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INTRODUCTION 
 

Hepatocellular carcinoma (HCC), the most common 

form of liver cancer, has been ranked among the most 

common cancers globally [1]. It has been widely known 

that several risk factors contribute to HCC 

carcinogenesis, including chronic hepatitis B virus 

(HBV)/hepatitis C virus (HCV) infection, alcohol 

abuse, autoimmune hepatitis, diabetes mellitus, obesity, 

and several metabolic diseases [2]. Despite great 

advances in the diagnosis and treatment of HCC has 

been achieved, the prognosis of HCC patients still 

remains poor over the past decades [3]. Therefore, the 

main goal of current oncological studies on HCC is 

understanding the pathophysiological mechanism 

contributing to the progression of HCC.  

Cell division cycle associated protein 5 (CDCA5), which 

was also known as sororin coded by CDCA5 gene, was 

initially identified as a substrate of anaphase-promoting 

complex regulating sister chromatid cohesion [4, 5]. 

Previous study shows that phosphorylation of CDCA5 at 

Ser209 by extracellular signal-regulated kinase (ERK) can 

inhibit the proliferation of lung cancer cells, which is 

inversed after the induction of exogenous expression of 

CDCA5 [6]. It has been proved that CDCA5 was 

significantly up-regulated in various human tumor tissues, 

including lung cancer, oral squamous cell carcinoma, 

urothelial cancer and gastric cancer [6–10]. These 

findings indicate the potency of CDCA5 as a significant 

oncogenic promoter for cancers. However, the underlying 

mechanism in which CDCA5 regulate HCC 

tumorigenesis are still poorly understood.  
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ABSTRACT 
 

The upregulation of cell division cycle associated protein 5 (CDCA5) has been observed in various cancer types. 
However, the prognostic value of CDCA5 and its underlying mechanism contributing to tumorigenesis in 
hepatocellular carcinoma (HCC) remain poorly understood. We used tissue microarray (TMA) to evaluate the 
prognosis of 304 HCC samples based on their CDCA5 expression, and analyzed the genomic features correlated 
with CDCA5 by using dataset from The Cancer Genome Atlas (TCGA). Compared with adjacent normal tissues, 
increased expression of CDCA5 was found in HCC tissues. Moreover, higher expression of CDCA5 was associated 
with inferior OS and DFS outcomes in HCC patients. The enrichment plots showed that the gene signatures in 
cell cycle, DNA replication and p53 pathways were enriched in patients with higher CDCA5 expression. 
Meanwhile, statistically higher mutations burdens in TP53 could also be observed in CDCA5-high patients. 
Integrative analysis based on miRNAseq and methylation data demonstrated a potential association between 
CDCA5 expression and epigenetic changes. In conclusion, our study provided the evidence of CDCA5 as an 
oncogenic promoter in HCC and the potential function of CDCA5 in affecting tumor microenvironment. 
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In our work, we used tissue microarrays (TMA) to 

evaluate the histopathological features of CDCA5 in HCC 

tumor samples and analyze the survival outcomes of 304 

HCC tumor samples based on CDCA5 expression. 

Moreover, distinctive genomic features correlated with 

the expression of CDCA5 were also analyzed by using 

dataset from The Cancer Genome Atlas (TCGA). The aim 

of this study is to provide with comprehensive analysis on 

CDCA5 as a potential target of treatment for HCC, which 

would address the research gaps in previous studies. 

 

RESULTS 
 

In order to evaluate the clinical significance of CDCA5 

in HCC, we detected the expression of CDCA5 by using 

TMA, in which HCC samples (n=304) and matched 

adjacent normal tissues (n=50) were enrolled. It showed 

that HCC samples exhibited higher CDCA5 expression 

than adjacent normal tissues (Figure 1A), which was 

proved by unpaired and paired t-test (Figure 1B). 

Meanwhile, further validation by GEO datasets also 

demonstrated the higher CDCA5 expression in tumor 

tissues (Supplementary Figure 1). By stratifying 

patients into subgroups based on the best cut-off point 

set by X-tile software [11], we found that higher 

CDCA5 expression correlated with both poorer OS and 

DFS outcomes (Figure 1C). Moreover, a multivariate 

Cox regression analysis demonstrated the significance 

of CDCA5 as an independent risk factor for OS and 

DFS (Figure 1D).  

