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ABSTRACT 

 

DNA methylation has fundamental roles in gene programming and aging that may help predict mortality. 

However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause 

mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites 

associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in 

Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths 

across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with 

mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, 

cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)—mapping respectively to BMPR1B, 

MIR1973, IFITM3, NLRC5, and two intergenic regions—were associated with reduced mortality risk. The 

remaining three sites (cg17086398, cg12619262, cg18424841)—mapping respectively to SERINC2, CHST12, 

and an intergenic region—were associated with increased mortality risk. DNA methylation at each site 

predicted 5%–15% of all deaths. We also assessed the causal association of those sites to age-related chronic 

diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and 

cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) 

were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking 

and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was 

associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to 

immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality 

risk assessment and preventative care. 

mailto:elena.colicino@mssm.edu
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INTRODUCTION 
 

The human epigenome contains DNA methylation marks 

that progressively change as we age. DNA methylation 

can influence gene expression and manifests in response 

to both environmental and hereditary factors [1, 2]. 

Biological age estimations, constructed from DNA 

methylation marks and referred to as “epigenetic aging 

clocks”, have been associated with environmental 

exposures, morbidities, and mortality [9–13]. As these 

clocks were designed to track chronological age, not to 

predict mortality, further study is necessary to fully 

elucidate indicators of all-cause mortality. To date, no 

large-scale analysis has been conducted to identify 

variations in DNA methylation at individual 5’-cytosine-

phosphate-guanosine-3’ (CpG) sites associated with 

future mortality risk. Here, we present an epigenome-

wide methylation analysis of 12,300 participants and 2, 

561 (21%) deaths from 12 American and European 

cohorts to determine whether site-specific DNA 

methylation predicts all-cause mortality, independent of 

age, lifestyle factors, and clinical predictors of mortality 

including comorbidities. We also assessed the causal 

relationship of identified sites with age-related chronic 

diseases using Mendelian randomization approaches, and 

we related the sites to epigenetic aging clocks and a 

mortality risk score, an epigenetic indicator of mortality 

previously created and validated with DNA methylation 

arrays in two European cohorts. 

 

RESULTS 
 

Cohorts 

 

Across studies in the Cohorts of the Heart and Aging 

Research in Genetic Epidemiology (CHARGE) 

Consortium, mortality rates ranged from 3%–70% of all 

participants, and the average time to death or censoring 

ranged from 4.4–16.6 years (Supplementary Table 1). 

Each study conducted epigenome-wide mortality 

analyses, adjusting for two sets of harmonized risk 

factors and confounders, and shared results for meta-

analysis (Figure 1). 

 

Meta-analysis 
 

Inverse variance-weighted fixed-effects meta-analysis of 

426, 724 CpGs identified 51 Bonferroni-significant and 

 

 
 

Figure 1. Workflow of the study. 
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257 FDR-significant (P < 3.03x10-5) CpGs in a basic 

model adjusting for age, sex, technical covariates, and 

white blood cell proportions (Figure 2A and 

Supplementary Table 2). We also identified three 

Bonferroni-significant and nine FDR-significant (P < 

9.3x10-7) CpGs in a fully-adjusted model also adjusting 

for education, smoking status, pack-years smoked, body 

mass index, recreational physical activity, alcohol 

consumption, hypertension, diabetes, and history of 

cancer and coronary heart disease (Figures 2B, 3A  

and Supplementary Table 3). For 188 (73%) basic-

adjusted FDR-significant CpGs and six (67%) fully-

adjusted CpGs, higher blood DNA methylation was 

associated with lower all-cause mortality (Figure 2 and 

Supplementary Tables 2, 3). 

 

All nine fully-adjusted FDR-significant CpGs had 

similar magnitude of associations with mortality in the 

basic model, although only five were also FDR-

significant in the basic model (Figure 3B). Hazard ratios 

(HRs) of the nine fully-adjusted FDR-significant CpGs 

ranged 0.53–1.26 per 10% increase in DNA methylation 

levels, where 1 represents 100% methylation 

(Supplementary Table 4). Six sites (cg14866069, 

cg23666362, cg20045320, cg07839457, cg07677157, 

cg09615688) were associated with reduced mortality 

risk, while the remaining three sites (cg17086398, 

cg12619262, cg18424841) were associated with 

increased mortality risk (Figure 3A and Supplementary 

Tables 3, 4). Three fully-adjusted CpGs (cg07677157, 

cg09615688, cg18424841) were in intergenic regions; the 

remaining six (cg17086398, cg14866069, cg23666362, 

cg12619262, cg20045320, cg07839457) were within 

10,000 bp of a gene, with two CpGs (cg07839457, 

cg23666362) mapped respectively to nucleotide-binding 

oligomerization domain-like receptor caspase recruitment 

domain containing 5 (NLRC5) and microRNA 1973 

(MIR1973) within 1,500 bp of transcription start sites, 

and one (cg17086398) in the serine incorporator 2 

(SERINC2) gene body (Supplementary Table 3). 

 

Meta-analysis results did not appear to suffer from 

systematic bias due to unmeasured confounding, as 

assessed by genomic inflation (basic model: λ = 1.12, 

 

 
 

Figure 2. Quantile-Quantile plots, Manhattan and Volcano for the basic model (Panel A) and for the fully adjusted model (Panel B). 
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fully adjusted model λ = 0.94, Figure 2 and 

Supplementary Table 5). Cohort-specific inflation was 

also minimal, with lambdas close to one for most cohorts. 

Volcano plots showed symmetry in the direction of the 

associations with all-cause mortality (Figure 2). All  

nine fully-adjusted FDR-significant CpGs showed 

low/medium heterogeneity (Supplementary Tables 7) and 

consistent magnitude of the estimated HRs across studies 

(Figure 3A). We further validated our results by 

excluding cohorts with high proportion of deaths (30%) 

and inflation (λ > 1.5). In these sensitivity analyses, HRs 

for the nine FDR-significant CpGs were consistent with 

main results in terms of direction, magnitude, and 

statistical significance (Supplementary Figure 1 and 

Supplementary Tables 8, 9). 

 

Three of the nine fully-adjusted FDR-significant  

CpGs (cg20045320, cg07677157, cg07839457) were 

associated with lower incidence of coronary heart 

disease rates (P < Bonferroni threshold of 0.005) 

(Figure 4 and Supplementary Table 10). 

 

Miettinen’s population attributable factor, epigenetic 

aging clocks, and mortality risk score 
 

To assess the extent that methylation levels of each CpG 

predict all-cause mortality, we calculated Miettinen’s 

population attributable fraction on data from the 

Normative Aging Study (NAS) and the Women Health 

Initiative-Epigenetic Mechanisms of Particulate Matter-

Mediated Cardiovascular Disease (WHI-EMPC) for 

European and African American ancestries. DNA 

methylation levels above the average at each CpG 

predicted, individually and independently of other 

factors, 5%–15% of all deaths (Figure 3C and 

Supplementary Table 11). In the same datasets, all nine 

CpGs were associated with age, cumulative smoking, 

body mass index, and physical activity (P < 0.05). Seven 

out of nine CpGs (cg17086398, cg14866069, 

cg23666362, cg20045320, cg7677157, cg07839457, 

cg09615688) had negative relationships with age 

(Supplementary Table 12). Seven CpGs were strongly 

associated with epigenetic aging clocks and mortality 

risk scores; all significant associations had the same 

direction and similar magnitude across the four 

epigenetic aging clocks (Supplementary Table 13), even 

if none of those sites was included in any of the clocks. 

Those CpGs had consistent and independent association 

with all-cause mortality when adjusted for epigenetic 

aging clocks and mortality risk scores (Supplementary 

Tables 14, 15). In overall meta-analysis, we identified 57 

out of 58 CpGs of the risk score, and those sites had low 

to moderate association with DNA methylation levels at 

our FDR-significant CpGs with a balance between 

 

 
 

Figure 3. (A) Forest Plots for the association of methylation levels of the FDR-significant fully-adjusted CpGs with risk of all-cause mortality in 
the CHARGE consortium. (B) Sensitivity analysis. Comparison of the hazard ratio of the basic-adjusted and the fully-adjusted fixed effect 
meta-analysis. (C) Attributable factor. Predicted Contribution (%) of increased methylation levels (above the mean) of each CpG to the all-
cause mortality associations in NAS, WHI-EMPC (EA) and WHI-EMPC (AA). (D) Functional Mapping and Annotation results in order to examine 
tissue specificity of the genes mapped to the FDR-significant fully-adjusted CpGs. 
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positive and negative correlations (Supplementary 

Figure 2A, 2B). In overall meta-analysis, the association 

between all-cause mortality and DNA methylation levels 

at the majority (34 out of 58) of mortality risk score 

CpGs had consistent direction with previous results. 

Among those CpGs, only two (cg25193885 and 

cg19859270) showed nominally significant association 

with mortality (Supplementary Figure 2A, 2B). 

 

Pathways analyses and DNA methylation integration 

with quantitative trait loci analysis (meQTL) and 

with gene expression (eQTM) 

 

Extended genome-wide enrichment analysis showed that 

two of the CpGs (cg07839457 and cg17086398) mapped 

to genes (NLRC5 and SERINC2, respectively) previously 

associated with high-density lipoprotein cholesterol 

levels (FDR P = 0.02) and alcohol dependence (FDR 

P = 0.004) in genome-wide association studies (GWAS) 

analyses (Supplementary Table 16) [14]. We confirmed 

these results using Database for Annotation, 

Visualization and Integrated Discovery (DAVID) and 

KEGG, identifying and testing for enriched underlying 

biological processes in publicly available gene ontology 

databases (Supplementary Tables 17, 18). 

 

To characterize the functional relevance of FDR-

significant CpGs, we performed covariate-adjusted 

methylation quantitative trait locus (meQTL) analyses 

using available unique single-nucleotide-polymorphism 

(SNP)–CpG combinations from 713 participants  

in the Cooperative Health Research in the Region 

Augsburg (KORA) study [15]. We identified  

nine Bonferroni-significant unique cis-regulatory 

polymorphisms associated with two 1000 bp-distant 

CpGs (cg09615688, cg18424841) (Supplementary 

Figure 3A and Supplementary Table 19). None of the 

nine identified polymorphisms overlapped with 

previous genetic results from the National Human 

Genome Research Institute-EBI GWAS Catalog 

(Supplementary Table 16). 

We also evaluated expression quantitative trait 

methylation (eQTM) associations using 998 KORA 

participants. We identified three CpGs with FDR-

significant associations with decreased leukocyte 

expression levels of nearby genes, among the 13, 351 

unique associations between gene-expression and DNA 

methylation levels at FDR-significant fully-adjusted 

CpGs. Namely, DNA methylation levels of cg07839457 

(in NLRC5) were associated with NLRC5 expression as 

well as with that of a ~300 Mb-distant set of 

metallothionein (MT) 1 and 2 genes, which are linked to 

oxidative stress and immune responses [16, 17]. DNA 

methylation of cg17086398 in SERINC2 was inversely 

associated with myristoylated alanine-rich C-kinase 

substrate like 1 (MARCKSL1) expression, which is 

involved in migration of cancer cells [18]. DNA 

methylation at cg20045320 in IFITM3 was associated 

with lower expression of IFITM3 and IRF, which have a 

critical role in immune responses (Supplementary 

Figure 3B and Supplementary Table 20) [6, 19]. 

