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INTRODUCTION 
 

Head and neck cancer, which manifests most often as 

head and neck squamous cell carcinoma (HNSCC), is 

the sixth most common malignancy, with an incidence 

of 650,000 cases and 330,000 deaths annually 

worldwide [1, 2]. HNSCC refers to a broad range of 

malignant tumors, including in the oral cavity, larynx, 

oropharynx, and hypopharynx [3]. The 5-year survival 

rate of patients with HNSCC is only about 60% and is 

lowest for those with tumors in the hypopharynx [4].  

 

HNSCC is usually treated by surgical resection with or 

without adjuvant radiotherapy or by definitive 

radiotherapy with or without concurrent chemotherapy 

[5]. 

 

The stage of HNSCC, which is vital for guiding 

treatment decisions, is usually determined based on 

imaging of the head and neck with computed 

tomography (CT) or magnetic resonance imaging (MRI) 

[6]. Increasingly, 18-fluorodeoxyglucose (18F-FDG) 

positron emission tomography/CT, which provides both 
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ABSTRACT 
 

Background: 18-fluorodeoxyglucose positron emission tomography/computed tomography (18F-PET/CT) has 
been widely applied for the imaging of head and neck squamous cell carcinoma (HNSCC). This study examined 
whether pre- and post-treatment 18F-PET/CT features can help predict the survival of HNSCC patients. 
Results: Three radiomics features were identified as prognostic factors. Radiomics score calculated from these 
features significantly predicted overall survival (OS) and disease-free disease (DFS). The clinicopathological 
characteristics combined with pre- or post-treatment nomograms showed better ROC curves and decision 
curves than the nomogram based only on clinicopathological characteristics. 
Conclusions: Combining clinicopathological characteristics with radiomics features of pre-treatment PET/CT or 
post-treatment PET/CT assessment of primary tumor sites as positive or negative may substantially improve 
prediction of OS and DFS of HNSCC patients. 
Methods: 171 patients who received pre-treatment 18F-PET/CT scans and 154 patients who received post-
treatment 18F-PET/CT scans with HNSCC in the Cancer Imaging Achieve (TCIA) were included. Nomograms that 
combined clinicopathological features with either pre-treatment PET/CT radiomics features or post-treatment 
assessment of primary tumor sites were constructed using data from 154 HNSCC patients. Receiver operating 
characteristic (ROC) curves and decision curves were used to compare the predictions of these models with 
those of a model incorporating only clinicopathological features. 
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anatomical and metabolic information, is used to 

distinguish benign from malignant disease, assess 

treatment response and detect recurrence [7, 8]. PET/CT 

can detect HNSCC with a sensitivity of 72-96% and 

specificity of 83-100% [8–10]. While this imaging 

modality continues to gain ground as a tool for 

diagnosing disease and assessing treatment response, 

whether it can predict patient prognosis is unclear. 

 

It may be possible to predict prognosis based on 

quantifiable features in PET/CT scans taken before or 

after treatment [11–13]. For example, studies have 

linked the survival of patients with HNSCC, lymphoma, 

or non-small-cell lung cancer to mean and maximum 

standardized 18F-FDG uptake values (SUVmean, 

SUVmax), metabolic tumor value (MTV) and total 

lesion glycolysis (TLG). These PET/CT features reflect 

tumor metabolic activity and lesion size [14–18]. Using 

radiomics to predict the prognosis of cancer patients is in 

its infancy, so the consensus still lacks on what image 

features provide the most reliable predictions. 

 

In the present study, we used a quantitative radiomics 

approach to extract imaging features from pre-treatment 
18F-FDG PET/CT scans of patients with HNSCC and a 

conventional approach to extract positive/negative 

findings from post-treatment scans. Then we combined 

each of these types of data with clinicopathological 

characteristics to generate models to predict survival. 

The predictive performance of these models was 

compared to that of a model-based only on clinico-

pathological characteristics. 

 

RESULTS 

 
Patient characteristics and radiomic signatures 

 
A total of 171 patients (training cohort = 115 and a 

validation cohort = 56) were analyzed for the 

construction of a Radiomics score (Rad-score) model 

based on pre-treatment PET/CT, and 154 patients were 

analyzed for the development of nomograms based on 

pre- or post-treatment PET/CT. The clinical 

characteristics of patients in the training and validation 

cohorts were summarized in Table 1. The correlations 

between extracted radiomics features were calculated 

and visualized by a correlation matrix (Figure 1). 

LASSO Cox regression was used to choose potential 

prognostic predictors from the 56 radiomics features in 

the training cohort (Figure 2). Three radiomics features 

were identified, and both the univariate and multivariate 

analyses of the selected features were performed to 

show the correlation of these features with patients’ 

survival (Supplementary Table 1). Besides, the 

collinearity statistics demonstrated that the collinearity 

between selected features was acceptable (variance 

inflation factor: SHAPE_Sphericity: 1.102, 

NGLDM_Coarseness: 1.274, SMTV: 1.375). Then, 

these features were used to calculate Rad-score for each 

patient: 

– –0.3392* _ 0.3736*

_ 1.5655*

Rad score SHAPE Sphericity

NGLDM Coarseness SMTV

 


 

 

The optimal cut-off value of the Radscore was 

0.01187901, and patients in the training and validation 

cohorts were accordingly classified as low- or high-risk. 

Supplementary Table 2 shows clinicopathological 

characteristics between patients with low and high risk. 
 

In the pre-treatment Rad-score model, the Kaplan-Meier 

analysis showed that high risk was associated with 

significantly worse overall survival (OS) in the training 

cohort (HR 5.89, 95%CI 1.74-20.02, p = 0.004), 

validation cohort (HR 5.59, 95%CI 1.83-17.09, p = 

0.003) and both cohorts together (HR 6.33, 95%CI 

2.77-14.5, p < 0.001). Similar results were obtained for 

disease-free survival (DFS) in the training cohort (HR 

7.04, 95%CI 1.93-25.68, p = 0.003), validation cohort 

(HR 5.10, 95%CI 1.61-16.17, p = 0.006) and both 

cohorts together (HR 6.844, 95%CI 2.90-16.13, p < 

0.001) (Figure 3). In the post-treatment negative/ 

positive model, Kaplan-Meier analysis showed that a 

positive finding was significantly related to worse OS 

(HR 6.609, 95%CI 3.649-11.97, p < 0.001) and DFS 

(HR 8.169, 95%CI 4.453-14.99, p < 0.001) (Figure 4). 

