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INTRODUCTION 
 

Lung cancer is the leading cause of cancer-related 

mortality worldwide [1, 2]. According to a report on 

2018 global cancer statistics, lung cancer was the most 

commonly diagnosed cancer in 37 countries, making up 

to about 11.6% of total cancer cases for both sexes [2]. 

Based on histology, lung cancer can be divided into two 

types: small cell lung cancer (SCLC) and non-small cell 

lung cancer (NSCLC) which account for about 15%  

and 85% of lung cancer, respectively [3]. NSCLC  

can be further subdivided into several subtypes: 

adenocarcinoma (ADC), squamous cell carcinoma 

(SCC), adenosquamous carcinoma, undifferentiated 

carcinoma and large cell carcinoma [4]. In 2014, more 

than  25%  of  cancer  deaths  were attributed to NSCLC  

 

[5–7]. The overall 5-year survival rate after curative 

tumor resection is relatively low in lung cancer patients 

[8] because most already have locally advanced or 

metastatic disease when diagnosed [9]. Only around 

20%-30% of patients have potentially operable, early-

stage disease at presentation [9]. Currently, the clinical 

diagnosis of lung cancer relies mainly on chest X-ray, 

low dose computed tomography (CT) scans, and other 

imaging technology which, unfortunately, are 

encumbered by the harmful effects of radiation and high 

costs. Although there are invasive methods for auxiliary 

diagnoses, such as bronchoscopy and biopsy, these 

methods are painful and time-consuming. Moreover, 

overlapping symptoms between lung cancer and other 

chronic respiratory conditions such as cough, dyspnea, 

chest pain, fatigue, chest infection, hemoptysis, and 
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ABSTRACT 
 

This study was designed to identify lncRNA biomarker candidates using lung cancer data from RNA-Seq and 
microarray platforms separately. 
Lung cancer datasets were obtained from the Gene Expression Omnibus (GEO, n = 287) and The Cancer Genome 
Atlas (TCGA, n = 216) repositories, only common lncRNAs were used. Differentially expressed (DE) lncRNAs in 
tumors with respect to normal were selected from the Affymetrix and TCGA datasets. A training model 
consisting of the top 20 DE Affymetrix lncRNAs was used for validation in the TCGA and Agilent datasets. A 
second similar training model was generated using the TCGA dataset. 
First, a model using the top 20 DE lncRNAs from Affymetrix for training and validated using TCGA and Agilent, 
achieved high prediction accuracy for both training (98.5% AUC for Affymetrix) and validation (99.2% AUC for 
TCGA and 92.8% AUC for Agilent). A similar model using the top 20 DE lncRNAs from TCGA for training and 
validated using Affymetrix and Agilent, also achieved high prediction accuracy for both training (97.7% AUC for 
TCGA) and validation (96.5% AUC for Affymetrix and 80.9% AUC for Agilent). Eight lncRNAs were found to be 
overlapped from these two lists. 
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weight loss often complicate and delay diagnosis [9]. 

These reasons underscore the important need for non-

invasive, sensitive and reliable biomarkers for the early 

diagnosis of lung cancer. 

 

Advances in high-throughput technologies in recent 

years have brought a massive increase of multi-omics 

(e.g. genomics, transcriptomics, proteomics, and 

metabolomics) data [10]. Potential biomarkers for 

various cancers have been reported including 

microRNA for lung cancer prediction and development 

[5, 11], plasma small ncRNA for early-stage lung 

adenocarcinoma screening [12], lipid species and seven-

gene CpG-island methylation panel for breast cancer 

diagnosis [13, 14], snail protein for gastric cancer [15], 

genes and pathways for kidney renal clear cell 

carcinoma [16], circulatory MALAT1 as a prognostic 

biomarker for hepatocellular carcinoma [17], and 

lncRNAs as a breast cancer diagnostic biomarkers for 

breast cancer [18]. For lung cancer, a panel consisting 

of SOX2OT, ANRIL, CEA, CYFRA21-1, and SCCA 

was reported for NSCLC diagnosis, while SOX2OT and 

ANRIL were described as biomarkers for NSCLC 

prognosis [19]. Indeed, potential diagnostic and 

prognostic biomarkers for NSCLC are increasingly 

being reported such as plasma linc00152 [20], 

circulating lncRNA PCAT6 [21], AFAP1-AS1 [22], 

HOTAIR [23, 24], lncRNA 00312 and 00673 [25] for 

diagnosis, and lncRNA CASC9.5 [26] plus LINC00968 

[27] for NSCLC prognosis. In addition, PANDAR [28] 

and LncRNA RP11 713B9.1 [29] were also described 

as promising biomarkers and potential therapeutic 

targets for NSCLC. Patients with NSCLC, advanced 

nonsquamous NSCLC, and squamous cell histology 

were suggested to test for EGFR mutations, ALK 

rearrangements, and ROS1 fusions [30]. These results 

suggest that multiple biomarker testing may be 

necessary for lung cancer in the future [30, 31]. 