 

We finally used functional mapping and annotation to 

examine tissue-specific expression. Genes identified in 

the fully-adjusted model showed universal expression at 

varying levels across tissues. IFITM3 was highly 

expressed in all tissues; BMPR1B showed low 

expression across all tissues, except for moderate 

expression in the prostate and tibial nerve. Remaining 

genes had moderate or low expression in a wide range 

of tissues, except for SERINC2, which showed high 

expression in the liver, kidney, salivary gland, and 

esophagus. MIR1973 was not represented in the dataset 

(Figure 3D). 

 

Mendelian randomization 

 

To evaluate the causal relationship of FDR-significant 

CpGs to mortality-related risk factors and diseases, we 

included two sets of Mendelian randomization analysis 

using methQTL data from KORA and publicly available 

ARIES data. Only two FDR-significant CpGs 

 

 
 

Figure 4. Forest Plots for the association of methylation levels of the FDR-significant fully-adjusted CpGs with risk of future 
incident coronary heart disease in the CHARGE consortium. 
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(cg18424841 and cg09615688) overlapped with 

methQTLs in either KORA or ARIES and with SNPs 

associated with coronary heart disease (CHD) or kidney 

function. A GWAS assessing longevity and age-related 

chronic diseases (CHD and kidney function) [34–38] 

showed no overlap with KORA and ARIES methQTLs 

even when using a moderate threshold for proxy variants 

(proxy r2 > 0.75). In KORA, cg09615688 showed 

evidence of a positive causal effect on CHD (OR = 1.51; 

95% CI = 1.02, 2.23; Wald ratio method), directionally 

consistent with the association of overall meta-analysis 

on mortality. However, this causal estimate at this site 

was not represented in ARIES methQTL data. 

Cg18424841 had multiple variants in KORA methQTL 

data and a single variant in ARIES methQTL data. We 

did not observe consistent evidence of a causal effect of 

cg18424841 on CHD. Indeed, weak evidence for a 

causal effect of cg18424841 on CHD was observed in 

ARIES using the Wald ratio method but not in KORA 

using pleiotropy-robust, multi-variant, or Wald ratio 

methods. We did not find evidence for a causal effect of 

cg18424841 on kidney function in either KORA or 

ARIES (Supplementary Table 21). 

 

Cell-type fractions and all-cause mortality 

 

Cell-type fractions, mostly neutrophil–lymphocyte ratio 

(NLR), have been often associated with comorbidities 

and mortality and have been recognized to influence 

DNA methylation levels [20–22]. We identified that 

NLR was significantly associated with all-cause 

mortality only when data were not adjusted for 

Houseman cell proportions using NAS data 

(Supplementary Table 22). Interestingly, NLR had no 

significant association with all-cause mortality when we 

adjusted for DNA methylation levels at cg07839457, 

mapped to immune-related gene NLRC5. However, the 

contribution of NLR on mortality at that specific site 

may be minimized due to adjustment of prior history of 

cancer and comorbidities in all models. 

 

DISCUSSION 
 

This study is the largest to date investigating site-

specific DNA methylation and all-cause mortality. We 

identified new whole blood DNA methylation marks 

that predict all-cause mortality risk, independent from 

chronological age, lifestyle habits, and morbidity. These 

newly identified sites may be useful in developing 

clinical tools for risk assessment and mortality 

preventive intervention strategies. 

 

All nine FDR-significant CpGs demonstrated novel 

association with all-cause mortality and were not part of 

epigenetic aging clocks or mortality risk scores [9, 11–

13]. Further, the CpGs were associated with mortality 

independent from epigenetic aging and mortality 

signatures. All-cause mortality was associated with a 

mortality risk score in a model including seven FDR-

significant CpGs, although those associations may be 

driven by the inclusion of CpGs related to our FDR-

significant sites. This suggests that whole blood DNA 

methylation levels at FDR-significant CpGs may be 

sentinels for epigenetic disruptions leading to aging 

acceleration and contributing to mortality. In addition, 

the association between DNA methylation levels at 

FDR-significant CpGs with chronological aging may 

suggest that those CpGs are stronger independent 

biomarkers of aging than other epigenetic aging 

signatures. 

 

In previous CHARGE meta-analyses [3, 4], DNA 

methylation of two of the newly-identified CpGs, 

cg20045320 and cg07839457 (mapping to interferon 

induced transmembrane protein 3 [IFITM3] and NLRC5) 

were respectively associated with smoking and 

cardiovascular-related chronic inflammation, both 

factors of mortality. Cardiovascular disease, especially 

CHD, is a major contributor to mortality [23]. The 

direction of association with incident heart disease was 

consistent with that of all-cause mortality. Thus, DNA 

methylation at these CpGs may contribute to 

development and progression of CHD and, 

consequently, to risk of death. To validate this idea, we 

used a Mendelian randomization approach and identified 

one site, cg09615688, with a causal effect on CHD in 

KORA data and weak evidence for the causal effect of 

cg18424841 on CHD in ARIES data. 

 

Expression of several genes mapped to the fully-

adjusted FDR-significant CpGs has been associated 

with mortality predictors and mortality. Elevated and 

persistent gene expression levels of NLRC5, a master 

regulator of the immune response [16], has 

demonstrated an inverse correlation with familial 

longevity and mortality predictors, such as elevated 

blood pressure, arterial stiffness, chronic levels of 

inflammatory cytokines, metabolic dysfunction, and 

oxidative stress [5]. In addition, expression of IFITM3 

provides an essential barrier to influenza A virus 

infection in vivo and in vitro. Absence of IFITM3 leads 

to uncontrolled viral replication and a predisposition to 

morbidity and subsequent mortality [6]. Further, 

expression of BMPR1B enhances cancer cell migration, 

and approaches targeting BMPR1B inhibit metastatic 

activity in breast cancer [7]. Finally, expression of 

MIR1973, part of a family of microRNAs, increases 

resistant lung adenocarcinoma cells, with subsequent 

low apoptosis intensity [8]. This body of evidence may 

suggest an active role of DNA methylation levels in 

regulating relevant gene expression and reducing all-

cause mortality risk. 
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The overall meta-analyses included 12 cohorts with 

varying biological age and mortality. There was a 

balance between six studies with long (≥10 years) and 

six cohorts with short (<10 years) average time to 

follow-up or death. All cohorts showed consistency in 

magnitudes and directionality for the association with 

mortality of four CpGs (cg12619262, cg20045320, 

cg07839457, cg18424841). Two studies (FHS study 1 

and KORA) showed non-significant opposing 

directionality when compared with the rest of the 

cohorts for several CpGs (FHS-Study 1: cg14866069, 

cg23666362, cg09615688; KORA: cg17086398, 

cg14866069, cg23666362). However, both cohorts had 

among the shortest average time-to-death (FHS-Study 

1: 6.1 years; KORA: 4.4 years) and youngest average 

population age (FHS-Study 1: 65 years; KORA: 61 

years). Both cohorts also had limited contribution in our 

meta-analysis due to reduced number of deaths (FHS-

Study 1: 62; KORA: 42). Our results may indicate that 

DNA methylation levels at these select CpGs were 

relevant for mortality risk prediction of longer time-to-

death in both adults and older-age adults. 

 

Cell-type fractions, including NLR, as related to cancer 

and systemic inflammation have been related to 

mortality in different populations [20–22]. When we 

excluded Houseman cell proportions, NLR was strongly 

associated with mortality at all CpGs except 

cg07839457, which is mapped to the immune-related 

gene NLRC5. This may suggest that the contribution of 

NLR on mortality is minimized when controlled for 

prior history of cancer and related comorbidities. 

 

In summary, we identified nine CpGs with a novel 

association with all-cause mortality, responsive to 

several external stimuli including alcohol consumption 

and smoking, and more than 10 years before death. 

These sites thus may be considered sentinels for 

epigenetic disruptions leading to age-related disease, 

such as cardiovascular disease, and contributing to 

mortality. Further studies have to confirm these 

associations in other tissues and in different populations. 

 

MATERIALS AND METHODS 
 

Participating cohort studies 
 

Our meta-analysis included 12,300 participants from 12 

population-based cohorts of the Heart and Aging 

Research in Genetic Epidemiology Consortium 

(CHARGE; Supplementary material): Atherosclerosis 

Risk In Communities (ARIC), two studies from the 

Framingham Heart Study (FHS), Invecchiare in Chianti 

(InChianti), Kooperative Gesundheitsforschung in der 

Region Augsburg (KORA), Lothian Birth Cohort 1921 

(LBC1921) and 1936 (LBC1936), Normative Aging 

Study (NAS), UK Adult Twin Registry (TwinsUK), and 

three studies from the Women’s Health Initiative 

(WHI), including Broad Agency Announcement 23 

(WHI-BAA23) and Epigenetic Mechanisms of PM-

Mediated CVD Risk (WHI-EMPC), both European 

(WHI-EMPC-EA) and African American ancestries 

(WHI-EMPC-AA). For each participant, we derived 

years of follow-up using time between the blood draw 

used for DNA methylation analysis and death or last 

follow-up. Each cohort excluded participants with 

diagnosed leukemia (ICD-9: 203–208) or undergoing 

chemotherapy treatment, which both modify blood-

derived data [24, 25]. All participating cohorts shared 

cohort descriptive statistics and results files from pre-

specified in-house mortality analyses (Figure 1). Further 

information about death ascertainment, covariates 

measurement and harmonization, protocols, and 

methods of each cohort are included in the 

Supplemental Materials. The institutional review 

committees of each cohort approved this study, and all 

participants provided written informed consent. Data 

and analytical codes that support our findings are 

available from the corresponding author upon request. 

 

Blood DNA methylation measurements and quality 

control 
 

Each cohort independently conducted laboratory DNA 

methylation measurements and internal quality control. 

All samples underwent bisulfite conversion via the  

EZ-96 DNA Methylation kit (Zymo Research) and  

were processed with the Illumina Infinium 

HumanMethylation450 (450K) BeadChip (Illumina) at 

Illumina or in cohort-specific laboratories. Quality 

control of samples included exclusion on the basis of 

Illumina’s detection P-value, low sample DNA 

concentration, sample call rate, CpG specific percentage 

of missing values, bisulfite conversion efficiency, gender 

verification with multidimensional scaling plots, and 

other quality control metrics specific to cohorts. Each 

cohort used validated statistical methods for normalizing 

methylation data on untransformed methylation beta 

values (ranging 0–1). Some cohorts also made 

independent probe exclusions. Further details are 

provided in the Supplemental Material. For meta-

analysis, additional probe exclusions were made across 

all cohorts. In detail, we also excluded control probes, 

non-CpG sites, probes that mapped to allosomal 

chromosomes, cross-reactive CpGs, probes with 

underlying SNPs within 10 bp of the CpG sequence, 

non-varying CpGs defined by interquartile range of 

<0.1%, CpGs with ≥10% of missing information, and 

CpGs with non-converging results [26–28]. We included 

only CpGs that were available in more than three 

cohorts. A total of 426, 724 CpGs were included in the 

meta-analysis (Supplementary Table 5). 
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The official gene name of each CpG site was noted via 

Illumina’s genome coordinate. We used the name 

provided by Illumina with the UCSC Genome Browser 

and annotation data in Bioconductor. All annotations use 

the human February 2009 (GRCh37/hg19) assembly. 

