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INTRODUCTION 
 

Caudate dopaminergic dysfunction underlies the 

pathophysiology of patients with Parkinson’s disease 

(PD) [1–6]. The nigrostriatal dopamine deficiency in 

PD can be relieved by treatment with levodopa (L-

dopa). However, the connectivity specificities of the 

caudate nucleus (CN) subdivisions and the effect of 

dopamine remain unexplored. 

 

The caudate works in concert with the cortical areas to 

support different behaviors [7]. A previous study in PD 

patients that treated the caudate as a functionally 

uniform region has demonstrated a loss of cortico-

caudate coupling in the early stage of this disease 

during sequence learning [8]. However, the caudate 

subdivisions topographically participate in differential 

cortico-striatal circuits [9]. More recent studies have 

divided the CN into the head, body, and tail [10–13], or 
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ABSTRACT 
 

Caudate dopaminergic dysfunction is implied in the pathophysiology of patients with Parkinson’s disease (PD). 
Still, connectivity specificities of the caudate nucleus (CN) subdivisions and the effect of dopamine are poorly 
understood. We collected MRI and neuropsychological data from 34 PD patients and 26 age- and sex-matched 
healthy elderly individuals (HEs) in this study. Resting-state functional connectivity analysis revealed that 
compared to the other CN subdivisions, the CN head was more strongly connected to the default mode network 
(DMN), the CN body to the frontoparietal network (FPN), and the CN tail to the visual network in HEs. PD 
patients off medication showed reduced connectivity within all these subdivision networks. In PD patients on 
medication, functional connectivity in the CN head network was significantly improved in the medial prefrontal 
cortex and in the body network it was improved in the dorsolateral prefrontal cortex. These improvements 
contributed to ameliorated motivation and cognitive function in PD patients. Our results highlighted the 
specific alterations and dopamine modulation in these CN subdivision networks in PD, which may provide 
insight into the pathophysiology and therapeutics of this disease. 
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dorsal and ventral regions based on the boundaries of 

their anatomical features [14–16], which are largely 

overlay the CN head and body, respectively.  

 

Evidence has demonstrated that the ventral CN (head) is 

connected to the ventral/medial prefrontal cortex, whereas 

the dorsal CN (body) is connected to the dorsal/lateral 

prefrontal cortex, both structurally and functionally [11, 

12, 15, 17, 18]. The tail of CN sometimes combines with 

the CN body and gets relatively less attention. Studies of 

the CN tail have revealed that it is associated with visual 

saccade and encodes long-term memory of object values 

[19, 20]. Studies have pointed out that the uniformity of 

the caudate may cover abnormalities of caudate sub-

divisions in patients with PD. 

 

Resting-state functional connectivity (rs-FC) provides a 

sensitive measure of synchronous neural activity. The 

aim of this study was to highlight specific CN 

subdivision networks in healthy elderly individuals 

(HEs) and to explore the connectivity disruption and the 

role of dopamine in these specific networks in patients 

with PD. We hypothesized that caudate dysfunction in 

PD might affect the connectivity of CN subdivisions in 

different ways, and these abnormalities might be 

modulated by dopamine treatment. 

 

RESULTS 
 

Demographic results 
 

As shown in Table 1, significantly lower MoCA (p < 

0.001) and higher HAMD scores (p < 0.001) were 

detected in patients with PD compared to HEs. No 

significant difference was found in age and sex between 

HEs and patients with PD.  

 

VBM results of GM 
 

Whole brain VBM analysis found that no significant 

GM atrophy was detected in PD patients compared to 

HEs. Specifically, the GM volumes in the subdivisions 

of CN were further extracted and compared between the 

two groups. It was found that no significant difference 

was detected between HE and PD groups in the CN 

head (464.34 ± 53.19 for HE vs. 463.79 ± 56.09, p = 

0.97), body (412.75 ± 54.73 for HE vs. 413.38 ± 48.57 

for PD, p = 0.96), and tail (39.15 ± 4.84 for HE vs. 

39.77 ± 5.58 for PD, p = 0.628), respectively. 

 

Specific subdivision networks of the CN in the HE 
 

CN subdivision networks in HEs were identified in the 

whole CN network (Figure 1A and Supplementary 

Table 1). Compared to the other CN subdivisions, the 

head showed a specific higher connectivity with the 

anterior cingulate cortex (ACC) extending into medial 

prefrontal cortex (MPFC) and the CN head, and the 

precuneus (PCu) extending into the posterior cingulate 

cortex (PCC) bilaterally (see Table 2 and Figure 1B). 