 

 
 

Figure 1. CDCA5 is upregulated in HCC tissues and predicts poorer survival outcomes. (A) Representative IHC staining of CDCA5 in 
HCC and paired normal tissues. (B) The relative protein level of CDCA5 is significantly higher in HCC tissues than in adjacent normal tissue 
(upper panel). Data represent the mean±SD. ***, p< 0.001. This finding was further validated by comparing CDCA5 expression in tumor and 
patient-matched adjacent normal tissues (lower panel). (C) Higher expression of CDCA5 predicts poorer survival outcomes in patients with 
HCC. (D) Multivariable Cox regression analysis shows that CDCA5 is an independent risk factor for both OS (upper panel) and DFS (lower 
panel). Independent prognostic factors, including CDCA5 expression and other clinical parameters, were assessed using the multivariate Cox 
proportional hazards model among the variables found to be significant using univariate analysis. The HRs are presented as the means with 
95% confidence interval. Differences with p< 0.05 (Red) were considered significant. 
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To clarify the potential mechanism of CDCA5 in 

promoting HCC formation, we used RNAseq to analyze 

the gene expression in both CDCA5-high and -low 

groups. To sum up, 1652 genes were up-regulated 

(≥1.5-fold) and 1885 genes were down-regulated (≥1.5-

fold) in CDCA5-high group (CDCA5-low group as 

reference, Figure 2A). Then, we performed GSEA 

analysis to find potential pathways in which CDCA5 

was involved to affect HCC carcinogenesis. The 

enrichment plots of KEGG pathways showed that the 

genes involved in cell cycle, DNA replication and p53 

pathway were significantly enriched in patients with 

higher CDCA5 expression (Figure 2B, 2C). A distinct 

expression distribution of genes in these 3 pathways 

showed that CDCA5-high tumors were statistically 

enriched for these genes (Supplementary Figure 2). 

These results highly indicate the underlying mechanism 

in which CDCA5 functions as a down-stream target of 

p53 pathway and promote HCC carcinogenesis by 

activating tumor cell proliferation. 

The mutation landscape of driver genes in HCC has 

been provided by genetic profiling studies based on 

WGS data from TCGA dataset [12]. To find significant 

mutation events correlated with CDCA5 expression, we 

analyzed the mutation profiles characterized for HCC 

with different CDCA5 expression (high vs. low). It was 

noticeable that over half of the samples in CDCA5-high 

group had mutation events in TP53 (Figure 3A), the 

most renowned tumor suppressor gene proved to 

suppress tumor development by multiple pathways [13]. 

Moreover, tumors with higher CDCA5 expression 

showed statistically higher mutation burdens in TP53 

(Table 1). At the same time, higher mutation burdens in 

tumor suppressor gene RB1 [14] were also observed in 

CDCA5-high tumors (Figure 3A, Table 1). Intriguingly, 

higher mutation burdens in CTNNB1 were observed in 

patients with lower CDCA5 expression (Figure 3A, 

Table 1). Owing to the fact that the alteration in 

CTNNB1 can result in the inhibited degradation of the 

encoded protein (β-catenin) and constitutive activation 

 

 
 

Figure 2. Identifying differentially expressed genes between CDCA5-high and -low patients. (A) Volcano plot of differential gene 
profiles between CDCA5-high and -low groups. (B) KEGG pathway analysis by GSEA shows that genes involved in cell proliferation, DNA 
replication and p53 pathway are enriched in CDCA5-high patients. Venn plot demonstrates the overlapping between differentially expressed 
genes and genes participating in different biological processes. Each circle in the Venn plot represents one set and the number in the overlaid 
area represents the common genes between the sets. (C) GSEA enrichment plots demonstrated gene enrichment results from Figure 3B. 
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of β-catenin in HCC [15–17], this finding suggested that 

there was no association between the activation of Wnt 

signaling pathway and CDCA5 up-regulation.  

 

HCC is characterized by increased genomic instability 

with extensive copy number alterations [18, 19]. To 

identify the correlation between CDCA5 expression and 

CNV, we used GISTIC 2.0 to analyze the copy number 

amplifications and deletions in various chromosome 

regions. It showed that a large sum of loci were either 

significantly amplified or deleted regardless of the 

expression of CDCA5 (Figure 3B). 1035 genes 

exhibited copy number deletion in CDCA5-high 

patients, while the number for CDCA5-low patients was 

436 (Figure 3C, left panel). After overlaid with the 

significantly differentially expressed genes identified by 

RNAseq, 133 genes within the deletion regions in 

CDCA5-high patients showed the concordant 

expression pattern in RNAseq, implying that the 

differential expression of these genes might be partially 

owing to copy number deletions. Meanwhile, the 

number of genes within the aberrantly amplified regions 

in CDCA5-high patients was 1245 (Figure 3C, right 

panel), among which 149 genes were also identified as 

statistically dysregulated according to RNAseq, 

suggesting that differential expression of these genes 

may be partially due to the copy number amplifications. 