 

Cohort-specific statistical analyses 
 

Each cohort independently ran a common pre-specified 

statistical analysis in R.version 3.5.1. We estimated the 

association between locus-by-locus blood DNA 

methylation levels and all-cause mortality in each cohort 

using a Cox-regression model. Proportional hazard 

assumptions were confirmed for each model in all 

cohorts. Familial relationship was also accounted for, 

when appropriate, in the model; FHS analyses included 

cluster for family structure, and TwinsUK analyses used 

random intercepts for zygosity and family structure. To 

avoid non-convergent results, cohorts with low deaths 

(KORA and TwinsUK) used a two-step analysis, in 

which covariates were first linearly regressed on each 

probe, and then residuals were used to perform a Cox 

mortality analysis. 

 

Each cohort adjusted for harmonized covariates in the 

basic model: age (categories for decades), sex, and 

technical covariates (plate, chip, row, and column). A 

second set of fully-adjusted analyses adjusted for this 

initial list of covariates in addition to education level, 

self-reported recreational physical activity, smoking 

status, cumulative smoking (pack-years), body mass 

index, alcohol intake, hypertension, diabetes, and any 

personal history of cancer. Cohorts independently 

estimated cell type proportions using the reference-based 

Houseman method, which was subsequently extended by 

Horvath. Cell type correction was applied by including 

estimated cell type proportions (CD4T, NK cells, 

monocytes, granulocytes, plasma B cells, CD8T naïve, 

and memory and effector T cells) as covariates in cohort-

specific statistical models. Each cohort underwent 

statistical validation of Cox-proportional hazard 

assumptions before being included in the meta-analysis. 

 

Meta-analysis 

 

We performed inverse variance-weighted fixed-effects 

meta-analysis. Due to the variability of available CpG 

sites across cohorts after quality-control steps, we 

included only CpG sites that were available in three or 

more cohorts. We accounted for multiple testing by 

controlling at 5% both the Bonferroni correction and 

false discovery rate (FDR) using the Benjamini-

Hochberg procedure. 

 

For FDR-significant CpGs, we confirmed robustness of 

the models and results in additional analyses using the 

leave-one-out cohort validation method, by excluding 

one cohort at a time and then comparing model 

estimates for each CpG. We compared effect hazard 

ratio (HR) and 95% confidence interval (95% CI) for 

the model to estimates for our models to evaluate the 

consistency of our findings. For each CpG, we 

evaluated goodness of the meta-analysis model using 

the I² statistic measure of inter-study variability from 

random-effect meta-analyses. 

 

Enrichment analysis 
 

We enriched our results using a publicly available 

catalog of all published GWAS relating genetic variants 

with human diseases (National Human Genome 

Research Institute-EBI GWAS Catalog) to elucidate 

potential associations [14]. Enrichment analysis was 

performed in R using one-sided Fisher exact test. We 

controlled for false positives with the FDR procedure. 

 

We evaluated whether CpG sites associated with 

mortality were enriched with genomic features  

provided in the Illumina annotation file (version 1.2; 

http://support.illumina.com/array/array_kits/infinium_hu

manmethylation450_beadchip_kit/downloads.html) to 

identify CpG location relative to the gene (i.e., body, 

first exon, 3’-UTR, 5’-UTR, within 200 bp of 

transcriptional start site [TSS200]), and within 1500 bp 

of transcriptional start site [TSS1500]) and relation of 

the CpG site to a CpG island, northern shelf, northern 

shore, southern shelf, and southern shore. 

 

We also tested each gene mapped to the newly 

identified CpGs for tissue-specific expression using data 

from the Genotype Tissue Expression (GTEx) project as 

integrated by the Functional Mapping and Annotation 

(FUMA) tool [29], which allowed us to extract and 

interpret relevant biological information from publicly 

available repositories and provide interactive figures for 

prioritized genes. As a result, we obtained a heatmap of 

genes with normalized gene expression values (reads 

per kilo base per million). To obtain differentially 

expressed gene sets for each of 53 tissue types in the 

database, we used two-sided Student’s t-tests on 

normalized expression per gene per tissue against all 

other tissues. We controlled for multiple comparison 

with Bonferroni correction. Finally, we distinguished 

between genes upregulated and downregulated in a 

specific tissue compared to other tissues by accounting 

for sign of the t-score [29]. 

 

Pathway analyses 

 

To functionally interpret the genomic information 

identified from FDR-significant CpGs, we used the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

http://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
http://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
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pathway database, which links genomic information 

with higher-order functional information. Genomic 

information stored in the GENES database is a 

collection of gene catalogs for all completely sequenced 

genomes and some partial genomes with up-to-date 

annotation of gene functions. Higher-order functional 

information stored in the PATHWAY database contains 

graphical representations of cellular processes, such as 

metabolism, membrane transport, signal transduction, 

and cell cycle [30]. We controlled our results for 

multiple comparisons with the FDR approach. We 

finally confirmed our results with the Database for 

Annotation, Visualization and Integrated Discovery 

(DAVID). We tested for enrichment in gene ontology 

biological processes and applied the Benjamini-

Hochberg procedure to control for false positivity. We 

mapped each CpG significantly associated with mortality 

to genes on the basis of the 450K BeadChip annotation 

file. We excluded CpGs lacking annotated genes within 

10 Mb (n = 3). Using topGO in R, we tested for gene 

enrichment over the background array (16, 119 unique 

annotated Entrez Gene IDs) by using Fisher’s exact tests 

with a minimum of two genes per node. 

 

Integrating DNA methylation with quantitative trait 

loci analysis (meQTL) 
 

A subset of 713 KORA samples was genotyped on an 

Affymetrix Axiom array. We removed variants with a 

call rate of <0.98, Hardy-Weinberg equilibrium P < 

5x10-6, and minor allele frequency < 0.01. We 

considered only variants with an information score > 3. 

Imputation was performed using the 1000 Genomes 

Project phase I version 3 reference panel with IMPUTE 

2.3.0. Phasing of data was performed using SHAPEIT 

v2. We retained approximately 10,000,000 variants for 

analyses. In each model, we used DNA methylation 

beta values as independent variables and SNPs as 

dependent variables. We adjusted each model for age, 

sex, body mass index, and white blood cell proportions. 

We used OmicABEL [31] for the analyses and genotype 

probabilities for each variant. Due to large size  

of the output, we retained only variants with P < 1x10-4. 

We considered genome-wide significant results at  

P < 1x10-14. We reported only associations with CpGs 

significant in the epigenome-wide association study. 

 

Integrating DNA methylation with gene expression 

(eQTM) 
 

In KORA, 998 individuals had both valid methylation 

and blood gene expression data, which we used to 

assess whether DNA methylation was correlated with 

gene expression. Gene expression data (Illumina 

HumanHT-12 v3 Expression BeadChip) was quality 

controlled with GenomeStudio, and samples with 

<6,000 detected genes were excluded from analysis. All 

samples were log2-transformed and quantile-normalized 

using the Bioconductor package lumi [32]. A total of 

48,803 expression probes passed quality control. We 

used R (version 3.3.1) to run a linear mixed effects 

model adjusting for covariates (age, sex, blood cell 

proportions, and technical variables of RNA integrity 

number, sample storage time, and RNA amplification 

batch) and a random intercept for RNA amplification 

batch. Models were run for each of the nine newly-

identified CpGs associated with mortality. We filtered 

results to report only CpG-expression probe pairs 

located on the same chromosome. Start and end sites for 

each gene were determined according to the Illumina 

HT annotation file. A cutoff of 500,000 bp was used to 

differentiate cis- vs. trans-eQTMs. 

 

Miettinen’s population attributable factor and 

mendelian randomization analysis 
 

To assess the contribution of methylation levels of each 

CpG to all-cause mortality, we calculated Miettinen’s 

population attributable fraction on data from the in-

house Normative Aging Study (NAS) and Women 

Health Initiative-Epigenetic Mechanisms of Particulate 

Matter-Mediated Cardiovascular Disease (WHI-EMPC) 

for European and African American ancestries. 

Population attributable fraction takes into account 

strength of association between the risk factor (DNA 

methylation higher than the mean in specific CpG sites) 

and outcome (mortality) as well as prevalence of the 

risk factor in the population [33]. This metric provides 

estimates of the public health importance of risk factors, 

ascertaining what proportion of the outcome is due to 

exposure to the risk factor, and distinguishes between 

etiologic fraction attributable to or related to the given 

risk factor depending on whether all or just some 

confounding by extraneous factors was under control 

[33]. To support information about the population 

attributable factor, we also included two Mendelian 

randomization approaches. 

 

We identified the causal effect on all-cause mortality of 

FDR-significant CpGs by using two sample Mendelian 

randomization analyses and summary statistics from 

published GWAS for chronic diseases and longevity [34] 

and chronic diseases, including CHD [35], kidney 

function (serum creatinine), [36] blood pressure, [37] and 

type 2 diabetes [38]. We extracted GWAS information 

with MR-base [14]. We also extracted SNP-methylation 

association summary statistics from both KORA and 

publicly available ARIES [39] methQTL data; for 

ARIES, we used MR-base [40]. To account for multiple 

variants and pleiotropy, we used multiple Mendelian 

randomization methods—when only one variant was 

present, we used the Wald Ratio method [41]; when we 
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had multiple variants, we used MR Egger [42], 

weighted median [43], and weighted mode [44], as 

these three methods use different assumptions to 

provide consistent causal effect estimates even with 

invalid instruments arising from horizontal pleiotropy, a 

primary source of bias in multi-variant Mendelian 

randomization analyses. 

 

FDR-significant CpGs, DNA methylation-related 

aging measures, and mortality risk score 
 

PhenoAge, a composite measure of CpG sites 

representing phenotypic age, captures differences 

between lifespan and health span. The Horvath clock is 

a linear combination of sites identifying the cumulative 

effect of an epigenetic maintenance system [1, 45]. 

Among the 513 CpGs comprising PhenoAge, 41 are 

shared with the Horvath clock. While both aging 

measures correlate strongly with age in every tissue and 

cell type tested, and both captured risks for mortality 

across multiple tissues and cells, PhenoAge is highly 

predictive of nearly every morbidity [1, 10]. Blood 

PhenoAge outperformed the Horvath clock with regard 

to predictions for a variety of aging outcomes, including 

all-cause mortality. The mortality risk score instead was 

based on results using discovery cohort ESTHER (61 

years old on average) and both ESTHER and KORA for 

validation [11]. 

