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INTRODUCTION 
 

Cancer neoantigens have shown great potential in targeted 

immunotherapies due to their immunogenicity and lack of 

expression in normal tissues, which could be recognized 

by autologous T cells and thus may constitute the Achilles 

heel of tumor cells. Previous studies have demonstrated 

that somatic DNA alterations, e.g. nonsynonymous point 

mutations, insertion-deletions (indels), gene fusions 

and/or frameshift mutations, are the sources of 

neoantigens, which have potential pathogenic impact on 

gene expression, protein function and downstream 

pathways [1]. Several tools have been developed to 

identify these kinds of neopeptides including pVAC-Seq 

[2], MuPeXI [3], TSNAD [4], CloudNeo [5], 

INTEGRATE-neo [6], Neopepsee [7] and pTuneos [8], 

while transcriptome in tumors received much less 

attention. Recent studies showed that transcriptome level 
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immune score than that of somatic neopeptides and alternative splicing based neopeptides could be a marker 
to predict patient survival pattern. Our identification of alternative splicing derived neopeptides would 
contribute to a more complete understanding of the tumor immune landscape. Prediction of patient-specific 
alternative splicing neopeptides has the potential to contribute to the development of personalized cancer 
vaccines. 
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modifications could also be a potential source of 

neopeptides by analyses of TCGA cohorts [9] as well as 

the clinical cohorts undergo immune checkpoint inhibitor 

therapy [10]. Kahles et al. analyzed the alternative 

splicing (AS) across 32 The Cancer Genome Atlas 

(TCGA) cancer types from 8,705 patients and detected 

alternative splicing events and tumor variants by 

reanalyzing RNA and whole-exome sequencing data [9]. 

Smart et al. analyzed intron retention events with 

immunotherapy treated cohorts and identified neopeptides 

derived from them [10]. These studies both indicated that 

transcriptome level modifications could generate 

neopeptides, which were supported by mass spectrometry 

(MS) analysis, and they proposed that AS neopeptides 

should be considered for prospective personalized cancer 

vaccine development. However, an efficient and easy-to-

use tool is still lacking to accurately predict and 

investigate the personalized AS neopeptides from 

transcriptome. In this study, we present ASNEO, an 

integrated computational pipeline for the identification 

and investigation of personalized Alternative Splicing 

based NEOantigens from RNA-seq. It is an efficient tool 

to identify alternative splicing based neopeptides and can 

be quickly installed and deployed at https://github. 

com/bm2-lab/ASNEO. 

 

To further investigate the features of AS neopeptides, 

we applied ASNEO to two published immunotherapy-

treated cohorts. We investigated the difference between 

AS neopeptides and somatic neopeptides, and evaluated 

the correlations between AS neopeptides and patient 

immunotherapy response or patient survival time. Our 

comprehensive analyses indicated that (1) alternative 

splicing based neopeptides generally have a higher 

immune score than that of somatic neopeptides, 

demonstrating that alternative splicing based 

neopeptides might be a better candidate as the cancer 

vaccine, and (2) alternative splicing based neopeptides 

might be a marker to predict patient survival pattern. 

 

RESULTS 
 

General workflow for integrated analysis 
 

We presented a versatile and comprehensive workflow to 

analyze AS neopeptides by ASNEO (Figure 1). In our 

study, three cohorts were used to identify AS neopeptides 

by ASNEO, which is presented as an integrated 

computational pipeline for the identification of 

personalized Alternative Splicing based NEOantigens 

with RNA-seq. Three main analyses were performed, 

including evaluation of the performance of ASNEO, 

immunogenicity comparison of AS neopeptides with 

somatic neopeptides, and predictability evaluation of 

response or survival with AS neopeptides. 

 

 
 

Figure 1. A comprehensive workflow to analyze AS neopeptides by ASNEO. The left part represents the data of three cohort used in 
the analyses. The middle part represents the computational pipeline of ASNEO for identification of AS neopeptides. The right part represents 
three main analyses performed in this work, containing evaluation of ASNEO by mass spectrometry (MS) analysis (top), immune score 
comparison of AS neopeptides with somatic neopeptides (middle), and predictability evaluation of AS neopeptides by survival analysis 
(bottom). 

https://github.com/bm2-lab/ASNEO
https://github.com/bm2-lab/ASNEO
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Computational pipeline of ASNEO 
 