In spite of the fact that there were genes exhibiting 

concordance between RNAseq and CNV results, the 

majority of the aberrantly expressed genes identified 

from RNAseq in CDCA5-high patients were not 

affected by CNV, indicating the independence of 

differential gene expressions from CNV in patients with 

higher CDCA5 expression. 

 

MicroRNAs (abbreviated miRNAs) area class of short 

non-coding RNAs (about 22 nt) which can target 

mRNAs for cleavage and post-transcriptionally control 

gene expression [20]. It has been reported that aberrant 

regulation of miRNA plays a key role in HCC 

carcinogenesis [21]. In this study, we evaluated the 

genes potentially regulated by miRNA after the 

upregulation of CDCA5. A total of 44 up-regulated 

miRNAs (≥1.5-fold) and 113 down-regulated miRNAs 

(≥1.5-fold) were detected in CDCA5 group (CDCA5-

low group as reference, Figure 4A). By using 

TargetScan, we identified a total of 97 pairs of miRNA-

mRNA interaction, among which 65 pairs had 

significantly down-regulated genes in CDCA5-high 

patients (Figure 4B). Notably, hsa-mir-200b negatively 

regulated the expression of 29 genes. Moreover, 19 

genes exhibited negative regulation from more than one 

miRNA. The interaction network showed that a set of 

oncogenes, including DNMT3A, TGFB2, CXCL12 and 

BCL9 [22–25], were potentially regulated by miRNA 

expressions.  

DNA methylation is thought to be an important 

epigenetic modification regulating gene expression. 

Previous studies have demonstrated that methylated CpG 

island of gene promoters will suppress gene expression 

[26]. It has been reported that dysregulation of DNA 

methylation significantly correlated with HCC 

progression [27–29]. To evaluate DNA methylation 

patterns between CDCA5-low and -high patients, we 

used WGCNA to cluster methylated genes into different 

co-methylation modules. The network and the identified 

modules were illustrated in Figure 4C. Each module was 

assigned with a unique color identifier, with the 

remaining poorly connected genes colored gray. Notably, 

the most significant correlation was observed between 

CDCA5-high status module turquoise (absolute Pearson 

correlation coefficient = 0.36 and Bonferroni threshold of 

P= 8e-07, Figure 4D). We overlaid oncogenes within 

these this module with up-regulated genes identified in 

CDCA5-high patients, so as to find potentially 

demethylated genes after the up-regulation of CDCA5. 

The results showed that methylation status of 6 

oncogenes were potentially affected by CDCA5 up-

regulation (Figure 4E), including TBX3, PPP1R14A, 

FHL2, CAMK1D, ZBTB16 and AKTIP [30]. Among 

these 6 genes, the beta values of FHL2, CAMK1D and 

ZBTB16 showed significant negative correlation with 

CDCA5 expression, while the beta value of PPP1R14A 

showed positive correlation with CDCA5 expression 

(Figure 4F). 

 

DISCUSSION 
 

Acting as a regulator of sister chromatid cohesion in 

cell-cycle, CDCA5 exhibit the pro-tumor ability by 

regulating proliferation process of tumor cells. 

Consistent with previous studies on various tumor 

types, higher expression of CDCA5 was found in HCC 

tumor cells than in adjacent normal tissues. Moreover, 

higher CDCA5 expression correlated with poorer 

survival outcomes in HCC patients. By analyzing the 

differentially expressed genes between CDCA5-low and 

-high HCC tumor samples, we found that genes 

involved in cell cycle were significantly enriched in 

CDCA5-high tumors. This finding indicates that 

CDCA5 participates in regulating HCC cell 

proliferation. 

 

The transcription factor p53 plays an essential role in 

regulating cell cycle and is the most important tumor 

suppressor widely known [31]. When exposed to 

cellular stress signaling including DNA damage and 

oncogenic pressure, p53 can be activated by 

phosphorylation of its protein and posttranslational 

modifications, which result in the up-regulation of p53 

target genes involved in DNA repair, apoptosis and cell-

cycle arrest. Inactivation of p53 through either mutation 
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Figure 3. Association between CDCA5 and mutational signatures, copy number variation in HCC. (A) Significantly mutated genes 
in HCC subsets stratified by CDCA5 expression. (B) GISTIC2.0 analysis identified recurrent somatic copy number alterations in different HCC 
subsets stratified by CDCA5 expression. (C) Venn diagrams demonstrating the number of genes within genomic regions showing significant 
amplification or deletion, as well as the overlay with significant genes identified from RNAseq in CDCA5-high and -low patients. Each circle in 
the Venn diagram represents one set and the number in the overlaid area represents the common genes between the sets. 
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Table 1. The mutation frequency in CDCA5-low and -high patients. 