 

Although the central dogma of biology states that the flow 

of genetic information hardwired in the DNA occurs by 

transcription into RNA and translation into proteins, non-

coding RNAs (ncRNAs) are not translated. The many 

types of ncRNAs are broadly classified into long and 

small ncRNAs [32]. In recent years, ncRNAs have been 

studied as potential biomarkers for diagnosis, prognosis, 

and subtyping [33]. LncRNAs not only participate in a 

broad range of biological processes such as cell 

proliferation, migration, invasion, survival, differentiation, 

and apoptosis [34] but are also involved in tumorigenesis 

and metastasis in many cancer types [34–36]. Certain 

lncRNAs have been proposed as potential biomarkers 

associated with tumor initiation, progression or prognosis 

[37]. Indeed, lncRNA discovery is a very active field in 

cancer biology research [38] and here, we explored the 

possibility of lncRNAs as potential diagnostic biomarkers 

in lung cancer through a meta-analysis of publicly 

available microarray and RNA-Seq data, using integrative  

cross-platform data analyses, machine learning, and 

independent validation. 
 

The majority of papers reporting meta-analyses 

assembled differentially expressed gene (DEG) lists 

from published experimental studies and then 

articulated consistently reported DEGs; or integrated 

multiple datasets from different microarray platforms 

and then executed statistical tests to discover 

consistently expressed DEGs [39]. By contrast, our 

study was designed to test whether microarray and 

RNA-Seq generate similar results to identify lncRNA 

biomarkers and whether these two platforms could 

validate each other. Using data-mining and machine-

learning approaches, we identified 8 lncRNAs as 

potential diagnostic biomarkers. To test the efficiency 

of the biomarkers of interest, we evaluated and 

compared their sensitivity and specificity [40]. We 

also performed function analysis using The Atlas of 

ncRNA in Cancer (TANRIC) [41], the Database for 

Annotation, Visualization and Integrated Discovery 

(DAVID) [42, 43] and Tumor Alterations Relevant for 

Genomics-driven Therapy (TARGET, accessible at 

https://software.broadinstitute.org/cancer/cga/target). 

 

RESULTS 
 

Combining datasets 
 

Patient information from the downloaded datasets are 

summarized in Table 1 and Figure 1: (a) GSE18842 

(Affymetrix), (b) GSE19188 (Affymetrix), (c) 

GSE70880 (Agilent), and (d) TCGA. GSE18842 

included 14 adenocarcinoma and 32 squamous cell 

carcinoma patients, for a total of 46 lung cancer and 45 

paired normal samples. GSE19188 included 45 adeno-

carcinoma, 27 squamous cell carcinoma, and 19 large 

cell carcinoma patients, for a total of 91 lung cancer and 

65 paired normal samples. GSE70880 contained 20 lung 

cancer samples and 20 paired normal samples from 20 

lung cancer patients. The TCGA dataset contained 

samples from 58 adenocarcinoma patients (116 paired 

tumor and control) and 50 squamous cell carcinoma 

patients (100 paired tumor and control) for a total of 

216, with 108 normal and 108 paired adjacent normal. 

Principal component analysis (PCA) performed on the 

three microarray datasets (GSE18842, GSE19188, and 

GSE70880) before normalization showed distinct 

separation of the red, green and yellow components 

(Figure 2A). After per sample and per gene 

normalization, PCA revealed that while the two 

microarray datasets GSE19188 and GSE18842 from the 

Affymetrix platform could merge well, the GSE70880 

dataset from Agilent did not cluster with the Affymetrix 

https://software.broadinstitute.org/cancer/cga/target
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ones. As shown in Figure 2B, the red and green 

components merged together while the yellow one 

remained separated. 

 

Identification of most correlated lncRNAs 

 

Based on the PCA, we merged the two Affymetrix 

datasets, increasing the sample size to a total of 247. We 

used this merged microarray Affymetrix dataset for 

training to identify lncRNA biomarkers that are 

differentially expressed between lung cancer and normal 

samples, then used the Agilent and TAGA datasets for 

validation. For the alternative analysis, we used the 

RNA-seq TCGA dataset, which had a comparable 

sample size of 216, for training and validated on the 

Affymetrix and Agilent datasets. The Agilent database 

 

 
 

Figure 1. Patient information. (A) GSE19188 contains 156 samples comprising 65 normal and 91 tumors. (B) GSE18842 dataset has 91 
samples of which 45 are normal and 46 are tumors. (C) Likewise, of 40 samples from GSE70880 20 were normal and 20 were tumor. (D) Of 
216 samples from TCGA, 108 were normal and 108 were paired adjacent normal. 
 

