugs destroy the balance 

 

 
 

Figure 8. Deh activates autophagy in the EpH4-Ev cell inflammatory response model. (A–F) Protein levels of p-AMPK, AMPK, p-
Beclin, Beclin, p-ULK1, ULK1, LC3B and P62. (G) Effect of Deh on autophagic flux in the EpH4-Ev cell inflammatory response model. The values 
are presented as the mean ± SD (*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 
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of intestinal flora. Steroids cause anxiety or 

depression by changing the structure of the flora [33, 

34]. Otani et al. found that non-steroidal anti-

inflammatory drugs lead to changes in the microbial 

population and cause intestinal damage [35]. These 

studies showed that although the use of antibiotics and 

anti-inflammatory drugs alleviate bacterial infection 

and inflammation, the destruction of intestinal flora 

by these drugs also leads to other serious 

consequences. In particular, taking antibiotics or anti-

inflammatory drugs for a long time will seriously 

damage the balance of intestinal flora. In our study, 

we found that Deh did not cause changes in the 

abundance or composition of the primary flora, but 

there were significant changes in the species and 

genera of four bacteria. Among them, xylanophilum is 

positively related to the occurrence of small cell lung 

cancer. It has also been reported that Muribaculum 

has been detected more in colorectal cancer, gastric 

cancer and Crohn's disease [36]. Our sequencing 

results showed that Deh significantly reduced the 

levels of xylophilum and Muribaculum. This suggests 

that Deh does not disrupt the flora balance and may 

reduce the risk of colitis. 

 

Although we have preliminarily described the anti-

inflammatory effect of Deh and its effect on intestinal 

flora in vivo, the mechanism of its anti-inflammatory 

effect in vivo is still unclear. Wenbi Xiong et al. found 

that Deh upregulates hBD-2 to enhance the innate 

immunity of the intestine [20]. Our study found that 

Deh significantly activated the AMPK signaling 

pathway and promoted the phosphorylation of AMPK. 

Previous studies have shown that the activation of 

AMPK promotes autophagy by phosphorylating Beclin 

and ULK1 [37, 38]. In complex multicellular 

organisms, autophagy proteins, which are the core 

molecular mechanism of autophagy, coordinate the 

different responses of cells and tissues to other 

dangerous stimuli, such as infection [39, 40]. Recent 

developments have revealed the important role of 

autophagy pathways and proteins in immunity and 

inflammation [41, 42]. Autophagy balances the 

beneficial and harmful effects of immunity and 

inflammation and prevents infectious, autoimmunity 

and inflammatory diseases [42]. However, autophagy 

can be divided into classical and nonclassical pathways 

[43]. Our study showed that Deh activated the 

nonclassical pathway of autophagy. Interestingly, the 

results showed that Deh phosphorylated AMPK, Beclin 

and ULK1 to enhance autophagy, which depends on 

the activation of AMPK. We found that Deh promotes 

the formation of autophagic flux over time.  

 

In conclusion, our study showed that Deh activates 

autophagy through AMPK to play an anti-inflammatory 

role and that Deh does not affect the balance of major 

intestinal flora. 

 

MATERIALS AND METHODS 
 

TRIzol, LPS and phenylmethanesulfonyl fluoride (PMSF) 

were purchased from Sigma (Saint Louis, MO, USA). 

Deh was purchased from Shanghai Yuanye Bio-

Technology Co. CCK8 was purchased from Saint-Bio Co. 

(Shanghai, China). Compound C (CC) and 3-

methyladenine (3-MA) were purchased from Selleckchem 

(Shanghai, China). p-Beclin, Beclin, p-ULK, ULK, 

AMPK, p-AMPK and LC3B were purchased from Cell 

Signaling Technology (Boston, MA, USA). P62 was 

purchased from Proteintech (Rosemont, IL, USA). β-

Tubulin was purchased from Bosterbio in Dallas 

(Pleasanton, USA). IgG was purchased from Beyotime 

(Shanghai, China). HRP-conjugated anti-mouse and anti-

rabbit secondary antibodies were purchased from 

Bosterbio. 