Gene CDCA5 low (n=90) CDCA5 high (n=90) P* value 

TP53 9 49 <0.0001 
RB1 0 11 0.00186 
AHCTF1 4 2 0.678 
GPATCH4 2 0 0.477 
CTNNB1 28 12 0.004124 
AXIN1 1 7 0.07054 
AZIN1 0 1 1 
CREB3L3 2 0 0.477 
ARID2 5 3 0.7176 
ACVR2A 2 2 1 
EEF1A1 5 1 0.2129 
PIK3CA 4 1 0.3643 
RPS6KA3 3 3 1 
LZTR1 0 2 0.477 
ALB 12 6 0.136 
APOB 8 5 0.3877 
HIST1H1C 1 1 1 
NFE2L2 3 0 0.2442 
KEAP1 2 5 0.4407 
KRAS 3 0 0.2442 
BAP1 6 4 0.7449 
NRAS 2 0 0.477 
CDKN2A 3 1 0.6131 
RP1L1 4 2 0.678 
IL6ST 6 2 0.2779 
ARID1A 4 10 0.1641 

*, Pearson χ² test P value 
 

or alterations in related pathways has been regarded as a 

hallmark of every tumor types [32]. According to our 

GSEA analysis, several p53 downstream genes were 

significantly up-regulated in CDCA5-high group, 

including genes involved in cell-cycle (CDK4, 

CDKN2A, CDK2, CCNB2, CDK1 and CCNB1), 

apoptosis (BAX) and DNA synthesis (RRM2). 

Considering that CDCA5-high patients had statistically 

higher mutation burdens in TP53 (Figure 4A, Table 1), 

this result indicated a potential loss of function 

correlated with TP53 mutation contributing to the 

dysregulation of genes involved in p53 pathway, thus 

promoting the expression of CDCA5 and HCC 

tumorigenesis. 

 

As the first identified tumor suppressor gene, the 

retinoblastoma gene RB1 has been proved to regulate 

the various biologic processes, including cell cycle 

progression, terminal differentiation and DNA 

replication [33]. RB1 mutation can cause the 

inactivation of the gene product pRB by exempting 

normal cells to exit cell cycle, which leads to high 

susceptibility of normal cells to oncogenic proliferation. 

This can be observed in almost all familial and sporadic 

forms of retinoblastoma and other human cancers at 

variable frequencies [14]. In our work, we also showed 

that the proportion of patients with RB1 mutations in 

CDCA5-high group was statistically higher than that in 

CDCA5-low group, suggesting that inactivation of pRB 

can lead to abnormally up-regulation of CDCA5 during 

carcinogenesis, which contribute to HCC tumor cell 

proliferation. 

 

At this moment, it is evident that miRNA is a key 

regulator in carcinogenesis. During the process of tumor 

formation, mature miRNA is generated from two-step 

cleavage of primary miRNA (pri-miRNA), which 

incorporates into a large protein complex called RNA-

induced silencing complex (RISC) (48-50). By 

identifying significant miRNAs potentially regulated by 

CDCA5 expression, we found that hsa-mir-144, a tumor 

suppressor miRNA in various cancer types including 

HCC [34–36], was significantly up-regulated in 

CDCA5-high patients. Meanwhile, another tumor 

suppressor miRNA, hsa-mir-200b, [37–39] was down-

regulated in CDCA5-high patients. Moreover, multiple 

synchronizations existed between the expressions of 

miRNAs and their target genes. These findings 

indicated the existence of a highly complicated 

regulatory network by miRNA expressions along with 

the upregulation of CDCA5. 