 
 

Figure 2. Principal component analysis 3D plot. Principal component analysis of GSE18842, GSE19188 and GSE70880 datasets.  
(A) Before normalization, these 3 datasets comprising 399 samples and 963 lncRNAs separated completely. (B) After normalization these 3 
datasets comprising 287 samples and 963 lncRNAs. GSE19188 and GSE18842 datasets could merge together but GSE70880 was still separate 
from the other two. 
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was only used for validation in both analysis streams 

because of its small sample size (n=40). Results of the 

first analysis where training was done on the 

Affymetrix dataset using a two-sample t-test are listed 

in Supplementary Table 1. Correlation Attribute Eval 

feature selection was performed on a subset of 

lncRNAs with False Discovery Rate (FDR) adjusted  

P-value less than 0.05. This process revealed the most 

related 20 lncRNAs which were: AC008268.1-201, 

AC027288.3-203, AC146944.4-201, ADAMTS9-AS2-

203, AL109741.1-201, AP000866.2-201, CARD8-

AS1-201, GATA6-AS1-202, HHIP-AS1-201, HHIP-

AS1-203, HSPC324-201, LINC00261-202, LINC01 

614-201, LINC01852-201, LINC01936-201, LINC02 

555-201, MAFG-AS1-201, SBF2-AS1-201, TBX5-

AS1-201, and TMPO-AS1-202. 

 

Results of the same workflow where the TCGA dataset 

was used for training are also shown in Supplementary 

Table 1. Here, two-sample t-test and Correlation 

Attribute Eval feature selection method revealed  

the following top 20 lncRNAs: AC004947.1-201, 

AC007128.1-201, AC008268.1-201, AC023509.2-201, 

AC087521.1-201, AC107959.1-202, ADAMTS9-AS2-

201, ADAMTS9-AS2-203, AP000866.2-201, AP001 

189.1-201, DDX11-AS1-201, GATA6-AS1-202, HSPC 

324-201, LINC00163-201, LINC00656-201, LINC0 

1936-201, LINC02016-201, LINC02555-201, TBX5-

AS1-201, and VPS9D1-AS1-202. 

 

Identification of Diagnostic Signature and classifiers 

 

As stated above, we first trained on the merged 

Affymetrix dataset and validated in both Agilent and 

TCGA datasets. We used the top 20 differential 

lncRNAs (Figure 3) to build a classification model 

using the BayesNet algorithm. The training model 

showed good results – it was able to distinguish cancer 

from normal samples with a sensitivity of 0.971, 

specificity of 0.991, and AUC (ROC area) of 0.991 

(Table 2). Results of the validation performed on the 

TCGA and Agilent datasets were as expected  

(Table 2). Validation performed on the TCGA dataset 

had a sensitivity of 0.991, a specificity of 0.880 and 

AUC of 0.992; the Agilent dataset had a sensitivity of 

0.850, a specificity of 0.900, and AUC of 0.928. 

 

Similarly, when the top 20 differentiated lncRNAs 

from training done on the TCGA dataset were used to 

build a classification model using the Voted Per-

ceptron algorithm, we also achieved very good 

accuracy in separating cancer from normal samples. 

The training sensitivity was 0.991, specificity was 

0.954 and AUC was 0.995 (Table 3). Validation on the 

Affymetrix and Agilent datasets also gave the 

expected results. For the Affymetrix dataset, 

sensitivity = 0.949, specificity = 0.964 and AUC = 

0.965, while for the Agilent dataset, sensitivity = 

0.600, specificity = 0.950 and AUC = 0.809. Overall, 

these results suggest that the lncRNAs used in the 

models are significantly associated with lung cancer 

and could be used to discriminate tumors from normal 

samples. 

 

Comparing the top 20 lncRNAs from the Affymetrix  

and TCGA datasets revealed 8 overlapped lncRNAs  

(Figure 3) which were all downregulated in cancer 

(Figures 4, 5). Interestingly, except for a few lncRNAs 

 

 
 

Figure 3. Overlapped lncRNAs from two top 20 lncRNA lists. The blue circle stands for the 20 lncRNAs from TCGA as the training 
dataset, the yellow circle stands for the 20 lncRNAs from the Affymetrix dataset as the training dataset. These 2 lists of 20 lncRNAs have 8 
overlapped ones. 
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Table 1. (A) All datasets patients information. 