The body showed specific higher connectivity with the 

CN body extending into the thalamus, the dorsolateral 

prefrontal cortex (DLPFC) extending into the anterior 

prefrontal cortex (APFC), and the angular gyrus (AG), 

bilaterally (see Table 2 and Figure 2C). The tail showed 

higher connectivity with the hippocampus and occipital 

cortex bilaterally (see Table 2 and Figure 1D). Altered 

FC in the CN subdivision networks were revealed in PD 

OFF-mediation and ON-medication (see Supplementary 

Figure 1). 

 

Altered functional connectivity and dopamine 

modulation in CN subdivision networks in PD 
 

These regions in the specific CN subdivision network 

were defined as regions of interest (ROIs) for the 

confirmation analyses. All FC values in each ROI were 

extracted and analyzed. Patients with PD OFF-

medication exhibited a significantly decreased 

connectivity within the CN head network compared to 

HEs (t = -3.217, p = 0.002 for the ACC/MPFC/CN head 

cluster and t = -3.016, p = 0.004 for the PCu/PCC 

cluster). When L-dopa was administered to patients 

with PD, a significantly improved connectivity was 

revealed in the CN head/ACC/MPFC cluster and this 

improvement returned to the normal level (ON-

medication vs. OFF-medication, t = 5.605, p < 0.001; 

ON-medication vs. HE, t = 1.217, p = 0.228) (see 

Figure 2A).  

 

Within the CN body network, significantly decreased 

connectivity was revealed in the DLPFC/APFC cluster 

(t = -3.080, p = 0.003) and the left AG (t = -3.157, p = 

0.002) in PD patients OFF-medication compared to 

HEs. A significant improvement in the DLPFC/APFC 

cluster was found after administration of L-dopa (ON-

medication vs. OFF-medication, t = 2.97, p = 0.006; 

ON-medication vs. HE, t = -0.343, p = 0.733) (see 

Figure 2B).  

 

Within the CN tail network, the reduced connectivity in 

the bilateral hippocampus (t = -2.983, p = 0.004 for the 

left; t = -2.576, p = 0.012 for the right) and bilateral 

cuneus (t = -3.340, p = 0.001) was exhibited in PD 

OFF-medication compared to HE (see Figure 2C). No 

significant changes were identified in the CN tail 

network in patients with PD when administered L-dopa.  

 

Exploratory analysis of dopamine effect in PD 
 

Three voxel-wise exploratory analyses were conducted 

within each subdivision network to refine the regions 
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Table 1. Demographic and clinical characteristics. 

 
HE (n = 26) PD (n = 34) p-value 

Age (years) 56.12 ± 10.07 60.41 ± 11.14  0.128 

Sex (female/male) 16/10 16/18 0.265 

Disease duration (years) — 2.27 ± 2.19  — 

Hoehn and Yahr stage  — 1.59 ± 0.50 — 

L-DOPA dose (mg/day) — 134.19 ± 41.09 — 

UPDRS part-I — 2.61 ± 1.91 — 

UPDRS part-II — 8.09 ± 3.41 — 

UPDRS part-IV — 3.38 ± 1.18 — 

UPDRS part-III ON — 16.76 ± 6.76  — 

UPDRS part-III OFF — 21.24 ± 8.26 — 

MoCA# 27.58 ± 1.53  23.53 ± 3.63 <0.001 

HAMD-24# 0.38 ± 0.85 5.59 ± 6.79 <0.001 

Note: Data are expressed as mean ± standard deviation. Sex data were analyzed with χ2 test.  
Other p values were derived from the independent two-sample t-test except for # that was  
derived from the Mann-Whitney test. Abbreviations: UPDRS, unified Parkinson's disease  
rating scale; MoCA, Montreal Cognitive Assessment; HAMD-24, Hamilton depression rating  
scale with 24 items. 

 

 
 

Figure 1. Intrinsic connectivity networks of caudate nucleus (CN) subdivisions in healthy elderly (HE). (A) Whole CN network; 
(B) CN head network; (C) CN body network; (D) CN tail network. Results were illustrated at an uncorrected voxel-wise height threshold of 
p < 0.001 combined with an FWE-corrected cluster-wise threshold of p < 0.001  
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Table 2. Connectivity networks specific to the caudate nucleus subdivisions in healthy elderly. 