 

While the direct impact of DNA methylation on tumor 

suppressor genes has been well established for decades
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Figure 4. Integration of epigenetic change and gene expression between CDCA5-high and -low patients. (A) Volcano plot of 
differentially expressed miRNAs between CDCA5-high and -low groups. (B) Regulation of gene expression by miRNA plot as network in 
cytoscape. (C) Dendrogram indicating expression of different gene modules in patients involved in WGCNA analysis. (D) Correlation between 
module eigengenes and the expression level of the CDCA5 (low vs. high). (E) Venn diagrams demonstrating the number of genes within 
module turquoise, as well as the overlay with up-regulated genes identified from RNAseq and oncogenes. (F) Local regression curves 
(Spearman rank correlation) between expression of CDCA5 and 4 oncogenes identified in module turquoise. 
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[40], a prevailing alternative hypothesis has aroused 

great interest in hypomethylation as a significant 

epigenetic alteration resulting in the transcriptional 

activation of oncogenes [41]. Although there are genes 

identified to be activated due to promoter 

hypomethylation in cancers, their oncogenic roles still 

remain poorly understood [42]. Since the methylation 

beta value of 3 oncogenes up-regulated in CDCA5-high 

patients, including FHL2, CAMK1D and ZBTB16, 

showed significantly negative associations with CDCA5 

expression, our study indicated the transcriptional 

activation of these genes by DNA demethylation, which 

was potentially induced by CDCA5 up-regulation. 

Meanwhile, the positive correlation between the beta 

value of oncogene PPP1R14A and CDCA5 expression 

also suggested the competition between these 2 genes in 

gene expression. Further research will be inspired to 

detect the function of CDCA5 as a DNA methylation 

regulator. 

 

In conclusion, our study provided the evidence of 

CDCA5 as an oncogenic promoter in HCC and its 

potential function in affecting tumor microenvironment. 

The results in this work revealed the underlying 

mechanism in which CDCA5 up-regulation contributed 

to the poorer survival outcomes in HCC patients. 

Moreover, our study highlighted the potential value of 

CDCA5 targeted therapy in future clinical practice. 

 

MATERIALS AND METHODS 
 

Patients and samples 

 

A total of 304 HCC patients undergoing hepatectomy 

between 2007 and 2012 in West China Hospital were 

included in this study. Tissue microarrays were 

constructed as previously described [43]. Tumor staging 

classification was carried out according to the 7th AJCC 

TNM Staging for Liver and Intrahepatic Bile Duct 

Malignancies. The characteristics of tumor samples, 

including differentiation, size, number of nodules, 

vascular invasion and Ishak fibrosis score of the 

adjacent liver tissue were evaluated by two pathologists 

specializing in hepatic diseases. The primary end point 

of this study was overall survival (OS), which was 

defined as the time from the date of surgery to the date 

of death without regard to the cause of death. The 

secondary end point was disease-free survival (DFS) 

defined as the time from the date of surgery to the time 

of the first event (recurrence, progression, death). 

 

This study, including any relevant details, was approved 

by the ethics committee of West China Hospital. All the 

patients included in this study were over 18 years old 

and informed consent was obtained from study 

participants according to the regulations of the 

committee. Patients' names and other HIPAA 

identifiers have been excluded from this study. We 

confirm that all experiments were performed in 

accordance with relevant guidelines and regulations. 

 

Evaluation of CDCA5 staining 

 

The tissue core punched from a representative tissue 

area of the formalin-fixed, paraffin-embedded (FFPE) 

slide of each HCC sample was selected to construct the 

TMAs. H&E staining on TMAs were performed as 

previously described [44]. Immunohistochemical (IHC) 

staining was performed as previously described [43] by 

using a specific anti-CDCA5 antibody (1/500, Abcam). 

Images of CDCA5 staining were viewed and captured 

using the NDP.view.2 software program. Slides were 

reviewed by two experienced pathologists who were 

blind to the clinical parameters. We evaluated the 

positive staining of CDCA5 in tumor cell nuclei from 5 

respective areas in each TMA dot at 20× magnification 

and recorded the percentage of positively stained cells 

in each area. The mean value from the 5 areas was used 

for further analyses. 

 

RNAseq gene expression analysis 

 

Raw counts of gene expression from RNAseq were 

downloaded from the TCGA data portal (https://portal. 

gdc.cancer.gov/) for the differential gene expression 

analysis. Total raw read counts per gene were divided 

by the gene’s maximum transcript length to represent a 

coverage depth estimate, which were then scaled to a 

total depth of 106 per sample and can be interpreted as 

transcripts per million (TPM) [45]. Statistical ranking 

for CDCA5 expression by the top and bottom quartiles 

were defined as CDCA5-high and CDCA5-low, 

respectively. Differential gene expression analysis 

between CDCA5-high and CDCA5-lowpatients across 

TCGA datasets was calculated using the R package 

edgeR, which determines the differential gene 

expression by accounting for variability through an 

over-dispersed Poisson model and moderating the 

degree of over-dispersion by Empirical Bayes methods 

[46]. Genes with counts per million (CPM) larger than 1 

across at least 91 samples (half of all samples) were 

included for differential gene expression analysis. 