Dataset 
Type 

Adenocarcinoma Squamous-cell carcinoma Large cell carcinoma Total Normal 

GSE18842 14 32 0 46 45 

GSE19188 45 27 19 91 65 

GSE70880 unknown 20 20 

TCGA 58 50 0 108 108 

 

Table 1. (B) TCGA dataset patients information. 

Tumor subtype Number of patients 

LUAD 44 

LUSC 64 

Race  

Black or African American 8 

White 90 

Not reported 10 

Age  

41 - 50 8 

51 - 60 14 

61 - 70 36 

71 - 80 38 

81 - 90 12 

Gender  

Female 32 

Male 76 

Number of Samples  

Healthy 108 

Tumor 108 

 

Table 2. Result for affymetrix dataset as training. 

BayesNet 

Dataset Sensitivity Specificity AUC Accuracy Precision NPV 

Training-Affymetrix 0.971 0.991 0.990 0.980 0.993 0.965 

Validation-TCGA 0.991 0.880 0.992 0.935 0.892 0.990 

Validation-Agilent 0.850 0.900 0.928 0.875 0.895 0.857 

 

Table 3. Result for TCGA dataset as training. 

Voted perceptron 

Dataset Sensitivity Specificity AUC Accuracy PPV NPV 

Training-TCGA 0.944 0.991 0.977 0.968 0.990 0.947 

Validation-Affymetrix 0.949 0.964 0.965 0.955 0.970 0.938 

Validation-Agilent 0.600 0.950 0.809 0.775 0.923 0.704 
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Figure 4. Fold Change column bar graph. (A) Fold Change for 8 Overlapped lncRNAs T-test result for overlapped 8 lncRNAs. All of them 
were downregulated. (B) lncRNA Fold Change from Affymetrix Dataset T-test result for lncRNAs selected from Affymetrix dataset when it was 
used as the training dataset. Most of the lncRNAs downregulate, only a few upregulate. (C) lncRNA Fold Change from TCGA Dataset T-test 
result for lncRNAs selected from TCGA dataset as the training dataset. The majority of the lncRNAs downregulate. 
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(i.e., HHP-AS1-203, AC087521.1-201 and AP001189.1-

201), the top 20 lncRNAs from the Affymetrix  

(Figure 4A) or TCGA datasets (Figure 4B), exhibited 

consistent fold change directions. In fact, all 8 common 

lncRNAs were downregulated in cancer samples in the 

three datasets (Figure 4C). By hierarchical clustering, we 

found that the 8 lncRNAs could completely differentiate 

the microarray datasets (Figure 5A) and the TCGA 

dataset (Figure 5B) into normal and tumor groups. 

Therefore, we used them for further functional analysis. 

The Receiver Operating Characteristic (ROC) curves 

illustrate the diagnostic ability of the two models is 

pretty strong (Figure 6). 

 

Survival and function analyses 

 

We sought to determine if lncRNAs could predict 

patient survival (Table 4). LINC02555 has p = 0.0299 

which shows statistical significance as a prognostic 

biomarker. However, since the p equals 0.2564 for this 

cox regression model, there’s no statistical significance 

between these 8 lncRNAs’ high expression levels and 

low expression levels. In conclusion, only LINC02555 

could be a potential prognostic biomarker. The hazard 

ratio for LINC02555 is 1.026036, which means that 

around 1.026036 times as people with higher 

LINC02555 expression level are dying as people with 

lower LINC02555 expression level. From the Kaplan 

Meier plot, we can see that the two lines intersect at 

some points (Figure 7). This means the prognostic 

ability is not very good. 

 

We also performed functional analysis using the 

common 8 lncRNAs. This analysis revealed three 

significant pathways for 3 lncRNAs (Table 5): 

AC008268.1 in complement and coagulation cascades, 

 

 
 

Figure 5. Hierarchical clustering shows the regulation. (A) Heat map for 8 common lncRNAs in the Microarray dataset. (B) Heat map 
for 8 common lncRNAs in the TCGA dataset. Red means upregulation while blue means downregulation. We can see that all the 8 common 
lncRNA downregulated in tumor samples. 
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ADAMTS9-AS2 in hypertrophic cardiomyopathy 

(HCM), and TBX5-AS1 in central carbon metabolism 

in cancer. 