The general computational framework of ASNEO 

consists of the following steps (Figure 2). (1) RNA-seq 

reads were cleaned and aligned to reference genome 

hg19, generating splice junctions along with the 

predicted HLA types, which were taken as the input to 

ASNEO. (2) ASNEO filtered low expressed junctions 

and Normal Junctions. The Normal Junctions were 

defined as those junctions with at least 2 reads covered 

by at least 1% of normal samples (>3000) from GTEx 

detected junctions, as well as those junctions in the 

UCSC hg19 reference annotation. (3) The filtered novel 

junctions were inserted into reference isoforms to 

generate novel isoforms. Then these isoforms were 

translated into novel proteins by one-frame translation 

from the translation start site to the stop codon. In this 

way, proteins whose length>30 are retained. (4) ASNEO 

chopped up the proteins into 9-mer peptides and these 

peptides were filtered by the set of Normal Proteins. In 

our study, Normal Proteins consist of UCSC reference 

proteins and Normal Junctions produced proteins by our 

pipeline. (5) To calculate the bind rank of peptides to 

HLA, NetMHCpan-4.0 was used and those rank<2% 

peptides are considered as putative neopeptides. (6) In 

addition, ASNEO designed an immune score schema to 

evaluate the immunogenicity of putative neopeptides 

with several features including mutant peptide-MHC 

%rank, the normal peptide-MHC %rank, the number of 

mismatches between the mutant peptide and normal 

peptide, the peptide cleavage probability, TAP transport 

efficiency, hydrophobicity score and T cell recognition 

score, which has been proposed in our previous study 

[11]. 

 

Evaluation of ASNEO 

 

To evaluate the prioritization performance of ASNEO, 

our previous study [11] has already applied the score 

schema to five public peptides datasets with 

experimentally confirmed immunogenic and non-

immunogenic peptides. Compared to other available 

 

 
 

Figure 2. The computational pipeline of ASNEO for identification of AS neopeptides. The ASNEO accepted splice junctions 
detected by STAR, and then filtered low expressed junctions, low psi junctions, and Normal Junctions. Next, ASNEO inserted the filtered 
junctions into reference isoforms to generate novel isoforms and translated the novel isoforms to novel proteins by one-frame translation 
from the translation start site to the stop codon. The filtered novel proteins then were chopped up to 8-11-mer peptides, which were filtered 
by Normal Proteins. The bind ranks of remained peptides to HLA were calculated by NetMHCpan-4.0 and those peptides whose %rank<2 
were considered as putative neopeptides. In addition, ASNEO integrated an immune score to evaluate the immunogenicity of putative 
neopeptides with several features, including the mutant peptide-MHC %rank, the normal peptide-MHC %rank, the number of mismatches 
between the mutant peptide and normal peptide as well as the cleavage probability, the TAP transport efficiency, the hydrophobicity score 
and the T cell recognition probability of mutant peptide. 
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tools, including the neoantigen fitness model [12], 

MuPeXI [3], neopepsee [7] and a tool available at IEDB 

[13], in 2 of 5 peptides datasets, our score scheme 

presented the highest ROC-AUC (area under the receiver 

operating characteristic curve) and in 3 of 5 peptides 

datasets, our score scheme presented the highest PR-

AUC (area under the precision-recall curve), indicating 

the superiority and rationality of our proposed score 

schema. 

 

To check the reliability of ASNEO, mass spectrometry 

analysis was performed on Schuster cohort [14]. 

ASNEO was applied to RNA-seq data to identify 

putative AS neopeptides, and only peptides with 9-mer 

length and percentile %rank<2 were retained. ASNEO 

identified an average of 69.8 AS neopeptides per 

sample, range from 6 to 194. The total number of 

unique neopeptides of all 14 samples was 407, which 

account for less than half of the number of total 

neopeptides. Mass spectrometry data was applied to 

search against the database consisting of Normal 
Proteins plus the putative AS neopeptides by each 

sample. To guarantee a high confidence, a 1% false 

discovery rate was set. As a result, the predicted AS 

neopeptides MKANPALTM from sample OvCa99 and 

IHFLSLLNF from sample OvCa48 were experimentally 

discovered in complex with MHC I via mass 

spectrometry with a high confidence (Figure 3). The 

score of MKANPALTM was 1.9e-07 while the score of 

IHFLSLLNF was 7.31e-07, rank 208/407 and 187/407 

relatively. The discovery of peptides existing in both 

mass spectrometry data and computational predicted AS 

neopeptides indicating that ASNEO can identify AS 

neopeptides effectively, which were processed and 

presented through the MHC I pathway. 