Cox regression showed that both the pre-treatment Rad-

score and post-treatment outcomes were significant 

independent predictors of both OS and DFS 

(Supplementary Table 3). Besides, we compared the 

concordance index (C-index, which is proportional to 

the survival-prediction ability of variables) between 

Rad-score and four conventional PET features (TLG, 

MTV, SUVmean, and SUVmax). The results showed 

that the survival-prediction ability of the Rad-score was 

much better than not only each single conventional PET 

feature but also the combined of four (Supplementary 

Table 4). 
 

Prediction of OS and DFS using models based on 

radiomic signatures 
 

As a first step in constructing predictive models based on 

radiomic signatures, we created a conventional prediction 

model based only on clinical characteristics of 154 

HNSCC patients according to inclusion and exclusion 

criteria. This conventional clinical model also served as a 

benchmark for assessing the prognostic performance of the 

radiomic models. The clinical model was constructed by 

initially including eight clinical characteristics (body mass 

index, age, T stage, N stage, AJCC stage, cancer site, 

histology grade, and smoking history), from which age and 

histology grade were subsequently excluded because they 



 

www.aging-us.com 14595 AGING 

Table 1. Demographics and clinicopathologic characteristics of patients with HSNCC. 

Variables 

Training cohort 
(N = 115) 

Validation cohort 
(N = 56) 

N % N % 

Gender 
    

Male 100 86.96 47 83.93 

Female 15 13.04 9 16.07 

Age (years) 
    

< 60 71 61.74 30 53.57 

≥ 60 44 38.26 26 46.43 

Tumor size 
    

≤ 4 94 81.74 27 48.21 

> 4 57 49.57 29 51.79 

Tumor Location 
    

Oropharynx 92 80.00 47 83.93 

Larynx 13 11.30 6 10.71 

Oral cavity 2 1.74 2 3.57 

Hypopharynx 8 6.96 3 5.36 

Differentiation status 
    

Well 13 11.30 4 7.14 

Moderate 51 44.35 28 50.00 

Poor and undifferentiat 51 44.35 24 42.86 

T stage * 
    

T1 21 18.26 10 17.86 

T2 37 32.17 17 30.36 

T3 34 29.57 18 32.14 

T4 23 20.00 11 19.64 

N stage * 
    

N0 10 8.70 9 16.07 

N1 11 9.57 8 14.29 

N2a 5 4.35 4 7.14 

N2b 56 48.70 19 33.93 

N2c 28 24.35 9 16.07 

N3 5 4.35 7 12.50 

TNM stage * 
    

I 1 0.87 0 0.00 

II 2 1.74 3 5.36 

III 15 13.04 13 23.21 

IVA 90 78.26 32 57.14 

IVB 7 6.09 8 14.29 

* according to 7th AJCC stage system. 
Abbreviations: HSNCC-head and neck squamous cell carcinoma; N-number. 
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Figure 1. The correlation matrix between pre-processing radiomics features. 
 

 
 

Figure 2. The extraction process and general characteristics of pre-treatment PET signatures with HNSCC patients. (A) The 
segmentation and reconstruction process of PET/CT images. (B) Demonstration of the varies of Lasso coefficient in different log (λ) sequence. 
A 15-fold cross validation were used to select the most optimal penalty parameter λ via minimum criteria. The minimum λ (λ = 0.05209914) 
were chose according to the criteria. Abbreviations: OS: overall survival. DFS: disease free survival. 
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did not satisfy the model’s assumption of proportional 

hazards. The final clinical model contained body mass 

index, tumor location, and N stage, while other 

characteristics were excluded using a stepwise algo-

rithm. This model was used to generate the 

corresponding reference OS and DFS nomograms 

(Supplementary Figure 1). 

 

Radiomics signatures from the pre-treatment PET/CT 

scans were added to this conventional clinical model, and 

the corresponding model was used to generate OS and 

DFS nomograms (Table 2 and Figure 5). The C index 

indicated good discrimination of OS (C index 0.77, 95%CI 

0.70-0.84) and DFS (C index 0.77, 95%CI 0.70-0.83). 

Calibration curves calculated for 3, 5, or 7 years showed 

good agreement with the OS and DFS nomograms. 

 

Good results were also obtained when positive/negative 

findings based on post-treatment PET/CT were added to 

the conventional clinical model (Table 2 and Figure 6). 

The corresponding nomograms showed excellent 

accuracy and discrimination for OS (C index 0.822, 

95%CI 0.767-0.877) and DFS (C index 0.832, 95%CI 

0.781-0.883). 

 

 
 

Figure 3. The Pre-treatment PET signatures could significantly stratify patients’ OS and DFS. Kaplan-Meier survival analysis of pre-
treatment Rad-score-defined risk levels in the training, validation cohorts and combined cohort. OS: the training cohort (A), validation cohort 
(B), and combined cohort (C). DFS: the training cohort (D), validation cohort (E), and combined cohort (F). Abbreviations: OS: overall survival. 
DFS: disease free survival. 
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Comparison of models 

 
Comparison of ROC curves at 3, 5, and 7 years showed 

that the pre-treatment model predicted OS and DFS 

better than the conventional clinical model. In contrast, 

the post-treatment model performed significantly better 

than the pre-treatment model. Similarly, decision curves 

showed that the post-treatment model maximized 

clinical benefits for patients in the prediction of OS and 

DFS at 3, 5, and 7 years (Figures 7 and 8). 

 

DISCUSSION 
 
18F-FDG-PET/CT radiomics signatures, which can 

capture spatial heterogeneity in tumors, have been 

applied as potential prognostic markers in many 

cancers, including gastric cancer [19], nasopharyngeal 

carcinoma [20], NSCLC [21], and HNSCC. HNSCC is 

a clinically heterogeneous disease, and few biomarkers 

are available for predicting tumor response to 

treatment or prognosis [22]. The present study used 

machine learning to identify 56 radiomics features in 

PET/CT scans of patients with HNSCC, and these 

features were significantly associated with OS and 

DFS. Combining some of these features with patients’ 

clinicopathological characteristics allowed reliable and 

accurate predictions of OS and DFS, which were 

substantially better than those obtained based on 

clinicopathological characteristics alone. The models 

described here may help improve the design of 

treatment strategies in HNSCC and thereby lead to 

better patient prognosis. 