 

DISCUSSION 
 

Biomarkers from easily accessible tissues such as blood 

and other body fluids are useful and economical 

screening tools for various diseases. Such tools are 

especially important for diseases such as lung cancer 

where existing diagnostic methods are not able to 

identify patients at early stages when intervention can 

be more effective. Indeed, a growing number of studies 

are using high throughput next-generation sequencing 

(NGS), especially microarray and RNA-Seq data, to 

identify diagnostic or prognostic biomarkers for lung 

cancer [4, 37, 44–48]. Most of these studies examined 

data from only one technology, either microarray or 

RNA-Seq. 

 

Microarray and RNA-Seq are two popular ways to 

measure gene expression. These two technologies have 

been compared in terms of technical reproducibility, 

variance structure, absolute expression levels, detection 

of isoforms, and the ability to identify DEGs and 

develop predictive models [49]. In general, they are 

comparable when reporting for high-intensity genes; 

however, microarrays have been shown to have some 

systematic biases in their estimation of differential 

expression for low-intensity genes [50]. Identifying 

mRNA gene markers for lung cancer has been done by 

many studies, but very few studies focus on integrative 

data analysis of lncRNA on lung cancer. This is the 

reason why we choose lncRNA for the study. Here, 

through bioinformatics integrative analysis of 

microarray and RNA-Seq datasets, we identified 8 

lncRNAs that could be used as diagnostic or prognostic 

biomarkers for lung cancer. We used Correlation 

Attribute Eval feature selection on the statistically 

significant results to find the top 20 most related 

lncRNAs. At the same time, we chose the most 

significant 20 lncRNAs according to their p-values, 

interestingly, we found that they were exactly the same 

as what feature selection selected. So, in the case 

 

 
 

Figure 6. Receiver Operating Characteristic curves. The x-axis is the false positive rate, the y-axis is true positive rate. Since the curves 
are above the diagonal line, this represents good classification results. It means the prediction models can predict lung cancer precisely. 
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Table 4. Survival analysis for TCGA lung cancer samples. 

Cox regression result for TCGA lung cancer 

 coef Hazard ratio/exp(coef) se(coef) z p 

TBX5-AS1 0.031046 1.031533 0.093602 0.332 0.7401 

LINC02555 0.025703 1.026036 0.011835 2.172 0.0299 

LINC01936 -0.077035 0.925858 0.109337 -0.705 0.4811 

GATA6-AS1 0.010199 1.010251 0.086294 0.118 0.9059 

AP000866.2 -0.156948 0.854749 0.118632 -1.323 0.1858 

HSPC324 -0.056077 0.945466 0.119202 -0.47 0.638 

ADAMTS9-AS2 -0.497076 0.608307 0.608164 -0.817 0.4137 

AC008268.1 0.003138 1.003143 0.004481 0.7 0.4838 

 

scenario, and the CFS method seems not critical at all. 

This also means the 20 top ones might truly good ones. 

We used three microarray datasets from the GEO 

Repository and an RNA-Seq dataset from TCGA. Of 

the three microarray datasets, two were on the 

Affymetrix platform and one on Agilent. Thus, we have 

datasets from 3 platforms: Agilent, Affymetrix, and 

TCGA generated using two methods, microarray, and 

 

 
 

Figure 7. Survival analysis. The Kaplan Meier plot for TCGA lung cancer samples. The red line represents those samples with higher lncRNA 
expression values. The green line represents those samples with lower lncRNA expression levels. Because they intersect several times, the 
diagnostic ability is not good enough. 
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Table 5. Function analysis. 

  Pathway P-Value Benjamini 

Complement and coagulation cascades 1.40E-02 7.00E-01 

Protein digestion and absorption 2.70E-02 6.80E-01 

ABC transporters 4.10E-02 6.90E-01 

Hypertrophic cardiomyopathy (HCM) 4.70E-02 9.80E-01 

Dilated cardiomyopathy 5.40E-02 9.00E-01 

Central carbon metabolism in cancer 4.60E-07 1.30E-05 

Pathways in cancer 2.80E-05 3.90E-04 

ECM-receptor interaction 1.80E-08 4.00E-06 

Focal adhesion 3.90E-08 4.40E-06 

 

RNA-Seq. We merged the two Affymetrix ones into a 

combined ‘Affymetrix dataset’ with a sample size of 

247. This combined Affymetrix dataset (microarray) 

and the TCGA dataset (RNA-Seq) were used as training 

datasets in two separate analysis streams, with the rest 

of the datasets used for validation. 