 

To investigate whether the association of FDR-

significant CpGs with mortality was independent of 

DNA methylation aging measures and risk score, we 

included acceleration of PhenoAge and Horvath clock, 

defined respectively as discrepancies between age with 

PhenoAge and Horvath clock age and the risk score. We 

also identified the correlation between each CpG 

included in the risk score and our FDR-significant 

CpGs, and we compared our pooled meta-analysis 

results with previous findings. 

 

Cell-type fractions and all-cause mortality 

 

Cell-type fractions, mostly NLR, influence DNA 

methylation levels and have been associated with 

comorbidities and mortality [20–22]. To elucidate which 

cell proportions were associated with mortality when 

adjusting for DNA methylation at FDR-significant CpGs, 

we included NLR, which has been associated with lung 

cancer risk and mortality [21] as well was cardiovascular 

disease and mortality in prospective studies [22]. NLR 

computation was performed using DNA methylation data 

via Koestler et al. [46] 
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SUPPLEMENTARY MATERIALS 
 

Supplementary material - cohort description 
 

The atherosclerosis risk in communities (ARIC) study 
 

ARIC cohort description 

The ARIC Study is a population-based prospective 

cohort study of cardiovascular disease risk in four US 

communities [1]. Between 1987 and 1989, 7,082 men 

and 8,710 women aged 45–64 years were enrolled in 

Forsyth County, North Carolina; Jackson, Mississippi 

(African Americans only); suburban Minneapolis, 

Minnesota; and Washington County, Maryland. The 

ARIC Study protocol was approved by the institutional 

review board of each participating university, and 

participants provided written informed consent. 

Participants underwent a baseline clinical examination 

(Visit 1) and four subsequent follow-up clinical exams 

(Visits 2–5). The present analysis is restricted to African 

Americans from Jackson and Forsyth County centers. 

Baseline for mortality follow-up is either Visit 2 (1990–

1992) or Visit 3 (1993–1995), when the DNA used for 

methylation quantification was collected. Covariates were 

measured at the time of blood draw, unless otherwise 

specified. Data on education, smoking status, smoking 

pack-years, alcohol intake, and physical activity were 

obtained by self-report at Visit 1. Trained technicians 

took fasting blood samples and measured height and 

weight using standard protocols. Diabetes was defined as 

a fasting blood glucose level of ≥126 mg/dL, non-fasting 

blood glucose level of ≥200 mg/dL, self-reported 

physician diagnosis of diabetes, or use of antidiabetic 

medication in the past 2 weeks. Hypertension was 

defined as systolic blood pressure ≥140 mm Hg, diastolic 

blood pressure ≥90 mm Hg, or self-reported use of 

antihypertensive medication in the past 2 weeks. History 

of cancer was defined by self-report or incident cancer 

cases found between Visit 1 and time of blood draw 

found through cancer registry and hospital linkage. 

History of coronary heart disease (CHD) was defined as 

self-reported history at baseline or an adjudicated event 

(Myocardial infarction (MI), silent MI, coronary artery 

bypass surgery, or angioplasty) found between Visit 1 

and time of blood draw. 

 

ARIC death ascertainment 
Deaths among cohort participants were identified through 

December 2012 via annual telephone calls and by 

surveillance of local death certificates and obituaries. If a 

participant was lost to telephone follow-up, a National 

Death Index search was conducted. 

 

ARIC DNA methylation quantification 
Genomic DNA was extracted from peripheral blood 

leukocyte samples using the Gentra Puregene Blood Kit 

(Qiagen; Valencia, CA, USA) according to the 

manufacturer’s instructions (https://www.qiagen.com). 

Bisulfite conversion of 1 μg genomic DNA was 

performed using the EZ-96 DNA Methylation Kit (Deep 

Well Format) (Zymo Research; Irvine, CA, USA) 

according to the manufacturer’s instructions 

(https://www.zymoresearch.com). Bisulfite conversion 

efficiency was determined by PCR amplification of 

converted DNA before proceeding with methylation 

analyses on the Illumina platform using Zymo 

Research’s Universal Methylated Human DNA Standard 

and Control Primers. The Illumina Infinium 

HumanMethylation450K Beadchip array (HM450K) 

was used to measure DNA methylation (Illumina, Inc.; 

San Diego, CA, USA). Background subtraction was 

conducted with the GenomeStudio software using built-

in negative control bead types on the array. Positive and 

negative controls and sample replicates were included on 

each 96-well plate assayed. After exclusion of controls, 

replicates, and samples with integrity issues or failed 

bisulfite conversion, a total of 2,841 study participants 

had HM450K data available for further quality control 

(QC) analyses. We removed poor-quality samples with 

pass rate of <99% (i.e., if the sample had at least 1% of 

CpG sites with detection P-value > 0.01 or missing), 

indicative of lower DNA quality or incomplete bisulfite 

conversion, and samples with a possible gender 

mismatch based on evaluation of selected CpG sites on 

the Y chromosome. Additional details have been 

published elsewhere [2 , 3]. 

 

Framingham heart study offspring cohort (FHS) 

 

FHS study participants 
The FHS Offspring Cohort began enrollment in 1971 

and included 5,124 offspring of the FHS original 

cohort as well as spouses of the offspring. Participants 

were eligible for the current study if they attended the 

eighth examination cycle (2005–2008) and consented 

to have their DNA used for genetic research. All 

participants provided written informed consent at the 

time of each examination visit. The study protocol  

was approved by the Institutional Review Board at 

Boston University Medical Center (Boston, MA). FHS 

data are available in dbGaP (accession number: 

phs000724.v2.p9). 

 

FHS death ascertainment 

Deaths among FHS participants that occurred before 

January 1, 2013 were ascertained using multiple 

strategies, including routine contact with participants 

for health history updates, surveillance at the local 

https://www.qiagen.com/
https://www.zymoresearch.com/
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hospital, obituaries in the local newspaper, and queries 

to the National Death Index. Death certificates, hospital 

and nursing home records before death, and autopsy 

reports were requested. When cause of death was 

undeterminable, the next of kin were interviewed. The 

date and cause of death were reviewed by an endpoint 

panel of three investigators. 

 

FHS DNA methylation quantification 

Peripheral blood samples were collected at the 8th 

examination. Genomic DNA was extracted from buffy 

coats using the Gentra Puregene DNA extraction kit 

(Qiagen) and bisulfite converted using the EZ DNA 

Methylation kit (Zymo Research). DNA methylation 

quantification was conducted in two laboratory batches 

using the Illumina Infinium HumanMethylation450 

array. Methylation beta values were generated using the 

Bioconductor minfi package with background 

correction. Sample exclusion criteria included poor SNP 

matching of control positions, missing rate >1%, 

outliers from multi-dimensional scaling, and sex 

mismatch. In addition, we excluded individuals with 

leukemia and those who received chemotherapy. 

Additional sample exclusions included those with 

mismatches in their reported sex and methylation-

predicted sex as well as methylation-predicted  

tissues that were not blood. Lastly, samples with 

correlation with our reference population of r < 0.80 

were excluded. Predicted sex, tissues, correlation  

with reference population, and DNA methylation-

predicted ages were computed using our online age 

calculator (http://labs.genetics.ucla.edu/horvath/dnamage). 

Background subtraction was applied using the 

preprocessIllumina command in the minfi Bioconductor 

package [4]. In total, 2,635 samples and 443,304 CpG 

probes remained for analysis. 

 

Invecchiare in chianti (InCHIANTI) study 

 

InChianti study participants 

The InCHIANTI Study is a population-based 

prospective cohort study of residents ≥20 years old from 

two areas in the Chianti region of Tuscany, Italy. 

Sampling and data collection procedures have been 

described elsewhere [5]. Briefly, 1,326 participants 

donated a blood sample at baseline (1998–2000), of 

which 784 also donated a blood sample at 9-year 

follow-up (2007–2009). DNA methylation was assayed 

using the Illumina Infinium HumanMethylation450 

platform in DNA samples corresponding to participants 

with sufficient DNA at both baseline and Year  

9 visits (n = 499). All participants provided written 

informed consent to participate in this study. The  

study complied with the Declaration of Helsinki.  

The Italian National Institute of Research and Care on 

Aging Institutional Review Board approved the study 

protocol. 

InChianti death ascertainment 
Vital status was ascertained using data from the 

Tuscany Regional Mortality General Registry. Deaths 

were assessed until December 1, 2014. 

 

InChianti DNA methylation quantification 
Genomic DNA was extracted from buffy coat samples 

using an AutoGen Flex and quantified on a 

Nanodrop1000 spectrophotometer before bisulfite 

conversion. Genomic DNA was bisulfite converted using 

the Zymo EZ-96 DNA Methylation Kit (Zymo Research) 

per the manufacturer’s protocol. CpG methylation status 

of 485, 577 CpG sites was determined using the Illumina 

Infinium HumanMethylation450 BeadChip per the 

manufacturer’s protocol, as previously described [6]. 

Initial data analysis was performed using GenomeStudio 

2011.1 (Model M Version 1.9.0, Illumina Inc.). 

Threshold call rate for inclusion of samples was 95%. 

Quality control of sample handling included comparison 

of clinically reported sex versus sex of the same samples 

determined by analysis of methylation levels of CpG sites 

on the X chromosome [6]. Background subtraction was 

applied using the preprocessIllumina command in the 

minfi Bioconductor package [4]. 

 

Cooperative health research in the region of 

augsburg (KORA) F4 cohort  
 

KORA cohort description 

The KORA study is an independent population-based 

cohort from Augsburg, Southern Germany. Whole 

blood samples of the KORA F4 survey (examination 

2006–2008), a seven-year follow-up study of the 

KORA S4 cohort, were used. Out of 4,621 participants 

for the KORA S4 baseline study, 3,080 participants 

participated in the KORA F4 follow-up study [7]. 

Participants provided written informed consent, and 

the study was approved by the local ethics committee 

(Bayerische Landesärztekammer). For 1,799 subjects, 

methylation data as well as information about  

death ascertainment was available. Before analyses,  

all individuals with a detection P-value > 0.05 for >1% 

of probes were removed (375 individuals). Sex  

checks performed during calculation of DNAmAge 

resulted in the removal of another 167 individuals, 137 

of whom had an “unsure” gender. This left 1,257 

individuals for analysis. At the KORA F4 follow-up 

examination, all individuals completed questionnaires 

and physical examinations conducted by trained  

staff covering demographics, lifestyle, and medical 

history since the KORA S4 examination. Collected 

information included age, sex, years of education, 

smoking status (current regular, current irregular, 

former, never), pack-years, alcohol consumption 

http://labs.genetics.ucla.edu/horvath/dnamage
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(g/day), physical activity (active, inactive), diabetes 

status, hypertension status, self-reported cancer 

diagnosis, and body mass index (BMI), among other 

clinical variables [7]. 