 

 
 

Figure 4. The Post-treatment PET outcomes is a powerful tool to stratify patients’ OS and DFS. Kaplan-Meier survival analysis of 
post-treatment PET-outcome-defined risk levels in the training, validation cohorts and combined cohort. OS: the training cohort (A), 
validation cohort (B), and combined cohort (C). DFS: the training cohort (D), validation cohort (E), and combined cohort (F). Abbreviations: 
OS: overall survival. DFS: disease free survival. 
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Table 2. Multivariate Cox regression analyses for OS and DFS in the pre-treatment radiomics model and post-
treatment PET model. 

Variables 

Overall survival Disease-free survival 

HR (95%CI) p HR (95%CI) p 

Pre-treatment Radiomics Model 
    

Rad score  3.28 (1.23-8.70) 0.017 3.43 (1.24-9.45) 0.017 

N stage (vs. N0-2) 3.47 (1.40-8.61) 0.007 3.21 (1.29-7.95) 0.012 

Cancer site (vs. Oropharynx) 
    

Hypopharynx  4.70 (1.96-11/28) <0.001 3.90 (1.60-9.48) 0.002 

Oral cavity 2.27 (0.30-17.00) 0.425 1.93 (0.26-14.41) 0.521 

Larynx 1.25 (0.30-5.14) 0.756 1.19 (0.28-5.12) 0.812 

Start-treatment BMI 0.93 (0.87-0.99) 0.025 0.924 (0.86-0.99) 0.019 

Post-treatment PET Model 
    

PET outcome (vs. negative) 6.79 (3.69-12.47) <0.001 8.26 (4.41-15.44) <0.001 

N stage (vs. N0-2) 5.87 (2.67-14.57) <0.001 5.43 (2.20-13.37) <0.001 

Cancer site (vs. Oropharynx) 
    

Hypopharynx  6.40 (2.60-15.82) <0.001 5.05 (2.02-12.64) <0.001 

Oral cavity 2.15 (0.28-16.30) 0.461 1.48 (0.20-11.21) 0.700 

Larynx 2.17 (0.63-7.55) 0.221 2.33 (0.68-7.99) 0.179 

Start-treatment BMI 0.91 (0.85-0.98) <0.001 0.91 (0.85-0.98) <0.001 

Abbreviations: OS-overall survival; DFS-disease-free survival; HR-hazard ratio; BMI-body mass index; 
PET- positron emission tomography/computed tomography. 

Accurately predicting prognosis is of great importance 

for optimizing treatment strategies in HNSCC, but it 

remains controversial. Several studies have attempted 

to assess the predictive value of radiomics information 

from CT and MRI images in HNSCC. Koun et al. [23] 

recruited 62 patients with HNSCC to evaluate the 

ability of pretreatment CT texture to predict treatment 

failure in patients with primary HNSCC treated with 

chemoradiotherapy. They found that three histogram 

features and four grey-level run length (GLRL) features 

predicted treatment failure in these patients. Yuan et al. 

[24] extracted 485 MRI-based radiomic features from 

170 patients with HNSCC (85 in the training cohort, 85 

in the validation cohort) and obtained higher C indices 

for the radiomics signature (0.73 for training and 0.71 

for validation) and the nomogram (0.76 for training and 

0.72 for validation) than the AJCC staging system 

(0.63 for training and 0.61 for validation). Their study 

established the feasibility of combining MRI-based 

radiomic signatures with clinical characteristics to 

predict prognosis in patients with HNSCC. 
 
18F-FDG-PET/CT has also been widely applied to predict 

survival in cancer patients because of its ability to 

provide information on tumor burden and aggressiveness. 

Bogowicz et al. [22] compared PET and CT radiomics 

for prediction of local tumor control in HNSCC, and they 

found PET to be more accurate than CT in predicting 
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tumor local control rate. Those authors highlighted the 

need to pay more attention to PET-based radiomic 

analysis for predicting prognosis. Kim et al. [25] 

examined the ability of PET/CT to predict treatment 

failure and guide clinical decision-making about salvage 

surgery. Despite their relatively small sample, they were 

able to predict OS and PFS reasonably well based on 

post-treatment PET findings. The optimal time to 

perform PET/CT on HNSCC patients and the optimal 

prognostic model for predicting survival remain unclear. 

Our study identified a pre-treatment Rad-score, com-

prising SHAPE_Sphericity, NGLDM_Coarseness, and 

standardized MTV (SMTV). This integrated PET/CT 

signature, when combined with clinicopathological 

 

 
 

Figure 5. The visualization of OS and DFS survival models based on pre-treatment Rad-score combined with clinicopathologic 
characteristics. The constructed nomograms and their calibration plots to estimate the OS (A) and DFS (B) in 3, 5, and 7 years. 
Abbreviations: OS: overall survival. DFS: disease free survival. 
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characteristics, shows promise for predicting OS and 

DFS of HNSCC patients. Previous studies have 

demonstrated the prognostic significance of traditional 

PET quantitative parameters such as SUV [26], MTV, 

and TLG [27]. We found, however, that these parameters 

did not predict OS or DFS as well as the combination of 

our PET/CT radiomic signatures with a subset of clinico-

pathological characteristics. These findings highlighted 

the potential role of PET/CT radiomic signatures that 

could play in the high throughput machine learning era. 

At the same time, our study suggested that post-treatment 

positive/negative findings may have even more 

prognostic potential than pre-treatment Rad-score when 

combined with clinicopathological characteristics. 

 

 
 

Figure 6. The visualization of OS and DFS survival models based on post-treatment PET signatures combined with 
clinicopathologic characteristics. The constructed nomograms and their calibration plots to estimate the OS (A) and DFS (B) in 3, 5, and 7 
years. Abbreviations: OS: overall survival. DFS: disease free survival. 
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Our findings suggested the potential of PET/CT 

radiomic signatures to predict the prognosis of patients 

with HNSCC reliably. These promising results may 

partly reflect our efforts to control for heterogeneity in 

the patient population, which came from a single 

center with the same scanner. While this approach 

allows us to reduce potential confounding due to 

heterogeneity of patient characteristics and hospital 

practices, it also threatens the external validity of our 

results. Therefore, our findings should be verified and 

extended in larger, preferably multi-site patient 

populations. 