 

The top 20 lncRNAs from each training were then used 

in machine learning to build two training models. We 

used two classifiers, Voted Perceptron algorithm and 

Bayes Network learning, for machine learning. All the 

classifiers were tried in Weka and the best results were 

chosen for each training dataset. Interestingly, we noted 

that the best results for the two training datasets were 

from different classifiers, with Bayes Network learning 

working better for the Affymetrix dataset and Voted 

Perceptron algorithm for the TCGA dataset. Overall, we 

found that the model built from Affymetrix was better 

than the model from TCGA. We also noted that the 

Agilent dataset as a validation dataset performed 

comparatively worse in all models. The sample size of 

the Agilent dataset was small compared to the others 

and it did not cluster with the other two datasets when 

PCA was done after normalization. This could be due to 

Affymetrix and Agilent are different platforms and the 

ways for them to design the arrays are not the same, 

either. Also maybe the Agilent dataset sample size is 

not big enough. The batch effects even exist for the 

same platform coming from different labs and more 

often existed from different platforms. Still, because 

this study aims to find biomarkers for global lung 

cancer, we decided to include the Agilent dataset in our 

analysis. 

 

The training models built separately from the 

Affymetrix and TCGA datasets and validated on the rest 

of the datasets resulted in two lists of 20 lncRNAs 

which include 8 common ones that could be diagnostic 

lncRNAs. Given that both the sensitivity and specificity 

are greater than 0.9, we can say that these 8 biomarkers 

can help predict whether the tissue sample is lung 

cancer or healthy. Moreover, the good performance of 

these 8 lncRNA biomarkers strongly suggests that they 

should work as biomarkers for all lung cancer samples, 

perhaps including subtypes, although subtypes were not 

explored in this study. Some of these 8 lncRNAs have 

previously been described in connection with cell 

biology and cancer. For example, Qiao et al. reported 

that TBX5-AS1 was down-regulated in lung cancer 

tissues compared to non-tumor lung tissues, and its 

expression was linked to unfavorable prognosis in 

never-smoking female lung cancer patients [51]. Liu et 

al. reported that GATA6-AS1 was spatially correlated 

with the transcription factor GATA6 across the genome 

[52]. In another study, the long non-coding antisense 

transcript of GATA6-AS was revealed to interact with 

epigenetic regulator LOXL2 to regulate endothelial 

gene expression via changes in histone methylation 

[53]. Also, Chen et al. found that GATA6-AS1 was 

down-regulated in LUSC patients and was significantly 

linked to survival time [54]. ADAMTS9-AS2 was 

found to correlate with bladder cancer patient survival 

in an analysis of significantly differentiating RNAs [55] 

and might play a role in early-stage digit development 

[56]. In a glioma study, ADAMTS9-AS2 was found to 

be significantly downregulated in tumor tissues 

compared with normal ones and reversely associated 

with tumor grade and prognosis. Their analysis showed 

that low ADAMTS9-AS2 was an independent predictor 

of poor survival in glioma [57]. 

 

Previous studies have described the function of 

lncRNAs, but in general, their clinical potential is 

underexplored [37]. Here, we showed for the first time 

that lncRNAs are promising biomarkers for the 

diagnosis of global lung cancer that significantly 

augment CT imaging which often fails to clearly 

distinguish between benign and cancer states. By 

performing in silico analysis on existing normal and 

tumor tissue samples from GEO NCBI and building 

prediction models, we identified 8 lncRNAs as 

promising candidate biomarkers with good diagnostic 
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power based on their high sensitivity and specificity. 

Our results suggest that in the future, by simply testing 

the expression level of these 8 lncRNAs in the blood or 

other body fluids and then generating the prediction 

model, we may be able to tell if there is lung cancer or 

not. This will be especially useful because, in the clinic, 

patients prefer non-invasive detection methods like 

blood tests rather than invasive methods like a biopsy. 

As such, it is important that these biomarker candidates 

be experimentally validated in the laboratory using 

body fluid samples. We are hopeful that if validated in 

blood samples, we may be able to create a simple blood 

test to diagnose lung cancer. 

 

Our study is significant because it reports promising 

biomarker candidates with solid cross-validation bio-

informatics data analysis on different platforms of a 

pretty large sample size. These biomarkers could be 

tested in blood serum or plasma samples in future 

studies. Besides providing potential novel diagnostic 

biomarkers for lung cancer, our study also provides 

novel candidate molecules and pathways for 

mechanistic studies on lung cancer development and 

carcinogenesis and for the development of new targets 

for lung cancer treatment. 

CONCLUSIONS 
 

We identified 8 lncRNAs as potential diagnostic 

biomarkers for NSCLC through integrative cross-

platform data analyses. This data mining and machine 

learning approach would be an efficient and economical 

screening method for tumor biomarker discovery. 