 

Comparison of AS neopeptides to somatic 

neopeptides in immunotherapy-treated cohorts 

 

To assess the characteristics of AS neopeptides, we 

applied ASNEO to two published datasets of melanoma 

patients treated with CTLA4 inhibitors [15] or PD-1 

inhibitors [16]. For van Allen cohort, in the 39 

melanoma patients, we identified an average of 301.7 

putative AS neopeptides per sample, range from 24 to 

2406 (Supplementary Table 1). For Hugo cohort, in the 

25 melanoma patients, we identified an average of 47.6 

AS putative neopeptides per sample, range from 5 to 

121 (Supplementary Table 2). To compare the AS 

neopeptides with somatic neopeptides, the whole exome 

sequencing (WES) data in van Allen cohort and Hugo 

cohort were applied to MuPeXI to predict somatic 

neopeptides, which were then scored by ASNEO. We 

identified an average of 186.9 (range from 4 to 1160) 

somatic neopeptides in van Allen cohort 

(Supplementary Table 1) and an average of 293.7 

(range from 9 to 1733) somatic neopeptides in Hugo 

cohort (Supplementary Table 2). For van Allen cohort

 

 
 

Figure 3. Predicted AS neopeptides from Schuster cohort were identified by mass spectrometry bound to MHC class I. The AS 
neopeptide MKANPALTM identified in the Schuster cohort originating from gene PRPF8 (chr17:1561897-1561976) was predicted by ASNEO 
and validated by mass spectrometry in OvCa99 immunopeptidome. 
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and Hugo cohort, the total neopeptides yield a ~1.6-fold 

increase and a ~0.16-fold increase respectively with the 

addition of AS neopeptides (Figure 4A). 

 

The mean score profile, which is defined by the mean of 

immune scores for all identified neopeptides in a 

sample, was compared. The result indicated that AS 

neopeptides showed a higher mean score profile than 

that of somatic neopeptides in both van Allen cohort 

(Wilcoxon test, P=1.5e-08) and Hugo cohort (Wilcoxon 

test, P=9.1e-06) (Figure 4B). However, when the 

median score profile, which is defined by the median of 

immune scores for all identified neopeptides in a 

sample, was compared, the result showed no difference 

between AS neopeptides and somatic neopeptides 

neither in van Allen cohort nor in Hugo cohort 

(Wilcoxon test, p<0.05 for both). Therefore, we defined 

those neopeptides whose immune score greater than 1e-

8 as the high immunogenicity neopeptides (HIN). The 

cutoff of 1e-8 was set due to its approaching to the 

median value of all neopeptides. 

 

When comparing the scores of AS neopeptides with 

somatic neopeptides, we found that the scores of AS 

neopeptides were higher in van Allen cohort 

(Wilcoxon test, p=4e-11), but not in Hugo cohort 

(Wilcoxon test, p=0.47). While using the HIN, AS 

neopeptides had a significant higher immune score 

than that of somatic neopeptides both in van Allen 

cohort and in Hugo cohort as well as in merged two 

cohorts (Wilcoxon test, P<2.2e-16 for all) (Figure 

4C), indicating that AS neopeptides might be more 

immunogenic, could be a better candidate as cancer 

vaccines.

 

 
 

Figure 4. Comparison of AS neopeptides with somatic neopeptides. (A) The number of somatic neopeptides and AS neopeptides. 
Within each cohort, patients were sorted by total neoantigen burden. Neopeptide counts (y-axis values) were represented in natural log 
format. (B) In each cohort, AS neopeptides showed a higher mean immune score profile than that of somatic neopeptides (van Allen cohort: 
Wilcoxon test P=1.5e-08; Hugo cohort: Wilcoxon test P=9.1e-06). (C) Using HIN, AS neopeptides showed a significant higher immune score 
than that of somatic neopeptides in both van Allen cohort and Hugo cohort as well as in merged two cohorts (Wilcoxon test, P<2.2e-16 for 
all). The immune scores of neopeptides (y-axis values) were represented in natural log format. HIN: high immune neopeptides. 
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Prediction of response or survival with AS 

neopeptides in immunotherapy-treated cohorts 

 

To investigate the relationship between the checkpoint 

inhibitor response and neoantigen burden, including 

somatic neoantigen burden and AS neoantigen burden, 

van Allen cohort and Hugo cohort were compared 

between two clinical response groups: clinical benefit 

and no clinical benefit respectively. For van Allen 

cohort, the somatic neoantigen burden was significant 

associated with patient response to immunotherapy 

treatment (Wilcoxon test, P=0.031, Figure 5A), 

consistent with previous study [15], but AS neoantigen 

burden was not associated with the response (Wilcoxon 

test, P=0.93, Figure 5C). For Hugo cohort, the somatic 

neoantigen burden was not associated with response 

(Wilcoxon test, P=0.37, Figure 5B), consistent with 

previous study as well [16], while AS neoantigen 

burden was significant associated with response 

(Wilcoxon test, P=0.029, Figure 5D). The results 

suggested that AS neopeptides could predict response in 

certain cases, just like somatic neopeptides, but when or 

where need to be further investigated. Then we 

combined the somatic neopeptides and AS neopeptides 

together, termed as the overall neopeptides, and 

assumed that the overall neoantigen burden of samples 

derived from all sources have association with response 

in all cases. However, the analysis showed that there 

was no association between overall neopeptides burden 

and response neither in van Allen cohort nor in Hugo 

cohort (Wilcoxon test, van Allen cohort: P=0.24, Hugo 

cohort: P=0.2, Figure 5E, 5F). Additionally, we 

 