 
KORA mortality ascertainment 

The vital status of all F4 participants was ascertained 

through the population registries inside and outside  

the study area in 2011 (cut-off date: December 31, 

2011). Record linkage was based on name, sex, date of 

birth, and address. If the person died, the time and 

location of death was assessed via population 

registries, and a copy of the death certificate was 

obtained from the Regional Health Department. If the 

person moved out of the study area, time of the move 

and information on the new address was typically 

available. Vital status could not be assessed for those 

who had moved to a foreign country or to an unknown 

location in the country. Causes of death were ICD-9 

revision coded. There were a total of 42 deaths, 

including 16 from cardiovascular disease and 17 from 

cancer. 

 

KORA DNA methylation measures 

Whole blood was drawn into serum gel tubes. We 

bisulfite-converted 1 µg of genomic DNA using the EZ-

96 DNA Methylation Kit (Zymo Research) according to 

the manufacturer’s procedure, with the alternative 

incubation conditions recommended when using the 

Illumina Infinium Methylation Assay. Genome-wide 

DNA methylation was analyzed in 1,799 subjects using 

the Illumina Infinium HumanMethylation450 BeadChip 

Array. Raw methylation data were extracted using the 

Illumina Genome Studio (version 2011.1) with the 

methylation module (version 1.9.0). Preprocessing was 

performed with R (version 3.0.1). Probes with signals 

from less than three functional beads and probes with a 

detection P-value > 0.01 were defined as low-

confidence probes. Probes that covered SNPs (MAF in 

Europeans > 5%) were excluded from the data set. A 

color bias adjustment was performed with the R 

package lumi (version 2.12.0) by smooth quantile 

normalization and background correction based on 

negative control probes present on the Infinium 

HumanMethylation BeadChip. This was performed 

separately for the two-color channels and chips. β-

values corresponding to low-confidence probes were set 

to missing. A 95% call rate threshold was applied on 

samples and CpG sites. Beta-mixture quantile 

normalization (BMIQ) was applied by using the R 

package wateRmelon, version 1.0.3. Plate and batch 

effects were investigated by principle component 

analysis and eigenR2 analysis, because KORA F4 

samples were processed on 20 96-well plates across 

nine different batches. 

 

Probes with a detection P > 0.05 for > 1% of samples 

were removed as well as all “ch” and “rs” probes, 

leaving a total of 431, 217 probes for analysis. Although 

raw beta values were used in Dr. Horvath’s online 

calculator to determine cell counts, normalized data was 

used for the final analyses. 

 

To reduce non-biological variability between 

observations, data were normalized using quantile 

normalization on raw signal intensities. Precisely, 

quantile normalization was stratified to six probe 

categories based on probe type and color channel (i.e., 

Infinium I signals from beads targeting methylated CpG 

sites obtained through red and green color channels, 

Infinium I signals from beads targeting unmethylated 

CpG sites obtained through red and green color 

channels, and Infinium II signals obtained through red 

and green color channels [8]) using the R package 

limma, version 3.16.5 [9]. Further, to correct the shift in 

the distribution of methylation values observed for the 

two different assay designs (Infinium I and Infinium II) 

on the BeadChip, BMIQ was applied [10] using the R 

package wateRmelon, version 1.0.3 [11]. 

 

Lothian birth cohorts of 1921 and 1936 (LBC1921 

and LBC1936) 
 

LBC cohort description 

LBC1921 and LBC1936 are two longitudinal studies of 

aging [12, 13] that derive from the Scottish Mental 

Surveys of 1932 and 1947, respectively, when nearly  

all 11-year-old children in Scotland completed a  

test of general cognitive ability [14]. Survivors living in 

the Lothian area of Scotland were recruited in late-life 

at a mean age of 79 years for LBC1921 (n = 550)  

and mean age of 70 years for LBC1936 (n = 1,091). 

Follow-up took place at ages 70, 73, and 76 years in 

LBC1936 and ages 79, 83, 87, and 90 years in 

LBC1921. Collected data include genetic information, 

longitudinal epigenetic information, longitudinal brain 

imaging (LBC1936), numerous blood biomarkers, and 

anthropomorphic and lifestyle measures. Post-QC, 

DNA methylation data were available for 920 LBC1936 

participants at age 70 years and for 446 LBC1921 

participants at age 79 years. At each in-person visit, 

participants completed questionnaires regarding 

demography, lifestyle, and medical history. They 

reported chronological age, years of education, smoking 

status (never, former, current), pack-years consumption 

(continuous), alcohol consumption (light, moderate, and 

heavy drinkers), self-reported type 2 diabetes, cancer, 

and hypertension. BMI was computed from 

anthropometric measures. Participants were asked to 

remove their shoes before a SECA stadiometer was 

used to assess height in centimeters. Weight (after 

removing shoes and outer clothing) was measured in 
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kilograms using a digital readout from electronic SECA 

scales. 

LBC mortality ascertainment 
For both LBC1921 and LBC1936, mortality status was 

obtained via data linkage from the National Health 

Service Central Register, provided by the General 

Register Office for Scotland (now National Records of 

Scotland). Participant deaths and cause of death are 

routinely flagged to the research team about every 12 

weeks. The last update available for the current project 

was 26th November 2014. 

 

LBC DNA methylation measures 
Detailed information about collection and QC steps on 

LBC methylation data have been reported previously 

[12, 15]. Briefly, the Illumina Infinium 

HumanMethylation450 BeadChip was used to measure 

DNA methylation in whole blood of consenting 

participants. Background correction was performed, and 

QC was used to remove probes with a low detection 

rate, low quality (manual inspection), and low call rate 

as well as samples with a poor match between 

genotypes and SNP control probes or incorrect 

predicted sex. Additional QC was performed to remove 

samples and probes in which >1% of probes or samples, 

respectively, had a detection P > 0.05. The working set 

included 442, 227 CpG probes.  

 

Normative aging study (NAS) 
 

NAS cohort description 

The ongoing longitudinal US Department of Veterans 

Affairs NAS was established in 1963 and included men 

21–80 years old and free of known chronic medical 

conditions at entry [16]. Participants were invited to 

medical examinations every three to five years. At each 

visit, men provided information on medical history, 

lifestyle, and demographic factors and underwent 

physical examinations and laboratory tests. DNA 

samples were collected from 675 active participants 

between 1999–2007 [16]. We excluded participants 

who were non-white or who reported leukemia at the 

time of DNA extraction, leaving a total of 646 

individuals with a single observation each. Participants 

provided written informed consent at each visit. The 

NAS study was approved by the institutional review 

boards of participating institutions. At each in-person 

visit, participants completed questionnaires regarding 

demography, lifestyle, and medical history. They 

reported chronological age, years of education, smoking 

status (never, former, current), pack-years consumption 

(continuous), alcohol consumption (<2, ≥2 drinks/day), 

physical activity (<12, 12–30, ≥30 metabolic equivalent 

hours [MET-h] per week), type 2 diabetes (self-reported 

diagnosis and/or use of diabetes medications), diagnosis 

of CHD (validated on medical records, ECG, and 

physician exams), diagnosis of malignant cancer in the 

five years prior the visit (diagnosed with ICD-9 code). 

High blood pressure was defined as antihypertensive 

medication use, systolic blood pressure ≥140 mmHg, or 

diastolic blood pressure ≥90 mmHg at study visit. BMI 

was computed from anthropometric measures, 

performed with participants in undershorts and  

socks [17]. 

 

NAS mortality ascertainment 
Official death certificates were obtained for decedents 

from the appropriate state health departments and were 

reviewed by a physician. An experienced research nurse 

coded the cause of death using ICD-9. Both participant 

deaths and causes of death were routinely updated by 

the research team, and the last update available was 

December 31, 2013 [12]. 

 

NAS DNA methylation measures 
DNA was extracted from buffy coats using the QIAamp 

DNA Blood Kit (Qiagen). We used 500 ng of DNA for 

bisulfite conversion using the EZ-96 DNA Methylation 

Kit (Zymo Research). To reduce chip and plate effects, 

we used a two-stage age-stratified algorithm to 

randomize samples and ensure similar age distributions 

across chips and plates; 12 samples that were sampled 

across all age quartiles were randomized to each chip, 

and then chips were randomized to plates (8 

chips/plate).  

 

QC analysis was performed to remove samples and 

probes, where >1% of probes or samples, respectively, 

had a detection P > 0.05. Remaining samples were 

preprocessed using the Illumina-type background 

correction [18] and normalized with dye-bias [19] and 

BMIQ [20] adjustments, which were used to generate 

beta methylation values. The working set included 477, 

928 CpG probes. DNA methylation age was computed 

using the Horvath calculator from background-corrected 

methylation data, and QC analysis was performed only 

on samples, leaving 485, 512 CpG and CpH probes in 

the working set. 

 

TwinsUK 

 
TwinsUK study participants 
The TwinsUK cohort was established in 1992 and 

recruited both monozygotic and dizygotic same-sex 

twins in the United Kingdom. The majority of 

participants are female, Caucasian, and mostly disease-

free at time of ascertainment. There are >13, 000 twin 

participants in the cohort, of which 805 were included 

in the current study. Whole blood samples were 

collected during participants’ clinical visits, along with 

questionnaire data on phenotype and lifestyle factors. 

All subjects provided written informed consent [21]. 
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Information on physical activity, smoking pack-years, 

plate number, and chip position number were not 

available for subjects in the TwinsUK dataset and 

therefore were not adjusted as covariates in all analyses. 

 

TwinsUK death ascertainment 

Mortality data were collected using two approaches: 1) 

during routine contact for standard clinical visits in 

TwinsUK, and 2) using queries to the National Death 

Register. Date and cause of death were recorded. 

 

TwinsUK DNA methylation quantification 

DNA samples were extracted from whole blood using 

the DNeasy kit (Qiagen). DNA was bisulfite converted 

using the EZ DNA methylation kit (Zymo Research). 

Methylation levels were profiled using the Illumina 

Infinium HumanMethylation450 array, and methylation 

betas were generated using the R package minfi with 

background correction. Raw beta levels were subjected 

to BMIQ dilation to correct for technical effects. Probe 

exclusion criteria included probes that mapped to 

multiple locations in the reference sequence and probes 

in which >1% of subjects had detection P > 0.05. 

Individuals with >5% missing probes, with mismatched 

sex, and with mismatched genotypes were also excluded. 

Methylation-predicted sex, methylation-predicted  

blood cell types, correlations with the reference 

population, and DNA methylation-predicted age were 

computed using the online epigenetic age calculator 

(http://labs.genetics.ucla.edu/horvath/dnamage). 