 

 
 

Figure 7. The evaluation of built OS nomograms. The ROC curves and DCA curves of the comparison between clinical-relevant, pre-
treatment and post-treatment survival OS models in 3, 5, and 7 years. The ROC curves of 3-year survival (A), 5-year survival (B) and 7-year 
survival (C). The DCA curves of 3-year survival (D), 5-year survival (E) and 7-year survival (F). Abbreviations: OS: overall survival. ROC: receiver 
operator curve. DCA: decision curve analysis. 
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CONCLUSIONS 
 

The present study using publicly available 18F-PET/CT 

images suggests that combining clinicopathological 

characteristics with specific radiomic signatures from 

pre-treatment scans or with post-treatment assessment 

of primary tumor sites as positive or negative can 

predict OS and DFS of patients with HNSCC 

significantly better than clinicopathological charac-

teristics alone. 

 

 
 

Figure 8. The evaluation of built DFS nomograms. The ROC curves and DCA curves of the comparison between clinical-relevant, pre-
treatment and post-treatment survival DFS models in 3, 5, and 7 years. The ROC curves of 3-year survival (A), 5-year survival (B) and 7-year 
survival (C). The DCA curves of 3-year survival (D), 5-year survival (E) and 7-year survival (F). Abbreviations: DFS: disease free survival. ROC: 
receiver operator curve. DCA: decision curve analysis. 
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MATERIALS AND METHODS 
 

Patient population 

 

We extracted 18F-FDG-PET/CT scans from the 

publicly available HNSCC dataset on The Cancer 

Imaging Achieve (TCIA) platform of the University of 

Texas MD Anderson Cancer Center [28] 

(http://www.cancerimagingarchive.net/). Of the total 

set of 2,840 consecutive patients with HNSCC treated 

with curative radiotherapy at the MD Anderson Cancer 

Center between 1 October 2003 and 31 August 2013 

[29]. Two hundred fifteen patients overlapping in 

TCGA and TCIA databases were initially selected. Of 

these, 203 patients were included because they did not 

have a primary diagnosis of nasopharyngeal 

carcinoma, cancer of unknown primary site, or 

recurrent HNSCC. For the identification of pre-

radiomics signatures, patients were excluded from the 

analysis if their pre-treatment PET/CT images were 

unavailable or the region of interest on their scans was 

too small to extract features. The rest of the patients 

were randomly divided into a training cohort and a 

validation cohort using the caret package in R 3.6.1 

[30]. Finally, 171 patients with available pre-treatment 

PET scans and 154 patients with available post-

treatment PET/CT scans were included in our study, 

according to the Data Descriptor [28]. For further 

identification of post-radiomics signatures and model 

construction, patients from the original cohort were 

included except for those who lacked the paired pre- 

and post-treatment PET/CT images (Supplementary 

Figure 2). 

 

Pre-treatment PET/CT image analysis and feature 

extraction 
 

The pre-treatment PET/CT images were segmented, and 

the features were extracted using LIFEx 4.0 

(http://www.lifexsoft.org) [31]. The primary tumor 

without lymph nodes was segmented by two specialists 

in nuclear medicine (Y.C. and W.D.), who delineated a 

computer-generated volume of interest around voxels 

equal to or greater than 40% of SUVmax [32]. Noise in 

images was reduced by resampling FDG uptake values 

using 64 discrete values, boundary SUV values of 0 to 

30, and a bin width of 0.47, based on typical SUVs for 

HNSCC tumors [33]. Data were extracted on 56 

quantitative PET parameters, first-order intensity 

features, shape features, and texture indices 

(Supplementary Table 5 and Supplementary Material). 

Finally, texture features were investigated based on 

gray-level co-occurrence matrices, gray-level run-length 

matrices, neighborhood gray-tone difference matrix 

wavelet decompositions, and gray-level size zone 

matrices. 

Post-treatment PET/CT image interpretation 
 

The post-treatment PET/CT scans were reviewed 

independently by two specialists in nuclear medicine 

(Y.C. and W.D.), who determined whether the residual 

or recurrent disease was presented. Scans were judged 

negative if no focal increase in FDG uptake was 

evident, or if an increase in FDG uptake was apparent 

but could be attributed to physiological causes or the 

treatment [5]. Discrepancies between the independent 

assessments were resolved in consultation with a senior 

specialist in nuclear medicine (Z.Y.J.) and a radiation 

oncologist (X.C.P.). Pearson correlation analysis was 

performed to show the correlations between extracted 

radiomics features. 

 

Feature selection and integration into a single Rad-

score 

 

Post-normalized Fifty-six radiomics features were 

entered into a “least absolute shrinkage and selection 

operator” (LASSO) algorithm [34] in a Cox regression 

model based on penalized maximum likelihood, to 

shrink the regression coefficients of most radiomics 

variables to zero. The λ is a penalty parameter that 

varies in each step of model fitting. Bootstrapping was 

used to cross-validate 1000 times to the built model and 

to select the variables most relevant to overall survival 

(OS) in the training cohort at an optimal λ. The 

minimum λ giving a minimum mean cross-validated 

error of the built model was determined, and the 

coefficients of the selected variables were identified at 

this λmin. Then a Rad-score for each patient was 

computed based on all LASSO-selected features using 

the following formula: 

1
– =  ( )

*  ( )

n

i
Rad score Coefficient of  feature i

value of  feature i

  (1) 

where the coefficient of radiomics feature (i) was the 

coefficient determined in the regression model. 

 

Data in the training set were used to generate a time-

dependent receiver operating characteristic (ROC) curve 

by survivalROC Package in R to describe the ability of 

the Rad-score to predict OS, which was defined as the 

period from the first diagnosis to death. This curve was 

used to identify the optimal cut-off for the Rad-score, 

and patients whose Rad-scores were higher than this 

threshold were classified as “high risk,” while those 

with Rad-scores equal to or lower than the threshold 

were classified as “low risk”. 