 
 

Figure 5. Relationships between neoantigen burden and patient response undergo immunotherapy treatment. For van Allen 
cohort, the somatic neoantigen burden was significant associated with patient response to immunotherapy treatment (Wilcoxon test, 
P=0.031, A), while AS neoantigen burden was not associated with response (Wilcoxon test, P=0.93, C). For Hugo cohort, the somatic 
neoantigen burden was not associated with response (Wilcoxon test, P=0.37, B), while AS neoantigen burden was significant associated with 
response (Wilcox test, P=0.029, D). Overall neoantigen burden showed no association with response neither in van Allen cohort (Wilcox test, 
P=0.24, E) nor in Hugo cohort (Wilcox test, P=0.2, F). CB: Clinical Benefit, NCB: No Clinical Benefit. 
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explored whether there was correlation between AS 

neoantigen burden and somatic neoantigen burden or 

expression of canonical markers of immune cytolytic 

activity CD8A, GZMA or PRF1 [17]. The results 

showed there was no association between AS 

neoantigen burden and somatic neoantigen burden, nor 

association between AS neoantigen burden and CD8A, 

GZMA or PRF1 neither in van Allen cohort nor in 

Hugo cohort (Pearson correlation P>0.05 for all). 

 
Next, we explored whether the AS neoantigen burden 

could predict patient survival. We firstly investigated 

the expression level of TGFB1 in these two cohorts, 

which is a suppressor of cytotoxic lymphocyte (CTL) 

[18]. We found that the TGFB1 is highly expressed in 

Hugo cohort rather than van Allen cohort (Wilcoxon 

test, P=0.04), which indicated that the tumor 

microenvironment differences should be considered in 

these two cohorts. Hence, the AS neoantigen burden 

multiplying CTL and T cell abundance 

(Burden*CTL*Tcell) was defined as a metric to predict 

the patient survival in van Allen cohort while in Hugo 

cohort only neoantigen burden was considered. Here, 

we examined whether the expression level of TGFB1, T 

cell abundance or CTL abundance possess the survival 

predictive power or not. Our analysis results showed 

that the abundance of TGFB1, CTL, T cell or 

CTL*Tcell were not associated with patients' survival 

neither in van Allen cohort nor in Hugo cohort (log-

rank test, P<0.05 for all, Supplementary Figure 1). But 

the AS neoantigen burden multiplying CTL and T cell 

abundance was associated with progress free survival 

(PFS) in van Allen cohort (log-rank P=0.05, Figure 6A) 

and neoantigen burden was associated with improved 

overall survival (OS) in Hugo cohort (log-rank P=0.04, 

Figure 6B). When using the HIN instead of neoantigen 

burden as a predictor, the survival separations became 

more significant both in van Allen cohort 

(HIN*CTL*Tcell, log-rank P=0.04, Figure 6C) and in 

Hugo cohort (HIN, log-rank P=0.009, Figure 6D), 

 

 
 

Figure 6. The AS neopeptide is a potential biomarker for patient survival analysis. Neoantigen burden multiplying CTL and T cell 
abundance (Burden*CTL*Tcell) was associated with progress free survival in van Allen cohort (log-rank P=0.05, A) and neoantigen burden 
(Burden) was associated with improved overall survival (log-rank P=0.04, B) in Hugo cohort. When use high immune neopeptides (HIN) to 
predict survival, the separation became more significant in both van Allen cohort (HIN*CTL*Tcell, log-rank P=0.04, C) and Hugo cohort (HIN, 
log-rank P=0.009, D). 



 

www.aging-us.com 14640 AGING 

which suggested that the HIN could be a better 

biomarker. In addition, we examined the metrics (van 

Allen cohort: Burden*CTL*Tcell, HIN*CTL*Tcell; 

Hugo cohort: Burden, HIN) together with gender and 

age in multivariable Cox regression analysis, and the 

results indicated that all these metrics were associated 

with the patients' survival, independent of gender and 

age (Supplementary Table 3). 