 

Women’s health initiative–broad agency 

announcement 23 (WHI-BAA23)  
 

WHI-BAA23 cohort description 

Subjects included a subsample of participants of the 

WHI study, a national study that began in 1993 and 

enrolled postmenopausal women 50–79 years of age 

into one of three randomized clinical trials. Women 

were selected from one of two WHI large sub-cohorts 

that had previously undergone genome-wide genotyping 

as well as profiling for 7 cardiovascular disease-related 

biomarkers, including total cholesterol, high-density 

lipoprotein, low-density lipoprotein, triglycerides, C-

reactive protein (CRP), creatinine, insulin, and glucose 

through two core WHI ancillary studies [22]. The first 

cohort is the WHI SNP Health Association Resource 

(SHARe) cohort of minorities that includes >8,000 

African American (AA) women and >3,500 Hispanic 

women. Women were genotyped through the WHI  

core study M5-SHARe (www.whi.org/researchers/data/ 

WHIStudies/StudySites/M5) and underwent biomarker 

profiling through WHI Core study W54-SHARe 

(...data/WHIStudies/StudySites/W54). The second cohort 

consists of a combination of European Americans  

(EA) from two hormonal therapy trials selected  

for GWAS and biomarkers in core studies W58 (.../ 

data /WHIStudies/StudySites/W58) and W63 (.../data/ 

WHIStudies/StudySites/W63). From these two cohorts, 

two sample sets were formed. Sample Set 1 is a sample 

set of 637 CHD cases and 631 non-CHD cases as of Sept 

30, 2010. Sample Set 2 is a non-overlapping sample of 

432 cases of CHD and 472 non-CHD cases as of 

September 17, 2012. The ethnic groups differed in terms 

of age distribution, as Caucasian women tended to be 

older. We acknowledge a potential for selection bias 

using the above-described sampling scheme in WHI but 

suspect that if such bias is present, it is minimal. First, 

selection bias is introduced by restricting our methylation 

profiling at baseline to women with GWAS and 

biomarker data from baseline as well, given the 

requirement that these subjects must have signed the 

WHI supplemental consent for broad sharing of genetic 

data in 2005. However, we believe that selection bias at 

this stage is minimized by inclusion of subjects who died 

between time of start of the WHI study and time of 

supplemental consent in 2005, which excluded only 

~6%–8% of all WHI participants. Subjects unable or 

unwilling to sign consent in 2005 may not represent a 

random subset of all participants who survived to 2005. 

Second, some selection bias may also occur if similar 

gross differences exist in the characteristics of 

participants who consented to be followed in the two 

WHI extension studies beginning in 2005 and 2010 

compared to non-participants at each stage. We believe 

these selection biases, if present, have minimal effects on 

our effect estimates. Data are available from this page: 

https://www.whi.org/researchers/Stories/June%202015

%20WHI%20Investigators’%20Datasets%20Released.

aspx, as well as https://www.whi.org/researchers/data/ 

Documents/WHI%20Data%20Preparation%20and%20

Use.pdf 

 

WHI-BAA23 death ascertainment 

We used the variable "DEATHALL" from form 

124/120 that incorporated any report of death (as of 

August 2015).  

 

WHI-BAA23 DNA methylation quantification 
In brief, bisulfite conversion using the Zymo EZ DNA 

Methylation Kit (Zymo Research) as well as subsequent 

hybridization of the Illumina HumanMethylation450k 

Bead Chip and scanning (iScan, Illumina) were 

performed according to the manufacturer’s protocols by 

applying standard settings. DNA methylation levels  

(β values) were determined by calculating the ratio of 

intensities between methylated (signal A) and un-

methylated (signal B) sites. Specifically, β value was 

calculated from the intensity of methylated (M 

corresponding to signal A) and un-methylated  

(U corresponding to signal B) sites, as the ratio of 

fluorescent signals β = Max(M,0)/[Max(M,0)+Max 

http://labs.genetics.ucla.edu/horvath/dnamage
https://www.whi.org/researchers/Stories/June%202015%20WHI%20Investigators'%20Datasets%20Released.aspx
https://www.whi.org/researchers/Stories/June%202015%20WHI%20Investigators'%20Datasets%20Released.aspx
https://www.whi.org/researchers/Stories/June%202015%20WHI%20Investigators'%20Datasets%20Released.aspx
https://www.whi.org/researchers/data/Documents/WHI%20Data%20Preparation%20and%20Use.pdf
https://www.whi.org/researchers/data/Documents/WHI%20Data%20Preparation%20and%20Use.pdf
https://www.whi.org/researchers/data/Documents/WHI%20Data%20Preparation%20and%20Use.pdf
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(U,0)+100]. Thus, β values range from 0 (completely 

un-methylated) to 1 (completely methylated). 

Women’s health initiative—epigenetic mechanisms 

of PM-Mediated CVD risk (WHI-EMPC) 
 

WHI-EMPC cohort description 

WHI-EMPC is an ancillary study of epigenetic 

mechanisms underlying associations between ambient 

particulate matter (PM) air pollution and cardiovascular 

disease in the WHI clinical trials (CT) cohort. It is 

funded by the National Institute of Environmental 

Health Sciences (R01-ES020836).  

 

The WHI-EMPC study population is a stratified, random 

sample of 2,200 WHI CT participants who were 

examined in 1993–2001; had available buffy coats, core 

analytes, electrocardiograms, and ambient concentrations 

of PM; and were not taking anti-arrhythmic medications 

at the time. 

 

As such, WHI-EMPC is representative of the larger, 

multiethnic WHI CT population from which it was 

sampled: 68 ,132 participants aged 50–79 years who 

were randomized to hormone therapy, calcium/vitamin 

D supplementation, and/or dietary modification in 40 

U.S. clinical centers at baseline exam (1993–1998) and 

re-examined in the fasting state one, three, six, and nine 

years later [23, 24]. During participant visits, data on 

age, race/ethnicity, education, smoking status (current, 

former, never), pack-years of smoking, alcohol 

consumption (drinks per week), recreational physical 

activity (MET-hours/week), weight/height/BMI, 

systolic and diastolic blood pressure, medication use, 

CHD, type 2 diabetes, and cancer diagnosis were 

obtained.  

 

Hypertension status was based on systolic blood 

pressure ≥140 mmHg or diastolic blood pressure 

≥90 mmHg or antihypertensive medication use 

(angiotensin converting enzyme inhibitors, angiotensin 

II receptor antagonists, beta blockers, calcium  

channel blockers, thiazides). CHD was defined by a 

history of myocardial infarction (acute, hospitalized, 

definite or probable events supported by cardiac  

pain, electrocardiogram, and biomarker data) or 

revascularization procedure (coronary artery bypass 

graft, percutaneous coronary angioplasty, stent) and 

was self-reported at baseline and confirmed by 

physician-review, classification, and local/central 

adjudication of medical records during follow-up. 

Type 2 diabetes was defined by a self-reported  

history of physician-treated diabetes, fasting glucose 

≥126 mg/dL, non-fasting glucose ≥200 mg/dL,  

or anti-diabetic medication use. Cancer was defined by 

a diagnosis of any cancer, excluding leukemia  

and other hematologic malignancies (Hodgkin’s 

lymphoma, non-Hodgkin’s lymphoma, multiple 

myeloma).  

Current analyses involve information collected at the 

first available visit with available DNA methylation 

data and stratification by race/ethnicity [European 

(WHI-EMPC-EA) and African American (WHI-EMPC-

AA) ancestries]. 

 

WHI-EMPC mortality ascertainment 

All-cause mortality and sub-classification of the 

underlying cause of death to cardiovascular or cancer 

mortality were based on WHI physician review of death 

certificates, medical records, and autopsy reports. 

Cardiovascular disease mortality was defined as death 

due to definite or possible CHD, cerebrovascular 

disease, or other or unknown cardiovascular disease. 

Cancer mortality was defined as death due to any 

cancer. Participants affected by leukemia or other 

hematologic malignancies (i.e., Hodgkin’s lymphoma, 

non-Hodgkin’s lymphoma, multiple myeloma) were 

excluded due to known effects on red cell, white cell, 

and platelet counts.  

 

WHI-EMPC DNA methylation quantification 
Genome-wide DNA methylation at CpG sites was 

measured using the Illumina 450K Infinium 

Methylation BeadChip, quantitatively represented by 

beta (percentage of methylated cytosines over the sum 

of methylated and unmethylated cytosines) and quality-

controlled using the following filters: detection P > 0.01 

in >10% of samples, detection P > 0.01 or missing in 

>1% of probes, and probes with a coefficient of 

variation <5%, yielding values of beta at 293,171 sites. 

DNA methylation data were normalized using BMIQ 

[25] and stage-adjusted using ComBat [10]. Modeled 

epigenome-wide associations also adjusted for cell 

subtype proportions (CD8-T, CD4-T, B cell, natural 

killer, monocyte, and granulocyte) [26] and for technical 

covariates, including plate, chip, row, and column.  
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Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Sensitivity analysis comparing hazard ratios of the fully-adjusted meta-analysis, including all 
cohorts, all excluding ARIC, or all excluding WHI-BAA23. 
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Supplementary Figure 2. (A) All-cause mortality association of 57 out of 58 CpGs identified with mortality in Zhang et al. (black dots) and 
all-cause mortality association of the same CpGs in the pooled meta-analysis (white dots with 95% confidence intervals). (B) Association of 
methylation levels of 57 out of 58 CpGs identified with mortality in Zhang et al. and our FDR-significant CpGs in all cohorts. 
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Supplementary Figure 3. (A) Methylation quantitative trait loci (meQTL) analysis and (B) expression quantitative quantitative trait 
methylation (eQTM) analysis in KORA. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 6, 10, 12, 17. 

 

Supplementary Table 1. Covariates included in the analysis of each cohort (*variables that differ across cohorts due 
to type of cutoff used in data collection) SD = standard deviation; CHD = coronary heart disease. 

Supplementary Table 2. CpG loci where blood DNA methylation was associated (FDR<0.05) with all-cause mortality 
in fixed-effect meta-analysis from the basic model (i.e., age, gender, technical covariates, and white cell subtypes ). 

Supplementary Table 3. CpG loci where blood DNA methylation was associated (FDR<0.05) with all-cause mortality 
in the fixed-effect meta-analysis from the fully adjusted model. 

Probe name CHR 

Distance 

to nearest 

gene (bp) 

Nearest 

gene  

(10 Mp)a 

Gene 

group 

Relation 

to CpG 

Island 

HRb 95% CI p 

Mean 

methylation 

level 

Bonferroni 

significance 

FDR-

significant 

in basic 

model 

Methylation 

level 

(Mean±SD) 

cg17086398 1 0 SERINC2 Body 
 

1.25 (1.15;1.36) 4.86E-07 0.29   1 0.29 ± 0.06 

cg14866069 4 579 BMPR1B 
  

0.66 (0.56;0.78) 4.85E-07 0.85   
 

0.85 ± 0.05 

cg23666362 4 516 MIR1973 TSS1500 
 

0.69 (0.59;0.8) 8.00E-07 0.82   
 

0.81 ± 0.04 

cg12619262 7 6276 CHST12 
  

1.26 (1.16;1.37) 1.76E-07 0.75   
 

0.75 ± 0.07 

cg20045320 11 116 IFITM3 
 

S_Shore 0.85 (0.8;0.9) 4.06E-09 0.54 1 1 0.54 ± 0.09 

cg07677157 12 
 

NAa 
  

0.79 (0.72;0.86) 2.00E-07 0.16   1 0.18 ± 0.06 

cg07839457 16 435 NLRC5 TSS1500 N_Shore 0.87 (0.84;0.91) 2.40E-09 0.46 1 1 0.45 ± 0.11 

cg09615688 16 
 

NAa 
  

0.53 (0.41;0.68) 9.32E-07 0.91   1 0.90 ± 0.03 

cg18424841 20   NAa   Island 1.2 (1.13;1.28) 2.80E-08 0.7 1   0.69 ± 0.09 

aNearest gene was far more than 10 Mp. 
bEffect estimates represent hazard ratio per 10% increase in DNA methylation. CHR = chromosome; HR = hazard ratio; 95% CI 
= 95% confidence interval; p = p-value; SD = standard deviation. 
 