Moreover, we are now in an exciting time in 

bioinformatics when both high-throughput tools and 

data are increasingly accessible for tumor biomarker 

discovery. Our study can also help understand the 

development of lung cancer and provide potential novel 

targets for lung cancer treatment. 
 

MATERIALS AND METHODS 
 

Overview of the workflow 
 

To detect lncRNAs differentially expressed between 

healthy and lung cancer tissues, we employed a one-

factor (cancer/normal) experimental design in which 

datasets containing lung cancer samples and adjacent 

normal tissue samples were selected (Figure 8). This 

approach narrows the variation of data and allowed 

sufficient statistical power. Based on this design, we 

 

 
 

Figure 8. Workflow. Schematic overview of this study. Three datasets were downloaded from GEO, they are GSE18842, GSE19188, and 
GSE70880. A total of 287 samples were in GEO datasets. Two datasets were downloaded from TCGA, including the LUAD dataset and the 
LUSC dataset. Totally 216 samples were contained in those LUAD and LUSC datasets and we combined them as TCGA datasets. Datasets were 
divided into 3 groups based on their platforms. Affymetrix dataset and TCGA dataset were used as training sets separately then validated 
using the other datasets. The lncRNAs in common were used for survival analysis and functional analysis. 
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downloaded three lung cancer microarray datasets, 

GSE19188 [58], GSE18842 [59] and GSE70880  

[44, 60], with a total of 287 samples, from the GEO 

repository, and 216 RNA-Seq samples from TCGA 

(http://cancergenome.nih.gov/). For the datasets from 

array-based platforms, GSE19188 and GSE18842 were 

combined as Affymetrix dataset and GSE70880 was 

named as Agilent dataset. 

 

LncRNA names were obtained from BioMart and a total 

of 963 lncRNAs common to every dataset were 

identified for further analyses. At first, we used the 

Affymetrix dataset for training. Differentially expressed 

lncRNAs at FDR adjusted p-value by the Benjamini-

Hochberg procedure less than 0.05 using Student’s t-

tests were selected. We uploaded the data to Weka 

(version 3-8-2) [61], then used correlation Attribute 

Eval feature selection to get the most statistically 

significant related lncRNAs. We selected the top 20 

differentially expressed lncRNAs to build a model using 

Bayes Network learning, then performed validation on 

the TCGA and Agilent datasets. 

 

Next, we used the TCGA dataset for training and 

selected differentially expressed lncRNAs at FDR 

adjusted p-value less than 0.05 using Student’s t-tests. 

We applied Correlation Attribute Eval feature selection 

on the statistically significant results to find the most 

related lncRNAs and used the top 20 to build the model 

using the Voted Perceptron algorithm incorporated in 

Weka. This time, validation was performed on the 

Affymetrix and Agilent datasets. Of the top related 40 

lncRNAs from the two analyses, we identified 8 

overlapping lncRNAs. These were further interrogated 

for survival and function analysis. 

 

The cancer genome atlas (TCGA) datasets as RNA 

sequencing (RNA-seq) dataset 

 

Lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) datasets from TCGA incorporating 

RNA-Seq FPKM data from 216 lung tissue samples and 

matched adjacent normal tissue samples were 

downloaded. The annotations of the TCGA dataset were 

acquired from BioMart in R (version 3.4.3). 

 

Gene expression omnibus (GEO) datasets as 

microarray dataset 

 

We conducted a search of the GEO Microarray database 

using keywords “ncRNA, lung cancer and RNA seq*” 

to find microarray datasets. We also searched for papers 

in PubMed that were related to lncRNA, RNA 

sequencing and lung cancer. We only downloaded 

microarray datasets with at least 20 lung cancer samples 

and adjacent normal tissue samples because studies with 

a smaller sample size would be challenging to merge 

due to batch effects. The downloaded GEO datasets are: 

GSE70880, GSE19188, GSE18842. GSE19188 and 

GSE18842 contain NSCLC samples but the lung cancer 

types in GSE70880 are unknown. The annotations of 

each dataset were obtained from BioMart in R (version 

3.4.3). The TCGA or GEO datasets were merged based 

on transcript names and a total of 963 lncRNAs 

common in all the datasets were included for further 

analyses. 