 

DISCUSSION 
 

Alternative splicing events have been shown 

contribution to cancer development and progression 

and potential to generate neoantigens [9, 10]. In this 

work, we presented ASNEO, an integrated 

computational pipeline for the identification of 

personalized Alternative Splicing based NEOantigens 

from RNA-seq. Identification of alternative splicing 

derived neoantigens will contribute to a more complete 

understanding of the tumor immune landscape. 

Prediction of patient-specific AS neoantigens has the 

potential to contribute to the development of 

personalized cancer vaccines. In our comprehensive 

analyses, taking together, ASNEO was demonstrated to 

be an efficient in silico prediction tool for identifying 

and prioritizing cancer neopeptides derived from 

alternative splicing. It adopts several preliminary 

filtering strategies to obtain reliable neopeptides; 

integrates a neoantigen scoring schema to evaluate the 

immunogenicity of putative neopeptides for 

neoantigens prioritizing; and implements multiple 

thread processing for running speed acceleration. We 

validated the reasonability of ASNEO by applying it to 

an independent dataset containing both RNA-seq data 

and MS data. The neopeptides MKANPALTM and 

IHFLSLLNF were not only identified by ASNEO but 

also experimentally discovered in complex with MHC 

I via mass spectrometry with high confidence. Though 

the percentage of neopeptides validated is 0.49% that 

seems to represent a low proportion, it was in the 

range of other proteogenomics studies which also 

report less than 1% validation rate. For instance, 

Bassani-Sternberg et al. [19] identified 11 out of 3487 

somatic mutations (0.32%) and Zhang et al.  [20] 

identified 3 out of 1369 RNA editing sites (0.21%). 

This divergence might be influenced by LC-MS 

sensitivity and biological factor such as proteasome 

processing, cytosolic peptidases, TAP and binding 

affinity to HLA. We further applied ASNEO to two 

clinical cohorts undergoing checkpoint blockade 

immunotherapy, and revealed that AS neopeptides 

generally have a higher immunogenicity than somatic 

neopeptides, and might be a better candidate as the 

cancer vaccine. We also demonstrated that AS 

neopeptides could be a predictor of patient survival 

pattern. In summary, the identification of AS 

neopeptides not only extends the scope of neoantigen 

types, providing a better choice of cancer vaccine 

candidate, but also presents a biomarker for patient 

survival prediction in the context of tumor 

immunotherapy. 

 

Identification of a wide array of tumor neoantigens, 

including those derived from SNVs, indels, gene 

fusions, aberrant gene expression and alternative 

splicing, will contribute to a more complete 

understanding of the tumor immune landscape. The 

relationships between the neoantigen burden of different 

sources as well as between the neoantigens and the 

effects of immunotherapy require further study. 

Currently, our evaluations are limited by the datasets 

with both RNA-seq and mass spectroscopy data of 

eluted epitopes, by the availability of public neoantigens 

confirmed processed and presented in vivo or not. Also, 

our findings are limited by the availability of clinically 

annotated cohorts with high-quality RNA-seq and 

matched normal tissue. Future development of ASNEO 

will include three main aspects: (1) Incorporation of 

matched normal tissue that represent normal gene 

expression for increasing precision of our filtering 

approach. (2) Incorporation of mass spectroscopy data 

processing into the pipeline for further filtering of 

neoantigen candidates. (3) Investigation of MHC-II 

bind peptide identification and evaluation. 

 

MATERIALS AND METHODS 
 

Design of ASNEO 

 

The general computational framework of ASNEO consists 

of the following steps (Figure 1): (1) Raw RNA-seq reads 

were cleaned and aligned to human reference genome 

(hg19) to generate splice junctions along with the 

predicted patient-specific HLA alleles, which were taken 

as the input to ASNEO. (2) ASNEO filtered low expressed 

junctions, low psi junctions and Normal Junctions. The 

Normal Junctions were defined as those junctions with at 

least 2 reads covered by at least 1% (~30) of normal 

samples from GTEx [21] detected junctions, as well as 

those junctions in the UCSC hg19 reference annotation. 

(3) The filtered novel junctions were inserted into 

reference isoforms to generate novel isoforms. Then these 

isoforms were translated into novel proteins by one-frame 

translation from the translation start site to the stop codon. 

Here we adopted one-frame translation but not three-

frame translation or six-frame translation to keep a lower 

false positive rate. In this way, proteins whose length>30 

are retained. (4) ASNEO chopped up the proteins into 8-

11-mer peptides and these peptides were filtered by the set 

of Normal Proteins. In our study, Normal Proteins consist 

of UCSC reference proteins and Normal Junctions 

produced proteins by our pipeline. (5) ASNEO used 
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NetMHCpan version 4.0 [22] to calculate the bind rank of 

peptides to MHC-I, and those %rank below the threshold 

value (default 2) peptides are considered as putative 

neopeptides, the threshold value can be defined by users. 