Supplementary Table 4. Hazard ratios for FDR-significant fully-adjusted CpGs in basic and fully adjusted models CHR 
= chromosome; HR = hazard ratio; 95% CI = 95% confidence interval; p = p-value; SD = standard deviation. 

Probe name CHR 
Fully adjusted model Basic model 

HR 95% CI p HR 95% CI p 

cg17086398 1 1.25 (1.15; 1.36) 4.86E-07 1.37 (1.28; 1.47) 5.32E-20 

cg14866069 4 0.66 (0.56; 0.78) 4.85E-07 0.84 (0.75; 0.94) 2.21E-03 

cg23666362 4 0.69 (0.59; 0.8) 8.04E-07 0.81 (0.72; 0.9) 2.02E-04 

cg12619262 7 1.26 (1.15; 1.38) 1.76E-07 1.13 (1.05; 1.21) 6.77E-04 

cg20045320 11 0.85 (0.80; 0.90) 4.06E-09 0.82 (0.78; 0.86) 2.61E-16 

cg07677157 12 0.79 (0.72; 0.86) 2.00E-07 0.78 (0.72; 0.84) 1.31E-10 

cg07839457 16 0.87 (0.84; 0.91) 2.40E-09 0.88 (0.85; 0.92) 3.40E-11 

cg09615688 16 0.53 (0.41; 0.68) 9.32E-07 0.60 (0.51; 0.72) 8.96E-09 

cg18424841 20 1.20 (1.13; 1.28) 2.80E-08 1.10 (1.05; 1.15) 2.00E-04 
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Supplementary Table 5. Summary of models. 

Cohorts Model used 

Maximum # 

probes 

considered 

Basic model Fully adjusted model 

Lambda 

FDR-

significant 

CpGs 

Lambda 

FDR-

significant 

CpGs 

ARIC Cox Regression 406712 2.46 226 1.63 5 

FHS Study 1 Cox Regressionb 417934 0.94 3 1.04 0 

FHS Study 2 Cox Regressionb 407580 1.32 17 1.16 1 

InChianti Cox Regression 407179 1.41 0 1.44 0 

KORA Cox Regressiona 330133 0.96 4 0.94 0 

LBC 1921 Cox Regression 393529 1.15 0 1.22 0 

LBC 1936 Cox Regression 385450 1.04 0 1 0 

NAS Cox Regression 395005 0.86 0 0.9 0 

TwinsUK Cox Regression a,c 426,120 1.02 0 0.98 0 

WHI-BAA23 Cox Regression 419176 1.7 14 2.02 1 

WHI-EMPC-EA Cox Regressiond 250537 1.23 9 0.93 0 

WHI-EMPC-AA Cox Regressiond 218018 0.92 0 1.09 0 

All cohorts Fixed effect meta-analysise 426724 1.12 257 0.94 9 

aCohort used as predictor of residuals from linear regression analysis between each probe and sets of covariates. 
bCohort included cluster for family structure. 
cCohort included random intercepts for zygosity and family structure. 
dCohort considered only CpGs with coefficient of variation >5%. 
eAnalysis of each CpG site included results of at least three cohorts. 
Basic model: adjusted for age (categories), gender, technical variables, white blood cell count.  
Fully adjusted model: adjusted for age (categories), gender, technical variables, white blood cell count, education level, 
physical activity, smoking status, smoking consumption (packyears), body mass index (categories), alcohol consumption, prior 
coronary heart disease (y/n), diabetes (y/n), hypertension (y/n), cancer (y/n). 
 

Supplementary Table 6. I2 measure of heterogeneity from random-effect meta-analysis in each FDR-significant basic-
adjusted CpG. 

 

Supplementary Table 7. I2 measure of heterogeneity from random-effect meta-analysis in each FDR-significant fully-
adjusted CpG. 

Probe name CHR 
Distance to nearest 

gene (bp) 

Nearest gene 
Gene group 

Relation to 

CpG island 
I2 

 (10 Mp)a  

cg17086398 1 0 SERINC2 Body 
 

0.02 

cg14866069 4 579 BMPR1B 
  

0 

cg23666362 4 516 MIR1973 TSS1500 
 

0.01 

cg12619262 7 6276 CHST12 
  

0.01 

cg20045320 11 116 IFITM3 
 

S_Shore 53.53 

cg07677157 12 
 

NAa 
  

0 

cg07839457 16 435 NLRC5 TSS1500 N_Shore 0 

cg09615688 16 
 

NAa 
  

29.9 

cg18424841 20   NAa   Island 2.65 

aNearest gene was far more than 10 Mp. 
bEffect estimates represent hazard ratio per 10% increase in DNA methylation. 
CHR = chromosome; HR = hazard ratio; 95% CI = 95% confidence interval; p = p-value; SD = standard deviation. 
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Supplementary Table 8. FDR-significant fully-adjusted CpGs in fixed effect meta-analysis with exclusion of ARIC. 

Probe name CHR 

Distance to 

nearest gene 

(bp) 

Nearest gene  

(10 Mp)a 
Gene group 

Relation to 

CpG island 
HR 95% CI p 

Mean DNA 

methylation 

level 

cg17086398 1 0 SERINC2 Body 
 

1.25 (1.11; 1.41) 3.80E-04 0.29 

cg14866069 4 579 BMPR1B 
  

0.65 (0.52; 0.8) 6.86E-05 0.84 

cg23666362 4 516 MIR1973 TSS1500 
 

0.74 (0.62; 0.89) 1.35E-03 0.8 

cg12619262 7 6276 CHST12 
  

1.27 (1.12; 1.45) 3.31E-04 0.74 

cg20045320 11 116 IFITM3 
 

S_Shore 0.88 (0.82; 0.95) 8.76E-04 0.54 

cg07677157 12 
 

NAa 
  

0.76 (0.66; 0.87) 4.78E-05 0.19 

cg07839457 16 435 NLRC5 TSS1500 N_Shore 0.86 (0.81; 0.92) 3.70E-06 0.45 

cg09615688 16 
 

NAa 
  

0.53 (0.41; 0.68) 9.32E-07 0.89 

cg18424841 20   NAa   Island 1.17 (1.08; 1.27) 1.90E-04 0.68 

aNearest gene was far more than 10 Mp. 
bEffect estimates represent hazard ratio per 10% increase in DNA methylation. 
CHR = chromosome; HR = hazard ratio; 95% CI = 95% confidence interval; p = p-value; SD = standard deviation. 
 

Supplementary Table 9. FDR-significant fully-adjusted CpGs in fixed effect meta-analysis with exclusion of WHI-
Study 1. 

Probe name CHR 

Distance to 

nearest 

gene (bp) 

Nearest gene 

(10 Mp)a 
Gene group 

Relation to 

CpG island 
HR 95% CI p 

Mean DNA 

methylation 

level 

cg17086398 1 0 SERINC2 Body  1.26 (1.15; 1.38) 4.30E-07 0.29 

cg14866069 4 579 BMPR1B   0.67 (0.56; 0.79) 2.23E-06 0.85 

cg23666362 4 516 MIR1973 TSS1500  0.68 (0.58; 0.79) 1.16E-06 0.81 

cg12619262 7 6276 CHST12   1.23 (1.13; 1.35) 5.93E-06 0.74 

cg20045320 11 116 IFITM3  S_Shore 0.86 (0.81; 0.91) 2.94E-07 0.54 

cg07677157 12  NAa   0.79 (0.72; 0.87) 2.57E-06 0.17 

cg07839457 16 435 NLRC5 TSS1500 N_Shore 0.87 (0.84; 0.92) 1.30E-08 0.45 

cg09615688 16  NAa   0.53 (0.4; 0.69) 2.57E-06 0.9 

cg18424841 20  NAa  Island 1.21 (1.13; 1.3) 1.53E-08 0.69 

aNearest gene was far more than 10 Mp. 
bEffect estimates represent hazard ratio per 10% increase in DNA methylation. 
CHR = chromosome; HR = hazard ratio; 95% CI = 95% confidence interval; p = p-value; SD = standard deviation. 
 

Supplementary Table 10. Fixed effects meta-analysis results on incident coronary heart disease from the CHARGE 
Consortium. 
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Supplementary Table 11. Miettinen’s population attributable factor for NAS, WHI-EMPC-EA, and WHI-EMPC-AA as 
well as weighted combination (average). 

CpG NAS WHI-EMPC-EA WHI-EMPC-AA Mean SD 

cg17086398 6.47 5.55 3.57 5.20 1.21 

cg14866069 -17.20 -6.77 -20.09 -14.69 5.72 

cg23666362 -15.19 . . -15.19 0.00 

cg12619262 7.33 -1.18 4.27 3.48 3.52 

cg20045320 -5.34 -0.67 -1.42 -2.48 2.05 

cg07677157 -7.29 -9.43 -27.86 -14.86 9.23 

cg07839457 -4.08 -3.07 -3.43 -3.53 0.42 

cg09615688 . 1.43 . 1.43 0.00 

cg18424841 5.97 3.51 4.91 4.80 1.01 

 

Supplementary Table 12. Standardized betas identifying the linear relationship between FDR-significant fully-
adjusted CpGs and conventional risk factors. 

 

Supplementary Table 13. Standardized betas identifying the linear relationship between FDR-significant fully-
adjusted CpGs and epigenetic aging clock in NAS, after adjusting all conventional risk factors. 

Epigenetic age 
cg17086398 cg14866069 cg23666362 cg12619262 cg20045320 cg07677157 cg07839457 cg18424841 

Est (p) Est (p) Est (p) Est (p) Est (p) Est (p) Est (p) Est (p) 

Horvath epigenetic aging clock (years) -0.09(0.1) 0.03(0.51) 0.01(0.78) 0.23(0) -0.27(0) -0.13(0.02) -0.19(0) 0.11(0.03) 

Hannum epigenetic aging clock (years) -0.07(0.24) -0.17(0) -0.14(0.01) 0.36(0) -0.08(0.23) -0.06(0.34) -0.28(0) 0.18(0) 

Weidener epigenetic aging clock (years) 0.02(0.69) -0.03(0.39) -0.01(0.72) 0.08(0.1) -0.07(0.11) -0.04(0.46) -0.04(0.41) 0.06(0.16) 

PhenoAge (years) -0.04 (0.5) -0.11 (0.01) -0.11 (0.02) 0.02 (0.76) -0.27 (0) 0 (0.93) -0.19 (0) 0.13 (0.01) 

Mortality risk score 0.04 (0.44) -0.22 (0) -0.19 (0) 0.34 (0) -0.19 (0) -0.49 (0) -0.03 (0.57) -0.07 (0.22) 

Est = estimate; p = p-value. 
 