 

Model construction and evaluation 
 

The following three models were used to predict OS 

and disease-free survival (DFS), defined as the period 

file:///C:/Users/Olga/Desktop/IMPACT%20AGING/2020/Advanced/103508/www.cancerimagingarchive.net/
file:///C:/Users/Olga/Desktop/IMPACT%20AGING/2020/Advanced/103508/www.lifexsoft.org
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from the first diagnosis to death due to HNSCC: a 

conventional clinical model, a pre-treatment PET/CT 

model, and a post-treatment PET/CT model. The 

conventional clinical model contained several pre-

treatment clinical characteristics that have been linked 

to the survival of HNSCC patients [35]: body mass 

index, age, T stage, N stage, stage according to the 7th 

edition of the American Joint Committee on Cancer 

(AJCC) guidelines, tumor location, histology grade, and 

smoking history. The model was optimized in a 

stepwise manner based on the Akaike information 

criterion, after which time-dependent variables were 

excluded by applying an assumption of proportional 

hazards. The pre-treatment model was generated by 

adding the Rad-score to this conventional clinical 

model. The post-treatment model was created by adding 

positive/negative findings (based on post-treatment 

PET/CT scans) to the conventional clinical model. 

Three nomograms were constructed based on the three 

models. 

 

The various models were assessed for their ability to 

predict OS or DFS at 3, 5- or 7-years using calibration 

curves and Harrell’s concordance index (C index). The 

“bootstrap split” method [36] was applied with 1000 

iterations. Models were also assessed and compared 

using ROC curves, and the overfitting risk was 

evaluated using the Akaike information criterion. A 

decision curve analysis (DCA) was conducted to help to 

determine which model is the best in clinical use by 

comparing benefits and the harms of false-positive and 

false-negative prediction on the same scale [37, 38]. 

 

Statistical analysis 
 

Data were analyzed statistically using R 3.6.1 [30] and a 

significance threshold of p = 0.05. LASSO-based Cox 

regression was conducted using the glmnet package, 

while ROC curves and optimal cut-offs were generated 

using the survivalROC and tdROC packages [39, 40]. 

The Pearson’s correlation analysis was conducted and 

visuliazed by rattle package. OS and DFS were 

calculated, and survival curves were plotted using 

Kaplan-Meier analysis; statistical inference about the 

survival difference between high- and low-risk patients 

was accomplished using the Cox regression statistic, 

and the analyses were performed using the survival 

package [41, 42]. Multivariate Cox models were 

constructed and evaluated using the survival and pec 

packages [43–45], while decision curves were analyzed 

using the DCA package. When appropriate, results were 

reported as hazard ratios (HRs) with associated 95% 

confidence intervals (CIs). Collinearity diagnostics were 

run using SPSS software, version 25.0 (IBM 

Corporation, Armonk, NY, USA) to ensure partial 

regression coefficients derived from regression analyses 

were estimated precisely and that the relative 

importance of each predictor for OS and DFS could be 

assessed reliably. 
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SUPPLEMENTARY MATERIALS 

 

 

GLCM 
 

The grey level co-occurrence matrix (GLCM) 

[Haralick] takes into account the ar-rangements of pairs 

of voxels to calculate textural indices. The GLCM is 

calculated 

 

from 13 different directions in 3D with a δ-voxel 

distance (|| ||)
d
  relationship between neighboured 

voxels. The index value is the average of the index over 

the 13 directions in space (X, Y, Z). Seven textural 

indices are computed from this matrix. An entry (i, j) of 

GLCM for one direction is equal to: 

 

GLCMΔx,Δy(i, j) = 
1

 Pairs ROI
 

 
 

1 1

1   ( ( , )   ,   ,    ) 

  ( , ),    ,

0 

N x M y

p q

if I p q i I p x q y j

and I p q I p x q y ROI

otherwise

 

 

     


    



   

 
where I (p, q) corresponds to voxel (p, q) in an image (I) 

of size N*M. The vector 
d
  = (∆x, ∆y) covers the 4 

directions (D1, D2, D3, D4, Figure 1.1) in 2D space or 

13 directions (D1, D2, ..., D13, Figure 1.2) in 3D space 

and Pairs ROI corresponds to the number of all voxel 

pairs belonging to the region of interest (ROI). 

 

GLCM_Homogeneity 
 

is the homogeneity of grey-level voxel pairs. 

 

GLCM_Homogeneity = Average over 13 (or 4) 

directions 
( , )

1 | |i j

GLCM i j

i j

 
 

  
   

 
GLCM_Energy 

 

also called Uniformity or Second Angular Moment, is 

the uniformity of grey-level voxel pairs. 

 
GLCM_Energy = Average over 13 (or 4) directions 

 2( , )  
i j

GLCM i j  

 
GLCM_Contrast 

 

also called Variance or Inertia, is the local variations in 

the GLCM. 

GLCM_Contrast = Average over 13 (or 4) directions 

  2 ( ) ( , )
i j

i j GLCM i j  

 

GLCM_Correlation 
 

is the linear dependency of grey-levels in GLCM. 

 

GLCM_Correlation = Average over 13 (or 4) directions  

( )·( )· ( , )

·i j

i i j j GLCM i j

i j

 

 

 
 
 

 
   

 

where μi or μj corresponds to the average on row i or 

column j and σi and σj correspond to the variance on 

row i or column j. 

 

GLCM_Entropy_log10 
 

is the randomness of grey-level voxel pairs. 

 

GLCM_Entropylog10 = Average over 13 (or 4) 

directions

    ( ,  ) ·log2( ( , ))
i j

GLCM i j GLCM i j   

 

where ε = 2e-16. 

 

Be aware of the logarithm used in the formula. 

 

GLCM_Entropy_log2 
 

is the randomness of grey-level voxel pairs. 
 

GLCM_Entropylog2 = Average over 13 (or 4) direction

    ( ,  ) ·log10( ( , ))
i j

GLCM i j GLCM i j   

 

where ε = 2e-16. 

 

GLCM_Dissimilarity 
 

is the variation of grey-level voxel pairs. 

 

GLCM_Dissimilarity = Average over 13 (or 4) 

directions    | |· ( , )
i j

i j GLCM i j  

 

NGLDM 
 

The neighborhood grey-level different matrix 

(NGLDM) [Amadasum1989] corresponds to the 
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difference of grey-levels between one voxel and its 26 

neighbours in 3 dimensions (8 in 2D). Three texture 

indices can be computed from this matrix. An element 

(i, 1) of NGLDM corresponds to the probability of 

occurrence of level i and an element (i, 2) is equal to: 

 

NGLDM ( , 2)
( , )   ( , )

0 
p q

M p q i if I

e
i

p q i

els

  






   

where (p, q)M  is the average of intensities over the 26 

neighbor voxels of voxel (p, q). 