(6) Additionally, to prioritize neopeptides, ASNEO 

implemented an immune score schema to evaluate the 

immunogenicity of putative neopeptides with several 

features, including the mutant peptide-MHC %rank, the 

normal peptide-MHC %rank, the mismatch base-pairs 

between the mutant peptide and normal peptide as well as 

the cleavage probability, the TAP transport efficiency, the 

hydrophobicity score and the T cell recognition 

probability of mutant peptide. As note, this score schema 

has been proposed in our previous study [11]. 

 

Processing of RNA-seq data 
 

RNA-seq raw data were cleaned by Trimmomatic-0.36 

[23] with standard adapters trimmed and low quality reads 

filtered as following: LEADING:20 TRAILING:15 

SLIDINGWINDOW:4:15 MINLEN:20. Then the 

trimmed reads were aligned to reference human genome 

hg19 by STAR version 2.5 [24] with the UCSC RefSeq 

(refGene) annotation of hg19, which was downloaded 

from UCSC Table Brower [25]. Here we chose STAR to 

identify splice junctions to be consistent with the choice 

of rMATS [26]. The detailed parameters were setting as 

following: 

 

STAR --genomeDir GNEOME --readFilesIn READ1  

[READ2] --runThreadN 20 –outFilterMultimapScore 

Range 1 --outFilterMultimapNmax 20 –outFilter 

MismatchNmax 10 --alignIntronMax 500000 –alignMates 

GapMax 1000000 --sjdbScore 2 –alignSJDBover 

hangMin 1 --genomeLoad NoSharedMemory –outFilter 

MatchNminOverLread 0.33 –outFilterScoreMinOver 

Lread 0.33 --sjdbOverhang 100 --outSAMstrandField 

intronMotif –sjdbGTFfile RefSeq.gtf 

 

Then a BAM file was sorted and indexed by samtools 

[27]. HLA alleles of each sample were inferred from 

trimmed data using OptiType [28] with default settings, 

which could achieve HLA typing with ~97% accuracy.  

 

Identification of putative neopeptides 
 

The splice junctions detected by STAR, BAM file 

generated by samtools and HLA alleles predicted by 

OptiType were taken as input to ASNEO together. 

ASNEO adopted several steps to identify putative 

neopeptides from alternative splicing junctions, 

showing as follows: 

 

1) ASNEO adopted several preliminary strategies to 

filter the splice junctions.  

a) The unique mapped reads of junctions should greater 

than 10 (default setting).  

b) The psi5 and psi3 should greater than 0.1 (default 

setting). The psi5 means how often is this donor site 

(5’ splice site) used with this acceptor site (3’ splice 

site), compared to all other acceptors. As the same, 

psi3 means how often is this acceptor site used with 

this donor site, compared to all other donors. Psi5 

and psi3 are calculated by sj2psi, a python package.  

c) Filter splice Normal Junctions. The Normal Junctions 
were defined as those junctions with at least 2 reads 

detected in at least 1% (~30) of normal samples 

from GTEx detected junctions, as well as those 

junctions in the UCSC hg19 reference annotation. 

To reduce likely false positive junctions, the ‘panel 

of normals’ approach was taken in an attempt to 

filter out splice junctions commonly retained in 

normal samples, which would not produce 

immunogenic peptides as a result of likely host 

immune tolerance. 

 

2) ASNEO accepted the filtered splice junctions to 

generate novel isoforms, which referred to QUILTS 

[29] and rMATS [26]. For one junction, ASNEO 

performed the following steps:  

 

a) Find all mapped isoforms.  

b) Filter the isoforms. For an isoform, if the junction is 

annotated (junction exists in the isoform), tag 0; 

novel junction (junction not exist while both donor 

site and acceptor site exist), tag 1; novel donor site 

or novel acceptor site; tag 2; both sites are novel, tag 

3. Then retain the isoforms with the smallest tag and 

calculated RPKM value>1.  

c) Insert the junction into the retained isoforms if the 

junction is in the protein coding region and novel 

exon modified length is within 2-250bp as well as 

novel intron has length>50, the parameters were set 

the same as those of rMATS [26]. These settings 

were targeted to obtain isoforms in line with the 

actual biological phenomenon as far as possible. 

 

3) ASNEO translated novel isoforms to proteins with 

one-frame translation from the translation start site 

to the stop codon, and proteins whose length greater 

than 30 were retained. 