 

Animal experiments 

 

ICR mice (8~10 weeks old, 25~30 g weight) were 

purchased from the Center of Experimental Animals of 

Baiqiuen Medical College of Jilin University (Jilin, 

China). The animals were housed in certified, standard 

laboratory cages and administered food and water ad 
libitum before experimental use. All animal care and 

experimental procedures were conducted in 

accordance with the guidelines established by the Jilin 

University Institutional Animal Care and Use 

Committee (approved on 27 February 2015; Protocol 

No. 2015047) designated ‘Guide for the Care and Use 

of Laboratory Animals’ and approved by the 

Institutional Animal Care and Use Committee of Jilin 

University. Animal studies were performed in 

compliance with ARRIVE guidelines. Lactating mice 

(5~7 days after birth of offspring) were randomly 

divided into five groups: control (n=6), Deh (100 

mg/kg), LPS (0.2 mg/mL, 50 μL) treatment (n=6), LPS 

+ Deh (100 mg/kg) (n=6), and LPS+Dex (5 mg/kg) 

(n=6). On day four of lactation, the control group was 

fed normal saline, and the two treatment groups were 

fed Deh (100 mg/kg) for 4 days. On day 3, LPS was 

injected into the fourth inguinal mammary gland of the 

mice. At 24 h after LPS injection, the mice were 

anesthetized with sodium pentobarbital (45 mg/kg), 

and the mammary glands were collected (Figure 9). 
 

Cell culture 
 

EpH4-Ev cells were purchased from American Type 

Culture Collection (ATCC® CRL-3063™) and were 

cultured in DMEM containing 10% FBS at 37°C in a 

humidified incubator with 5% CO2. 
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Cell viability 
 

The effect of Deh on cell viability was determined using 

a CCK8 assay. EpH4-Ev cells were treated with Deh (1 

μM, 5 μM, 10 μM, 25 μM, 50 μM, 100 μM, 250 μM, 

and 500 μM) for 4 h. Subsequently, 10 μL CCK8 was 

added to each well. After 1 h, the absorbance (OD) was 

measured at 450 nm on a microplate reader (Bio-Rad, 

CA, USA). 

 

Plasmids and fluorescence microscopy 
 

Cultured cells were seeded in 24-well plates with 

microscope cover slips (Thermo Fisher Scientific) and 

were transfected with mRFP-GFP-LC3 (a gift from the 

Pathology Laboratory, College of Veterinary Medicine, 

Jilin University) using LipoFiter (HANBIO) for 24 h. 

After the designated treatments, the cells were fixed 

with 4% paraformaldehyde (PFA) in PBS. All cellular 

images were obtained using an inverted confocal 

microscope (dissecting the dynamic turnover of GFP-

LC3 in the autolysosome). 

 

Histological evaluation of the mammary gland 
 

The mammary glands of mice were photographed and 

evaluated histologically. Then, for histological analysis 

of the mammary gland, the mice were euthanized, and 

the four pairs of mammary glands were fixed in  

4% paraformaldehyde, followed by dehydration with 

ethanol. After paraffin embedding, 6 μm sections were 

cut and stained with hematoxylin and eosin (H&E) 

according to a previously described protocol [44]. 

Direct visual observation of the mammary gland and 

H&E-stained sections were examined under a light 

microscope to evaluate pathological changes. Simul-

taneously, a standard assessment method was 

conducted to determine mammary gland injury. Overall 

mammary gland injury was scored based on edema, 

neutrophil infiltration and hemorrhage, and three visual 

fields were observed for each slice. Studies were 

performed in a blinded manner. Injury scores were 

representative of severity (0, no damage; 1, mild 

damage; 2, moderate damage; 3, severe damage; and 4, 

very severe damage) [45]. 

 

Protein levels of TNF-α, IL-6 and IL-1β 

 

The protein levels of TNF-α, IL-6 and IL-1β in 

mammary glands were determined by ELISA kits 

according to the manufacturer’s instructions. 

 

Myeloperoxidase (MPO) activity assay 

 

Mammary glands were collected and weighed, and 

MPO was analyzed according to a previously described 

protocol [45]. Samples were measured for MPO activity 

with a microplate reader at OD450. 

 

qRT-PCR analysis 
 

Total RNA was isolated from cultured mMECs with 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and 

amplification reactions were performed to detect the 

gene levels of TNF-α, IL-6 and IL-1β [46]. The primer 

sequences are shown in Table 1. 