 

NGLDM_Coarseness 
 

is the level of spatial rate of change in intensity. 

NGLDM_Coarsenes
1

( ,1  )· ( ,
s

2)
i
NGLDM i NGLDM i




 

 

NGLDM_Contrast 

 

is the intensity difference between neighbouring regions. 

 

2

( ,1)·

( ,1)·

NGLDM_Contras

( , )  

( , 2)
· 

· ·(

t

1)

i j

i

NGLDM i

NGLDM j i j

NGLDM i

E G G









  



 

where E corresponds to the number of voxels in the 

Volume of Interest and G the number of grey-levels. 

 

NGLDM_Busyness 
 

is the spatial frequency of changes in intensity. 

 

2

( ,1  )· ( ,2)

  | ( · ( ,1) · ( ,

NGLDM_Busyne

1)·( , ) )

ss

|

i

i j

NGLDM i NGLDM i

i NGLDM i j NGLDM j i j






 

with NGLDM (i, 1) ≠ 0, NGLDM(j, 1) ≠ 0 

 

GLRLM 
 

The grey-level run length matrix (GLRLM) [Xu] gives 

the size of homogeneous runs for each grey level. This 

matrix is computed for the 13 different directions in 3D 

(4 in 2D) and for each of the 11 texture indices derived 

from this matrix, the 3D value is the average over the 13 

directions in 3D (4 in 2D). The element (i, j) of 

GLRLM corresponds to the number of homogeneous 

runs of j voxels with intensity i in an image and is called 

GLRLM(i, j) thereafter. 

GLRLM_SRE, GLRLM_LRE 
 

Short-Run Emphasis or Long-Run Emphasis is the 

distribution of the short or the long homogeneous runs 

in an image. 

 

GLRLM_SRE = Average over 13 (or 4) directions

2

1 ( , )
 

i j

GLRLM i j

H i

 
 
 
   

 

GLRLM_LRE = Average over 13 (or 4) directions 

21
( , )·

i j
GLRLM i j i

H

 
 
 
   

 

GLRLM_SRLGE, GLRLM_SRHGE 

 

Short-Run Low Gray-level Emphasis or Short- 
Run High Gray-level Emphasis is the distribution of 

the short homogeneous runs with low or high grey-

levels. 

 

GLRLM_SRLGE = Average over 13 (or 4) directions 

2 2

1 ( , )

·i j

GLRLM i j

H i j

 
 
 
   

 

GLRLM_SRHGE = Average over 13 (or 4) directions
2

2

1 ( , )·
 

i j

GLRLM i j i

H j

 
  
 
   

 

GLRLM_LRLGE, GLRLM_LRHGE 
 

Long-Run Low Gray-level Emphasis or Long-Run 
High Gray-level Emphasis is the distribution of the 

long homogeneous runs with low or high grey-levels. 
 

GLRLM_LRLGE = Average over 13 (or 4) directions 
2

2

1 ( , )·
 

i j

GLRLM i j j

H i

 
  
 
   

 

GLRLM_LRHGE = Average over 13 (or 4) directions 

  2 21
, · ·

i j
GLRLM i j i j

H

 
 
 
   

 

GLRLM_GLNUr, GLRLM_RLNU 
 

Gray-Level Non-Uniformity for run or Run Length 
Non-Uniformity is the nonuniformity of the grey-levels 

or the length of the homogeneous runs. 
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GLRLM_GLNUr = Average over 13 (or 4) directions 

 
21

( , )
i j

GLRLM i j
H

 
 
 
   

GLRLM_RLNU = Average over 13 (or 4) directions 

  
21

,    
j i

GLRLM i j
H

 
 
 
   

 

GLRLM_RP 
 

Run Percentage measures the homogeneity of the 

homogeneous runs. 

GLRLM_RP = Average over 13 (or 4) directions 

    · , 
i j

H

j GLRLM i j

 
 
  
 

 

 

GLZLM 
 

The grey-level zone length matrix (GLZLM)  

Thibault] provides information on the size of 

homogeneous zones for each grey-level in 3 dimensions 

(or 2D). It is also named Grey Level Size Zone Matrix 

(GLSZM). From this matrix, 11 texture indices are 

computed. Element (i, j) of GLZLM corresponds to the 

number of homogeneous zones of j voxels with the 

intensity i in an image and is called GLZLM(i, j) 

thereafter. 

 

GLZLM_SZE, GLZLM_LZE 

 

Short-Zone Emphasis or Long-Zone Emphasis is the 

distribution of the short or the long homogeneous zones 

in an image. 

2
GLZLM_SZ

1 ( , )
 E

i j

GLZLM i j

H j
    

2GLZLM _ LZ
1

( , )·E
i j

GLZLM i j j
H

    

 

where H corresponds to the number of homogeneous 

zones in the Volume of Interest. 

 

GLZLM_LGZE, GLZLM_HGZE 
 

Low Gray-level Zone Emphasis or High Gray-level 
Zone Emphasis is the distribution of the low or high 

grey-level zones. 

 

 
2

GLZLM_LGZE
,1

i j

GLZLM i j

H i
    

  2GLZLM_HGZE
1

, ·
i j

GLZLM i j i
H

    

 

GLZLM_SZLGE, GLZLM_SZHGE 
 

Short-Zone Low Gray-level Emphasis or Short- 
Zone High Gray-level Emphasis is the distribution of 

the short homogeneous zones with low or high grey-

levels. 

 

2 2
GLZLM_SZLG

1 ( , )
 E

·i j

GLZLM i j

H i j
    

 

  2

2
GLZLM_SZHG

, ·1
E

i j

GLZLM i j i

H j
    

 

GLZLM_LZLGE, GLZLM_LZHGE 
 

Long-Zone Low Gray-level Emphasis or Long-Zone 

High Gray-level Emphasis is the distribution of the 

long homogeneous zones with low or high grey-levels. 

 

  2

2
GLZLM_LZLG

, ·1
E

i j

GLZLM i j j

H i
   

 

  2 2GLZLM_LZHGE
1

, · ·
i j

GLZLM i j i j
H

    

 

GLZLM_GLNUz, GLZLM_ZLNU 
 

Gray-Level Non-Uniformity for zone or Zone 
Length Non-Uniformity is the nonuniformity of the 

grey-levels or the length of the homogeneous zones. 