 

Data normalization for GEO datasets 

 

First, we used per sample every sample median value 

across all the lncRNAs in GSE19188, GSE70880, and 

GSE18842 datasets. Then we performed per gene 

normalization based on every lncRNA expression 

median value across all the samples in these three 

microarray datasets. We used RBoxPlot in Array Studio 

software to check the normalization results. LncRNAs 

in the GSE70880 dataset with missing data were 

excluded. Principal component analysis based on the 

common 963 lncRNAs was done on the combined 

datasets. GSE19188 and GSE18842, both from the 

Affymetrix platform, clustered well, but GSE70880 

from the Agilent platform could not cluster with the 

other two. So, GSE19188 and GSE18842 were 

combined and named as Affymetrix dataset and 

GSE70880 was named Agilent dataset for further 

analyses. RBoxPlot were obtained using Array Studio 

10 (Supplementary Figure 1) 

 

Data normalization for TCGA dataset 
 

The lung cancer RNA-seq data from TCGA was 

normalized based on the Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM). The 

FPKM data from TCGA were log 2 transformed after 

adding 0.1. 

 

Screening for differentially expressed lncRNAs 

 

For each dataset, the difference in expression of lncRNAs 

between cancer and normal was examined by a two-

sample t-test. The fold change and regulation direction 

were then reported. Each of the datasets was tested for 

differential expression by a two-sample t-test using  

Array Studio 10. Statistically significant differentially 

expressed lncRNAs were selected with a False 

Discovery Rate (FDR) adjusted p-value less than 0.05 

and fold change greater than 1.3 in at least one dataset. 

 

Training datasets and validation 
 

The Affymetrix dataset containing differentially 

expressed lncRNAs was used as a training dataset first. 

http://cancergenome.nih.gov/
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Feature selection correlation method was done using 

Weka (version 3.8.2) and the top 20 lncRNAs were 

selected for further analysis. Hierarchical cluster 

analysis was performed using Array Studio 10. 

Bayesian network classifier (BayesNet) was used on the 

top 20 Affymetrix lncRNAs and validated in TCGA and 

Agilent datasets. Sensitivity and specificity were 

calculated based on the Bayesian network results. The 

formulas for sensitivity and specificity are: 

 

Sensitivity (True Positive Rate) = True Positive / (True 

Positive + False Negative); 

 

Specificity (True Negative Rate) = True Negative / 

(True Negative + False Positive). 

 

Likewise, the TCGA dataset with differentially 

expressed lncRNAs was used as a training dataset and 

Weka (version 3.8.2) feature selection correlation 

method was used to identify the top 20 lncRNAs. Voted 

Perceptron was used for classification, and then 

validated in both Affymetrix and Agilent datasets 

separately. Sensitivity and specificity were calculated 

based on Voted Perceptron results. Subsequently, 

hierarchical cluster analysis was performed using Array 

Studio to check the expression levels of the eight 

overlapping lncRNAs. The Receiver Operating 

Characteristic (ROC) curves were plotted using Weka 

software. 

 

Survival analysis 

 

Cox regression analysis was performed using the 

survival package in R. The lncRNAs with a p-value of 

less than 0.05 were considered associated with survival. 

This analysis includes all lung cancer samples with 

survival information available from TCGA. 

 

Function analysis 
 

Overlapping lncRNAs from the top 20 lncRNAs 

obtained after feature selection from Affymetrix and 

TCGA datasets respectively, were used for functional 

analysis. 

 

We used TANRIC to find correlated mRNA, miRNA, 

protein and somatic mutation with the common 

lncRNAs in LUSC and LUAD datasets, respectively. 

The lists of correlated genes were then used in 

TARGET and DAVID for functional analysis. 
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Supplementary Figure 1. The boxplots of GSE18842 Raw Data, GSE19188 Raw Data, GSE70880 Raw Data, and TCGA Raw 
Data were plotted. In the boxplot for GSE18842 raw data, we can see that its mean is not center to zero. The mean for GSE19188 raw data 
is centered on zero. The mean for GSE70880 raw data is neither center to zero, nor consistent. Some samples from GSE70880 has a lower 
mean than others. The mean for TCGA raw data is not consistent, either. Normalized data for every dataset were plotted. For GSE18842, 
GSE19188, and GSE70880, we centered their mean values to zero and removed their batch effects. For the TCGA dataset, we made the mean 
on the same level. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The student’s T-Test was performed for the Affymetrix dataset, Agilent dataset, and TCGA 
dataset. The variable column shows the lncRNA names. The mean value for each lncRNA across all the normal samples was 
represented in the Normal column. Similarly, the means for each lncRNA across all the tumor samples were shown in the Normal 
column. The tissue type => Tumor vs Normal.Estimate column gives the estimate of the effect. The tissue type => Tumor vs 
Normal.FoldChange column provides the fold change of effect. The tissue type => Tumor vs Normal.RawPValue column confers the 
raw p-value of the T-test. The tissue type => Tumor vs Normal.FDR_BH column exhibits the adjusted p-value, based on the raw p-
value. 