Supplementary Table 14. Association with all-cause mortality and DNA methylation levels at FDR-significant CpGs, 
adjusting for epigenetic acceleration ages in the Normative Aging Study (NAS). 

Association with 

mortality 

CpG alone 

CpG + DNAmAge acceleration CpG + PhenoAge acceleration 

CpG 
DNAmAge 

acceleration 
CpG 

PhenoAge 

acceleration 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

cg17086398 1.03 (0.83-1.27) 1.02 (0.82-1.27) 0.99 (0.97-1.03) 1.02 (0.82-1.26) 1.01 (0.98-1.03) 

cg14866069 0.44 (0.30-0.70) 0.44 (0.30-0.69) 0.99 (0.97-1.02) 0.44 (0.28-0.70) 1.00 (0.98-1.03) 

cg23666362 0.80 (0.52-1.23) 0.80 (0.52-1.23) 1.00 (0.97-1.03) 0.78 (0.50-1.20) 1.01 (0.99-1.03) 

cg12619262 1.08 (0.88-1.33) 1.09 (0.89-1.34) 0.99 (0.97-1.02) 1.09 (0.88-1.33) 1.01 (0.98-1.03) 

cg20045320 0.94 (0.81-1.09) 0.93 (0.81-1.08) 0.99 (0.97-1.02) 0.94 (0.82-1.09) 1.01 (0.98-1.03) 

cg07677157 0.70 (0.52-0.94) 0.70 (0.52-0.94) 0.99 (0.97-1.02) 0.70 (0.52-0.94) 1.00 (0.98-1.03) 

cg07839457 0.87 (0.78-0.97) 0.86 (0.77-0.96) 0.99 (0.97-1.02) 0.87 (0.78-0.97) 1.01 (0.98-1.03) 

cg18424841 1.09 (0.94-1.26) 1.07 (0.92-1.25) 1.00 (0.97-1.02) 1.09 (0.94-1.26) 1.01 (0.98-1.03) 
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Supplementary Table 15. Association with all-cause mortality and DNA methylation levels at FDR-significant CpGs 
adjusting for mortality risk score in the Normative Aging Study (NAS). 

Association with mortality 
CpG alone 

CpG + mortality risk score 

CpG Mortality risk score 

HR (95% CI) HR (95% CI) HR (95% CI) 

cg17086398 1.03 (0.83-1.27) 1.12 (0.89-1.41) 1.68 (1.15-2.47) 

cg14866069 0.44 (0.30-0.70) 0.45 (0.28-0.74) 1.39 (0.95-2.04) 

cg23666362 0.80 (0.52-1.23) 0.87 (0.55-1.36) 1.55 (1.06-2.27) 

cg12619262 1.08 (0.88-1.33) 1.01 (0.81 – 1.26) 1.60 (1.08-2.35) 

cg20045320 0.94 (0.81-1.09) 0.96 (0.82-1.12) 1.57 (1.08-2.28) 

cg07677157 0.70 (0.52-0.94) 0.74 (0.55-1.01) 1.46 (1.00-2.14) 

cg07839457 0.87 (0.78-0.97) 0.88 (0.79-0.99) 1.51 (1.05-2.18) 

cg18424841 1.09 (0.94-1.26) 1.07 (0.92-1.24) 1.59 (1.10-2.30) 

 

Supplementary Table 16. Enrichment analysis for genes identified in GWAS of death-related factors. 

Disease Gene Enrichment p-value Enrichment_FDR 

Alcohol dependence SERINC2 0.002 0.004 

HDL cholesterol NLRC5 0.022 0.022 

p = p-value; FDR = false discovery rate. 
 

Supplementary Table 17. KEGG pathways for FDR-significant CpGs in the basic model. 

 

Supplementary Table 18. Pathways analysis with DAVID. 

Gene  Official gene name Diseases Disease class p 

NLRC5 NLR family CARD 

domain containing 5 

Chronic renal failure, kidney failure, chronic 

coronary disease, erythrocyte count, type 2 

diabetes 

CARDIOVASCULAR, 

HEMATOLOGICAL, 

METABOLIC, RENAL 

>0.05 

BMPR1B Bone morphogenetic 

protein receptor type 

1B 

Alcoholism, attention deficit disorder with 

hyperactivity, bone mineral density, cleft lip, cleft 

palate, hypertension, increased ovulation rate, 

juvenile polyposis, obesity, premature ovarian 

failure, polycystic ovarian syndrome, primary 

ovarian insufficiency, puberty (delayed), puberty 

(precocious), thrombophilia, tobacco use disorder 

CARDIOVASCULAR, 

CHEMDEPENDENCY, 

DEVELOPMENTAL, 

METABOLIC, 

OTHER, PSYCH, 

REPRODUCTION 

>0.05 

CHST12 Carbohydrate 

sulfotransferase 12 

Malaria, placenta diseases, pregnancy 

complications, parasitic 

INFECTION >0.05 

IFITM3 Interferon induced 

transmembrane 

protein 3 

Ulcerative colitis IMMUNE >0.05 
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Supplementary Table 19. Association between fully-adjusted FDR-significant CpGs and SNPs (meQTL analysis) in 
KORA. 

Fully-adjusted FDR-significant CpGs SNP 
Est. SE p 

Name CHR Position Name CHR Position 

cg09615688 16 80982506 rs8052401 16 80983487 -0.005 0.001 3.81E-08 

cg18424841 20 61315444 rs2427380 20 61314740 0.020 0.002 2.27E-16 

cg18424841 20 61315444 rs2427381 20 61314785 0.014 0.003 2.50E-08 

cg18424841 20 61315444 rs118042746 20 61314972 -0.039 0.007 2.47E-09 

cg18424841 20 61315444 rs6010861 20 61315002 0.024 0.003 9.67E-17 

cg18424841 20 61315444 rs2427382 20 61315199 0.015 0.002 6.91E-10 

cg18424841 20 61315444 rs6062825 20 61315436 0.016 0.003 2.37E-06 

cg18424841 20 61315444 rs4809278 20 61315545 0.020 0.002 6.81E-16 

cg18424841 20 61315444 rs6122386 20 61316386 0.015 0.002 6.20E-10 

CHR = chromosome; Est = estimate; SE = standard error; p = p-value. 
 

Supplementary Table 20. Association between fully-adjusted FDR-significant CpGs and gene expression (eQTM 
analysis) in KORA. 

Probe name CHR 

Distance to 

nearest gene 

(bp) 

Nearest gene 
Influenced 

gene name 
Est SE p FDR 

cg17086398 1 0 SERINC2 MARCKSL1 -0.75 0.20 1.77E-04 5.92E-03 

cg20045320 11 116 IFITM3 IFITM3 -3.45 0.43 3.19E-15 7.48E-13 

cg20045320 11 116 IFITM3 IRF7 -0.76 0.17 8.78E-06 4.11E-04 

cg07839457 16 435 NLRC5 MT2A -1.48 0.24 7.92E-10 9.27E-08 

cg07839457 16 435 NLRC5 MT1E -0.66 0.19 5.17E-04 1.34E-02 

cg07839457 16 435 NLRC5 MT1A -1.11 0.20 1.98E-08 1.54E-06 

cg07839457 16 435 NLRC5 MT1G -0.25 0.07 6.70E-04 1.57E-02 

cg07839457 16 435 NLRC5 MT1IP -0.39 0.10 1.64E-04 5.92E-03 

cg07839457 16 435 NLRC5 NLRC5 -0.70 0.15 3.67E-06 2.15E-04 

CHR = chromosome; Est = estimate; SE = standard error; p = p-value; FDR = false discovery rate. 
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Supplementary Table 21. Causal association between coronary heart disease, kidney function (serum creatinine), 
and methylation at FDR-significant CpGs in KORA and ARIES. 

D
is

e
a
se

 

Methylation locus OR 95% LCI 95% UCI P methQTL cohort N SNPs MR method 

cg09615688 1.508 1.0199 2.2297 0.0395 KORA 1 Wald ratio 

cg18424841  1.0058 0.9994 1.0122 0.0743 ARIES 1 Wald ratio 

cg18424841 0.8506 0.7292 0.9922 0.0944 KORA 7 MR Egger 

cg18424841 1.01 0.9218 1.1068 0.8375 KORA 7 Weighted mode 

cg18424841 1.0007 0.9399 1.0656 0.9814 KORA 7 Weighted median 

cg09615688 0.8816 0.7449 1.0435 0.1429 KORA 1 Wald ratio 

cg18424841 1.0014 0.9989 1.0039 0.2771 ARIES 1 Wald ratio 

cg18424841 0.9279 0.8297 1.0377 0.4148 KORA 3 MR Egger 

cg18424841 0.9903 0.957 1.0246 0.6305 KORA 3 Weighted mode 

cg18424841 0.9939 0.9637 1.025 0.6969 KORA 3 Weighted median 

Odds ratio (OR), lower 95% confidence interval (LCI), and upper 95% confidence interval (UCI) given per 10% higher 
methylation. Associations for coronary heart disease taken from (PMC4589895) and association for serum creatinine taken 
from (PMC4735748). Associations for ARIES methQTLs extracted from MR-base (PMC5976434) using middle age estimates 
for methQTLs from ARIES cohort (PMC4818469). MR = mendelian randomization; N SNPs = number of SNPs (instruments) 
used for the MR analyses; P = p-value. 
 

Supplementary Table 22. Association of neutrophil–lymphocyte ratio (NLR) with all-cause mortality, with and 
without adjustment for cell type proportion in Normative Aging Study. 

NLR association with mortality  
Without adjusting for cell proportions Adjusting for cell proportions 

HR (95% CI) p HR (95% CI) p 

without any CpG inclusion  1.08 (1.00 – 1.17) 0.04 1.06 (0.92 – 1.21) 0.43 

cg17086398 1.08 (1.00 – 1.17) 0.045 1.06 (0.93 – 1.21) 0.41 

cg14866069 1.13 (1.05 – 1.22) 0.002 1.03 (0.90 – 1.18) 0.68 

cg23666362 1.10 (1.02 – 1.19) 0.017 1.04 (0.90 – 1.20) 0.61 

cg12619262 1.08 (1.00 – 1.17) 0.042 1.05 (0.92 – 1.21) 0.45 

cg20045320 1.08 (1.00 – 1.17) 0.042 1.05 (0.92 – 1.20) 0.46 

cg07677157 1.09 (1.01 – 1.18) 0.034 1.06 (0.93 – 1.21) 0.39 

cg07839457 1.07 (0.99 – 1.15) 0.06 1.00 (0.88 – 1.15) 0.97 

cg18424841 1.10 (1.02 – 1.19) 0.02 1.06 (0.93 – 1.21) 0.38 

 