 

Western blotting 
 

Total proteins were isolated from EpH4-Ev cells and 

mouse mammary glands with RIPA lysis buffer 

(Beyotime, Shanghai, China) (50 mM Tris, pH 7.4; 150 

mM NaCl; 1% Triton X-100; 1% sodium deoxycholate; 

0.1% SDS; sodium orthovanadate; sodium fluoride; 

EDTA, leupeptin; and 1 mM PMSF). Tissue lysates 

were centrifuged at 12000 g for 5 min at 4 °C, and 

protein concentrations were determined with a PierceTM 

BCA protein assay kit (Thermo Scientific, China). 

Equal amounts of cell (30 μg)/mammary gland (50 μg) 

extracts were subjected to 12% sodium dodecyl  

sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and subsequently transferred to PVDF  

 

 
 

Figure 9. Construction of the mouse mastitis model. 
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Table 1. The primer sequences of TNF-α, IL-1β, IL-6 and β-actin. 

Gene Primer Length (bp) 

TNF-α (sense) 5’-ACGGCATGGATCTCAAAGAC-3’ 

TNF-α (antisense) 5’-GTGGGTGAGGAGCACGTAGT-3’ 

IL-1β (sense) 5’-GCTGCTTCCAAACCTTTGAC-3’ 

IL-1β (antisense) 5’-AGCTTCTCCACAGCCACAAT-3’ 

IL-6 (sense) 5’-CCGGAGAGGAGACTTCACAG-3’ 

IL-6 antisense) 5’-CAGAATTGCCATTGCACAAC-3’ 

β-actin (sense) 5’-GTCAGGTCATCACTATCGGCAAT-3’ 

β-actin (antisense) 5’-AGAGGTCTTTACGGATGTCAACGT-3’ 

 

membranes (Millipore, Darmstadt, Germany) for 

antibody blotting. The membranes were incubated 

with primary antibodies (1:2000 dilution) at 4°C 

overnight, followed by HRP-conjugated goat anti-

mouse (1:10000) or goat anti-rabbit secondary 

antibodies (1:10000) at room temperature for 1 h. 

Protein bands were visualized using a Beyo Enhanced 

Chemiluminescence Reagent Kit (Beyotime, 

Shanghai, China) according to the manufacturer’s 

instructions. 

 

Coimmunoprecipitation (Co-IP) 
 

We scraped the cells off the dish with a cell scraper and 

then washed them once with PBS. Then, ice-cold IP 

lysis/wash buffer (250 μL) was added to the cells. The 

suggested amount of total protein per IP reaction was 

500–1000 μg, as determined by a Pierce BCA protein 

assay (Thermo-Fisher, Rockford, USA). The Co-IP assay 

was conducted using a PierceTM Classic Magnetic IP/Co-

IP Kit [46]. 

 

Fecal sample collection and 16S sequencing 

 

Fecal samples were collected from the mouse colons 

and stored at -80 °C. Fecal DNA and the V4-V5 region 

of the bacterial 16S ribosomal RNA gene were 

extracted and detected by BioMaKer (Beijing, China). 

The data analysis of sequencing results was also 

completed by BioMaKer. 

 

Statistical analysis 
 

Images were generated using GraphPad Prism software 

(La Jolla, CA, USA). Animals were randomly assigned to 

groups. In mouse studies, histological analysis was 

conducted in a blind manner. In cases where overall F-

tests were significant (P < 0.05), post hoc comparisons 

using Tukey’s method of adjustment were conducted to 

determine the location of significant pairwise differences. 

Analyses were performed using GraphPad Prism 8.02 

software. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The quality of microbiome sequencing in mice feces. (A, B) Length distribution in Control and Deh. 
(C) Relative abundance in Control and Deh. (D) Shannon index in Control and Den. (E, F) PCA and PCoA analysis between 
Control and Deh. 
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Supplementary Figure 2. Effect of dehydroandrographolide on low abundance flora. (A–D) At the species level, Parabacteroides 
sp. YL27, [Eubacterium] xylanophilum group, Family XIII AD3011 group and Akkermansia in Deh and Control group. Values are 
presented as the mean ± SD (*p<0.05, **p<0.001, ***p<0.001 and ****p<0.0001). 

 