 

  
21

 GLZLM_GLN ,Uz  
i j

GLZLM i j
H

    

  
2

GLZLM_ZLN
1

 U   ,
j i

GLZLM i j
H

    

 

GLZLM_ZP 

 

Zone Percentage measures the homogeneity of the 

homogeneous zones. 

 

 
GLZLM_ZP

  · ( , )
i j

H

j GLZLM i j

 

 

 

SHAPE_SPHERICITY 
 

is how spherical a Volume of Interest is. Sphericity is 

equal to 1 for a perfect sphere. 

 

 
2/3

1/3·  6

SHAPE_Sphericity

V

A


  
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where V and A correspond to the volume and the 

surface of the Volume of Interest based on the Delaunay 

triangulation. 

SHAPE_Compacity 

 

reflects how compact the Volume of Interest is. 

 
3/2

SHAPE_Compacity
A

V
  

 

where V and A correspond to the volume and the 

surface of the Volume of Interest based on the Delaunay 

triangulation. 

 

SHAPE_Volume (mL and voxels) 
 

is the Volume of Interest in mL and in voxels. 

 

SHAPE_Volume i

i

V  

 

where Vi corresponds to the volume of voxel i of the 

Volume of Interest. 

 

HISTOGRAM CALCULATION 
 

To build a histogram HISTO, it is necessary to 

determine a bin width ("bin" parameter). The indices 

derived from the histogram will depend on this bin 

width parameter. 

 

HISTO_Skewness 
 

is the asymmetry of the grey-level distribution in the 

histogram. 

 

 

 

3

3
2

_______1

_______1

HISTO _ Skewness 

i

i

HISTO i
HISTOE

HISTO i
HISTOE

 
 

 

 
     

 







  

 

where HISTO(i) corresponds to the number of voxels 

with intensity i, E the total number of voxels in the 

Volume of Interest and HISTO  the average of grey-

levels in the histogram. 

 

HISTO_Kurtosis 
 

reflects the shape of the grey-level distribution (peaked 

or flat) relative to a normal distribution. 

 

 

 

4

2
2

_______

HISTO_Kurtosis

1

_______1

i

i

HISTO i
HISTOE

HISTO i
HISTOE

 
 

 

  
  
 



 





 

 

where HISTO(i) corresponds to the number of voxels 

with intensity i, E the total number of voxels in the 

Volume of Interest and HISTO  the average of grey-

levels in the histogram 

 

HISTO_Entropy_log10 
 

reflects the randomness of the distribution. 

 

    10HISTO_Entropylog10 ·
i
p i log p i    

 

where p(i) is the probability of occurrence of voxels 

with intensity i and ε = 2e-16. 

 

HISTO_Entropy_log2 
 

reflects the randomness of the distribution. 

 

    2HISTO_Entropylog2 ·
i
p i log p i    

 

where p(i) is the probability of occurrence of voxels 

with intensity i and ε = 2e-16. 

 

HISTO_Energy 
 

reflects the uniformity of the distribution. 

 

 
2

HISTO_Energy
i
p i  
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Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The clinical-relevant survival nomograms and their calibration plots. (A) OS-based model. (B) DFS-based 
model. 
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Supplementary Figure 2. The flow chart of the study design. 
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Supplementary Tables 
 

Supplementary Table 1. Univariate and multivariate Cox regression analyses for OS and DFS in the radiomics 
features. 

Variables 
Overall survival Disease-free survival 

HR (95%CI) p HR (95%CI) p 

Univariate analysis 
    

SHAPE_Sphericity 0.69 (0.48-1.01) 0.056 0.70 (0.49-1.02) 0.064 

NGLDM_Coarseness 1.24 (0.96-1.61) 0.100 1.22 (0.95-1.58) 0.119 

SMTV 1.42 (0.99-2.03) 0.060 1.48 (1.01 - 2.16) 0.046 

Multivariate analysis 
    

SHAPE_Sphericity 0.71 (0.49-1.04) 0.081 0.72 (0.50-1.06) 0.096 

NGLDM_Coarseness 1.45 (1.11-1.90) 0.003 1.43 (1.10-1.87) 0.008 

SMTV 1.57 (1.05-2.33) 0.027 1.64 (1.08-0.49) 0.021 

Abbreviations: OS-overall survival; DFS-disease-free survival; HR-hazard ratio; NGLDM-neighborhood grey-level different 
matrix; SMTV-standardized metabolic tumor value; 
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Supplementary Table 2. Clinical characteristics of patients according to the Rad-score in the combined training and 
validation cohorts. 

Variables 

Combined cohort 
(N = 171) 

p-value 

N Low Radscore High Radscore p 

Gender 
   

0.789 

Male 147 96 (65.3%) 51 (34.7%) 
 

Female 24 15 (62.5%) 9 (37.5%) 
 

Age (years) 
   

0.036 

< 60 101 72 (71.3%) 29 (28.7%) 
 

≥ 60 70 39 (55.7%) 31 (44.3%) 
 

Tumor size 
   

0.005 

≤ 4 85 64 (75.3%) 21 (24.7%) 
 

> 4 86 47 (54.7) 39 (45.3%) 
 

Tumor Location 
    

Oropharynx 137 91 (66.4%) 46 (33.6%) 0.538 

Larynx 19 12 (63.2%) 7 (36.8%) 
 

Oralcavity 4 3 (75.0%) 1 (25.0%) 
 

Hypopharynx 11 5 (45.5%) 6 (54.5%) 
 

Differentiation status 
   

0.234 

Well 17 4 (23.5%) 13 (76.5%) 
 

Moderate 79 54 (68.4%) 25 (31.6%) 
 

Poor and undifferentiated 75 44 (58.7%) 31 (41.3%) 
 

T Stage* 
   

< 0.001 

T1 31 20 (64.5%) 11 (35.5%) 
 

T2 54 44 (81.5%) 10 (18.5%) 
 

T3 52 36 (69.2%) 16 (30.8%) 
 

T4 34 11 (32.4%) 23 (67.6%) 
 

N Stage* 
    

N0 19 14 (73.7%) 5 (26.3%) 0.066 

N1 19 14 (73.7%) 5 (26.3%) 
 

N2a 9 9 (100%) 0 (0%) 
 

N2b 75 46 (61.3%) 29 (38.7%) 
 

N2c 37 24 (64.9%) 13 (35.1%) 
 

N3 12 4 (33.3) 8 (66.7%) 
 

TNM stage* 
   

0.044 

I 1 1 (100%) 0 (0%) 
 

II 5 5 (100%) 0 (0%) 
 

III 28 22 (78.6%) 6 (21.4%) 
 

IVA 122 77 (63.1%) 45 (36.9%) 
 

IVB 15 6 (40%) 9 (60%) 
 

* according to 7th AJCC stage system. 
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Supplementary Table 3. Univariate Cox regression analyses for OS and DFS in the combined cohort. 