 

4) To generate novel peptides, remained proteins were 

chopping up into 8-11-mer peptides and these 

peptides were filtered by Normal Proteins. In our 

study, Normal Proteins consist of UCSC reference 

proteins and Normal Junctions produced proteins by 

our pipeline. 
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5) ASNEO used NetMHCpan version 4.0 to calculate the 

percentile bind ranks of peptides to patient-specific 

HLA alleles and those %rank<2 (default setting) 

peptides were considered putative neopeptides.  

 

Scoring of putative neoantigen 

 
ASNEO designed an immune score to evaluate the 

immunogenicity of putative neopeptides with several 

features, including the mutant peptide-MHC %rank, the 

normal peptide-MHC %rank, the number of mismatches 

between the mutant peptide and normal peptide as well 

as the cleavage probability, the TAP transport 

efficiency, the hydrophobicity score and the T cell 

recognition score of mutant peptide, which were based 

on our previous work [11]. 

 

Rm: The %rank affinity of the candidate neoantigen, as 

output by NetMHCpan. 

Rn: The %rank affinity of the normal peptide, as output by 

NetMHCpan. The normal peptide was defined as a 

single peptide the same long with candidate neoantigen 

and most similar to it in the Normal Proteins. 

M: The number of mismatches between the candidate 

neoantigen and normal peptide. 

C: The combined score of binding affinity, proteasomal 

C terminal cleavage and TAP transport efficiency of 

candidate neoantigen, as output by NetCTLpan. 

H: The hydrophobicity score for the candidate 

neoantigen, determined by a machine-learning 

model using peptide hydrophobicity information. 

R: The T cell recognition probability of the candidate 

neoantigen peptide-MHC complex, which was 

presented as fitness score [12]. 

 

The immune score S in our study was defined as: 

   
 

       1       *    
2

n
m M

L R
S C L R H R

  
       

   

 (1) 

 

Where L(x) is a logistic function given by: 

 
5( 2)

1
( )

1 x
L x

e 



 (2) 

It should be note that our previous work proposed the 

score schema to evaluate the immunogenic potential  

of the gene fusion based neopeptides. But all the 

factors relevant to the immunogenic potential in score 

scheme is only peptide specific, so it can be employed 

to evaluate the AS based candidate neopeptides as 

well. 

 

Collection of clinical cohort data 
 

Three cohorts were collected and applied in our 

analyses, including Schuster cohort [14], van Allen 

cohort [15] and Hugo cohort [16]. Schuster cohort 

contained RNA-seq data (accession: PRJNA398141) 

and mass spectrometry (MS) data (accession: 

PXD007635), which were used to validate our 

ASNEO by MS analysis. In our study, we selected 14 

patients of serous ovarian carcinoma with 

corresponding 14 RNA-seq data and 66 MHC-I mass 

spectrometry data for further validation. Van Allen 

cohort and Hugo cohort contained melanoma patients 

treated with immune checkpoint inhibitors, which had 

both RNA-seq data and WES data. RNA-seq data 

were used to identify AS neopeptides while WES data 

were used to identify somatic neopeptides. The van 

Allen cohort (accession: phs000452.v2.p1), contained 

42 patients treated with anti-CTLA-4 antibodies with 

high-quality RNA-seq data. In our analysis, 3 patient 

samples were excluded due to irregular RNA 

sequencing size (Pat41) or lacking of corresponding 

high-quality WES data (Pat20 and Pat91). The Hugo 

cohort (accession: GSE78220) contained 27 patients 

treated with anti-PD1 antibodies and 2 samples were 

excluded because of repeating samples (Pt27) or 

lacking of overall survival (OS) information (Pt8). 

The response data and survival data of 

immunotherapy-treated patients in van Allen cohort 

and Hugo cohort were retrieved from original studies. 

For van Allen cohort, patients were classified into 3 

groups: Response, Non-response and Long-survival 

while for Hugo cohort, patients were classified into 

PD (Progressive Disease), PR (Partial Response) and 

CR (Complete Response). 

 

Evaluation of ASNEO 
 

We applied ASNEO to Schuster cohort, which 

contains 14 serous ovarian carcinoma patients with 14 

RNA-seq data and 66 mass spectrometry data of 

MHC-I complex available. RNA-seq data were 

applied to ASNEO to identify putative neopeptides 

with only 9-mer length and a threshold of %rank<2. 

The msCovert [30] was used to convert raw MS data 

to mzML format, which following search against the 

database consisting of Normal Proteins plus the 

putative neopeptides from each sample by Comet [31] 

search engine. Mass tolerance for processing was 5 

ppm for precursor ions and 0.5 Da for fragment ions. 