Genes with the adjusted p value less than 0.05 and the 

absolute FC larger than 1.5 were considered to be 

statistically significant. KEGG pathway analysis on the 

aberrantly expressed genes between CDCA5-high and 

CDCA5-lowpatients was performed based on gene set 

enrichment analysis (GSEA) as previously described 

[47]. Terms with a false discovery rate (FDR) < 0.05 

were considered statistically significant. Normalized 

gene expression data and the corresponding clinical data 

were also obtained from TCGA data portal. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


 

www.aging-us.com 14550 AGING 

Mutation and copy number variation analysis 
 

Significantly mutated genes (SMGs) were defined by 

running the Mutational Significance in Cancer (MuSiC 

Genome Suite) in different subtypes of HCC (CDCA5-

high vs. CDCA5-low). MuSiC identifies genes with 

significantly higher mutation rates than the background 

mutation rate (BMR) to find SMGs across the entire 

sample population. The threshold for significance was a 

FDR of 0.1. Mutational spectra across the entire study 

population from the TCGA dataset were determined as 

previously described [12]. Copy number variation 

(CNV) data was downloaded from GDAC Firehose and 

separated into different datasets according to the 

expressions of CDCA5. Investigation into significant 

amplification or deletion events in the regions of the 

genome was conducted through the use of GISTIC 2.0, 

a revised computational program to identify somatic 

copy number alteration by investigating the frequency 

and amplitude of observed events [48]. Meanwhile, 

genes within the significant genomic regions were 

further analyzed to determine the overlay with those 

differentially expressed and identified from RNAseq. 

 

Integration of gene expression and epigenetic change 

 

To investigate the potential genes regulation by 

miRNA, we focused on aberrantly expressed miRNA 

(adjusted p value < 0.05, absolute FC > 1.5) and the 

significant differential gene selected from RNAseq 

between CDCA5-high and CDCA5-low patients. Since 

miRNAseq only provided the expression level of the 

stem loop, the stem loop’s expression level was 

considered as the mature miRNA. The correlation 

between miRNA and the regulated genes was analyzed 

by TargetScan [49–53].  

 

Preprocessed methylation data (mean beta values, level 

3) were downloaded from Broad Firehose (http://gdac. 

broadinstitute.org/). Weighted Gene Co-Expression 

Network Analysis (WGCNA) [54] was conducted to 

identify groups of methylated genes (modules) involved 

in patients with different CDCA5 status (high vs. low) 

as previously described [55]. Genes in the modules 

showing statistically positive correlation with CDCA5-

high status were further analyzed to determine the 

overlay with those down-regulated in CDCA5-high 

group and oncogenes identified by ONGene [30]. 

 

Gene expression omnibus (GEO) data 
 

Microarray gene expression data of HCC samples were 

downloaded from the GEO database (accession 

numbers GSE1898, GSE54236, GSE64041) [56–59]. 

The R package “GEOquery” was used to extract the 

expression values of genes. 

Statistical analysis 
 

Statistical analyses and graphics were undertaken using R 

version 3.5.1. Student's t-test and Pearson χ² test were 

used for the univariate analyses where appropriate. 

Survival rates of expression level (high vs. low) were 

estimated by the Kaplan-Meier method with Rothman 

CIs. Survival curves were compared with the log-rank 

test. The hazard ratio (HR) and 95% CI associated with 

the expressions of CDCA5 were estimated through a 

multivariable Cox regression model adjusted for TNM 

stage (I vs. II-III), portal vein thrombus (no vs. yes), 

number of tumors (single vs. multiple), tumor size (≤5cm 

vs. >5cm) and microvascular invasion (no vs. yes). A p 

value < 0.05 was considered statistically significant. 
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Supplementary Figure 1. The relative mRNA expression of CDCA5 in GEO datasets. (A) The relative mRNA level of CDCA5 is 
significantly higher in HCC tissues than in adjacent normal tissue. Data represent the mean ± SD. ***, P < 0.001. (B) The relative mRNA level 
of CDCA5 is higher in HCC than patient-matched adjacent normal tissues. ***, P < 0.001. 

 

 
 

Supplementary Figure 2. Enrichment clustering of genes involved in cell cycle, DNA replication and p53 pathway between 
CDCA5-high and -low patients. 
 

 