Variables 
Overall survival Disease-free survival 

HR (95%CI) p HR (95%CI) p 

Univariate Cox Regression Analysis  
    

PET outcome (vs. negative) 6.60 (3.65-11.97) <0.001 8.17 (4.45-15.00) <0.001 

Rad-score  6.43 (2.68-15.4) <0.001 6.81 (2.75-16.85) <0.001 

Start-treatment BMI 0.90 (0.85-0.97) 0.002 0.90 (0.85-0.96) <0.001 

Cancer site (vs. Oropharynx) 
    

Hypopharynx  5.85 (2.55-13.44) <0.001 5.43 (2.37-12.39) <0.001 

Oral cavity 1.69 (0.23-12.54) 0.606 1.57 (0.21-11.6) 0.658 

Larynx 2.68 (0.80-9.70) 0.114 2.58 (0.75-8.90) 0.135 

N stage (vs. N0-2) 3.08 (1.36-6.97) 0.007 2.95 (1.29-6.73) 0.010 

Age 1.05 (1.02-1.09) 0.001 1.05 (1.02-1.08) 0.002 

Histologic grade (vs. well-moderate differentiated) 0.57 (0.31-1.06) 0.076 0.56 (0.30-1.05) 0.071 

T stage (vs. T1-3) 1.76 (0.89-3.49) 0.105 1.66 (0.84-3.29) 0.146 

7th AJCC Stage (vs. stage I-III) 0.68 (0.35-1.35) 0.273 0.66 (0.33-1.31) 0.232 

Smoking history (vs. never) 
    

Less than 10 pack-years 1.43 (0.52-3.92) 0.485 1.51 (0.55-4.11) 0.422 

greater or equal than 10 pack-years 1.13 (0.60-2.13) 0.705 1.13 (0.60-2.13) 0.699 

Induction Chemotherapy (vs. no) 0.93 (0.44-1.55) 0.557 0.82 (0.44-1.53) 0.526 

Concurrent Chemoradiotherapy (vs. no) 1.07 (0.59-1.95) 0.818 1.07 (0.59-1.94) 0.829 

Abbreviations: OS-overall survival; DFS-disease free survival; HR-hazard ratio; BMI-body mass index; PET- positron emission 
tomography/computed tomography. 
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Supplementary Table 4. Univariate and multivariate Cox regression analyses for OS and DFS in the radiomics model 
and traditional PET model. 

Variables 
Overall survival 

 
Disease-free survival 

 
HR (95%CI) p C-index HR (95%CI) p C-index 

Rad-score 6.332 (2.765-14.5) < 0.001 0.641 6.844 (2.904-16.13) < 0.001 0.643 

Conventional PET features 
     

Multivariate analysis 
 

0.588 
  

0.576 

MTV 1.4069 (0.8850-2.236) 0.149 
 

1.335 (0.826-2.159) 0.238 
 

TLG 0.9903 (0.558-1.758) 0.973 
 

1.061 (0.592-1.902) 0.844 
 

SUVmax 0.7968 (0.442-1.437) 0.450 
 

0.855 (0.477-1.534) 0.600 
 

SUVmean 1.2836 (0.612-2.694) 0.509 
 

1.141 (0.541-2.407) 0.729 
 

Univariate analysis 
     

MTV 1.408 (1.123-1.764) 0.003 0.567 1.400 (1.109-1.768) 0.004 0.562 

TLG 1.286 (1.055-1.567) 0.013 0.579 1.281 (1.049-1.565) 0.015 0.580 

SUVmax 1.045 (0.8141-1.341) 0.731 0.501 1.034 (0.805-1.329) 0.792 0.511 

SUVmean 1.105 (0.863-1.415) 0.430 0.530 1.082 (0.844-1.387) 0.535 0.536 

Abbreviations: OS-overall survival; DFS-disease-free survival; HR-hazard ratio; PET- positron emission tomography/computed 
tomography; C-index-Concordance index; MTV-metabolic tumor value; TLG-total lesion glycolysis; SUV- standardized uptake 
values. 
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Supplementary Table 5. The image features extracted from PET/CT images of HNSCC patients. 

 

 

PET paremeters Intensity features Shape GLCM GLRLM NGTDM GLZLM 

SUVmin HISTO_Skewness SHAPE_Volume_ml GLCM_Homogeneity GLRLM_SRE NGLDM_Coarseness GLZLM_SZE 

SUVmean HISTO_Kurtosis SHAPE_Volume_vx GLCM_Energy GLRLM_LRE NGLDM_Contrast GLZLM_LZE 

SUVstd HISTO_ExcessKurtosis SHAPE_Sphericity GLCM_Contrast GLRLM_LGRE NGLDM_Busyness GLZLM_LGZE 

SUVmax HISTO_Entropy_log10 SHAPE_Compacity GLCM_Correlation GLRLM_HGRE 
 

GLZLM_HGZE 

SUVsum HISTO_Entropy_log2  GLCM_Entropy_log10 GLRLM_SRLGE 
 

GLZLM_SZLGE 

SUVQ1 HIOTO_Energy  GLCM_Entropy_log2 GLRLM_SRHGE 
 

GLZLM_SZHGE 

SUVQ2   GLCM_Dissimilarity GLRLM_LRLGE 
 

GLZLM_LZLGE 

SUVQ3   
 

GLRLM_LRHGE 
 

GLZLM_LZHGE 

SUVpeak.sphere.0.5mL  
  

GLRLM_GLNU 
 

GLZLM_GLNU 

SUVpeak.sphere.1mL  
  

GLRLM_RLNU 
 

GLZLM_ZLNU 

MTV  
  

GLRLM_RP 
 

GLZLM_ZP 

SMTV  
     

TLG  
     

STLG  
     