No cleavage specificity was selected and the only 

dynamic modification allowed was oxidized 

methionine. All the parameters we utilized here were 

retrieved from the original study [14]. Peptide 

confidence was determined using Percolator [32] 

algorithm with a target value of 1% false discovery 

rate. As a result, the neopeptides MKANPALTM and 

IHFLSLLNF were discovered and visualized by 

xiSPEC [33], an interactive tool for visualizing and 

analyzing mass spectrometry data. 
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Identification of AS neopeptides and somatic 

neopeptides in immunotherapy-treated cohorts 

 

RNA-seq data in van Allen cohort and Hugo cohort 

were used to identify neopeptides derived from 

alternative splicing by ASNEO with default settings, 

while the whole exome sequencing (WES) data were 

utilized to predict somatic neopeptides by MuPeXI. For 

van Allen cohort, VCF file was generated by the 

following analyses: WES data were trimmed by 

Trimmomatic [23]. Then the reads were aligned to hg38 

using the Burrows-Wheeler Aligner [34], a BAM file 

was sorted and produced with the Picard version 2.3.0 

SortSam, and duplicate reads were marked and removed 

using the Picard tool MarkDuplicates. Base 

recalibration was performed with GATK version 3.8.0 

[35] to reduce false-positive variant calls. SNV calls 

and indel calls were performed with GATK Mutect2. 

For Hugo cohort, VCF file was retrieved from the 

original study. Kallisto [36] was utilized to quantify the 

abundance of gene isoforms from the RNA-seq data 

with the reference transcriptome downloaded from the 

Ensembl database for GRCh38 using Ensembl genome 

browser version 89 [37]. HLA alleles were obtained 

from ASNEO pipeline. Then the VCF file, gene 

abundance file and HLA alleles were input to MuPeXI 
to predict somatic neopeptides. Here we only identified 

9-mer length somatic neopeptides, being consistent with 

AS neopeptides identified by ASNEO. The putative 

somatic neopeptides were further scored using our 
ASNEO score schema. 

 

Prediction of response or survival with AS 

neopeptides in immunotherapy-treated cohorts 
 

Van Allen cohort and Hugo cohort were classified into 

two clinical response groups: clinical benefit and no 

clinical benefit. For van Allen cohort (n=39), response 

(n=13) samples were regarded as clinical benefit 

samples, while nonresponse (n=21) samples were 

regarded as no clinical benefit samples. The long-

survival group was ignored. For Hugo cohort (n=25), 

PD (Progressive Disease, n=13) group was treated as no 

clinical benefit while PR (Partial Response, n=10) and 

CR (Complete Response, n=2) groups were treated as 

clinical benefit. In our study, we used Wilcoxon rank 

sum test to determine the difference of neoantigen 

burden between the clinical benefit group and no 

clinical benefit group. 

 

The survival analysis was performed by R package 

survival and survminer and log-rank test was used to 

assess the correlation between survival and metrics. 

Mean value was used to classify the samples to high and 

low categories with different metrics such as neoantigen 

burden, HIN burden, Burden*CTL*Tcell and HIN* 

CTL*Tcell. HIN was defined as high immunogenicity 

neopeptides (HIN), which represented those neopeptides 

whose immune score greater than 1e-8. T cell abundance 

and CTL (cytotoxic lymphocyte) abundance were 

calculated by MCPcounter [38], which is an R package 

to predict the abundance of 10 cell populations (8 

immune populations, endothelial cells and fibroblasts) 

from transcriptomic profiles of human tissues. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Survival analysis with different metrics. (A) The TGFB1 abundance could not separate patients in both 
cohorts. (B) The CTL abundance could not separate patients in both cohorts. (C) The T cell abundance could not separate patients in both 
cohorts. (D) The CTL*Tcell abundance could not separate patients in both cohorts. 

 

 

 

  



 

www.aging-us.com 14648 AGING 

Supplementary Tables  

 

 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

 

Supplementary Table 1. Information about 39 patients used in van Allen cohort. 

Supplementary Table 2. Information about 25 patients used in Hugo cohort. 

Supplementary Table 3. Univariate and multivariate cox regression. 

Variable 

van Allen cohort Hugo cohort 

Univariate analysis 
Multivariate analysis 

(gender+age) 
Univariate analysis 

Multivariate analysis 

(gender+age) 

HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P 

Burden*CTL*Tcell 0.45 0.20-1.01 0.05 0.41 0.18-0.93 0.03 - - - - - - 

HIN*CTL*Tcell 0.42 0.18-0.98 0.04 0.40 0.17-0.94 0.04 - - - - - - 

Burden*CTL*Tcell - - - - - - 0.30 0.09-0.99 0.04 0.26 0.08-0.89 0.03 

HIN - - - - - - 0.21 0.06-0.76 0.009 0.18 0.05-0.68 0.01 

 

 

 

 

 