Anatomical regions Cluster size (voxel) MNI (x, y, z) T-value 

CN head network 
   

    Bi. CN head/ACC/MPFC 2030 (9, 15, 0) 22.15  

    Bi. PCu/PCC 278 (-9, -42, 39) 4.91  

CN body network 
   

    Bi. CN body/Thal 831 (12, 6, 15) 18.29 

    Lt. DLPFC/APFC 2081 (-48, 21, 21) 6.32 

    Lt. AG 209 (-45, -57, 39) 5.28 

    Rt. AG 238 (51, -51, 42) 5.03 

CN tail network 
   

    Lt. Hippocampus 79 (-24, -39, 6) 10.11 

    Rt. Hippocampus 148 (18, -24, 18) 13.17 

    Bi. Cuneus 237 (3, -93, 27) 5.12 

Note: Results were thresholded based on an uncorrected voxel-wise height threshold of p < 0.001  
combined with an FWE-corrected cluster-wise threshold of p < 0.001. Abbreviations: CN, caudate  
nucleus; ACC, anterior cingulate cortex; MPFC, medial prefrontal cortex; PCu, precuenus; PCC,  
posterior cingulate cortex; Thal, thalamus; DLPFC, dorsolateral prefrontal cortex; APFC, anterior  
prefrontal cortex; AG, angular gyrus; Bi, bilateral; Lt, left; Rt, right. 

 

 
 

Figure 2. Functional connectivity (FC) changes in caudate nucleus (CN) subdivisions between PD and healthy elderly (HE), 
and between PD OFF-medication and ON-medication. (A) CN head network; (B) CN body network; (C) CN tail network. Results were 
illustrated at an uncorrected voxel-wise height threshold of p < 0.001 combined with an FWE-corrected cluster-wise threshold of p < 0.001. 
Bar graphs demonstrated FC values in the subdivision networks in HE and patients with PD ON-medication and OFF-medication; **, p < 0.005; 
***, p < 0.001. Abbreviations: FC, functional connectivity; PD-OFF, PD OFF-medication; PD-ON, PD ON-medication. 
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affected most by the dopamine administration within 

each CN subdivision network. The left MPFC (MNI 

coordinate: x = -9, y = 21, z = -9; t = 3.46) in the CN 

head network was significantly modulated by dopamine 

treatment in PD. The mean FC strength was 

significantly negatively correlated with the motivation 

measured by UPDRS part I in patients with PD (see 

Figure 3A). The left DLFPC (MNI coordinate: x = -45, 

y = 21, z = 36; t = 4.53) in the CN body network was 

significantly modulated by dopamine treatment in PD. 

Mean functional connectivity strength was significantly 

positively correlated with MoCA score in patients with 

PD (see Figure 3B). No voxels showed significant 

dopamine effect in the CN tail network. 

 

DISCUSSION 
 

The present study explored the neural pathomechanisms 

of caudate dopaminergic deficiency in PD. Our data 

provide evidence for dissociable functional connectivity 

networks associated with the CN subdivisions in HEs 

[11–15]. Disrupted functional connectivity was 

identified in CN subdivisions in PD patients in concert 

with dopaminergic deficiency. When dopamine was 

administered, increased functional connectivity between 

the CN head and DMN was associated with ameliorated 

motivation. In contrast, the enhanced functional 

connectivity between the CN body and the FPN 

correlated with improved cognitive function in PD. 

These findings provide a deeper insight into the neural 

mechanisms underlying the pathophysiology and 

therapeutics of this disease. 

 

The current findings showed that specific connectivity 

between the CN head and the DMN supports self-

referential processing [27]. Converging evidence has 

shown that this network of the CN head in the DMN is 

associated with a greater ability for the cognitive control 

of impulsive behaviors [11], and motivational and 

automatic processes [28]. The decreased CN head 

functional connectivity in the DMN in patients with PD 

is consistent with the non-motor characteristics of PD 

and psychiatric disturbances caused by caudate 

dopaminergic pathophysiology [29]. After dopamine

 

 
 

Figure 3. Increased FC in PD ON-medication. (A) Increased FC in the MPFC in CN head network; (B) Increased FC in the DLPFC in CN body 
network. Bar graphs showed the extracted FC values in HE and PD. Scatterplots showed the relationship between FC values and 
neuropsychological measurements. Abbreviations: FC, functional connectivity; MPFC, medial prefrontal cortex; DLPFC, dorsolateral prefrontal 
cortex; MoCA, Montreal Cognitive Assessment; HE, healthy elderly; PD-OFF, PD OFF-medication; PD-ON, PD ON-medication. ***, p < 0.001. 
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administration, the improved functional connectivity 

between the CN head and the MPFC/ACC provides 

direct evidence of specific damage. The increased 

connectivity after dopamine administration between the 

CN head and the MPFC (hub region of DMN) restored 

a normal level and contributed to the enhanced 

motivation measured with the UPDRS part I (item 4) in 

patients with PD. This finding suggests a self-

amelioration of disrupted motivation after dopamine 

supply [16]. 

 

In keeping with earlier studies [11, 12], the CN body 

was strongly connected to regions in the FPN, including 

the DLPFC, AG, and the bilateral cerebellum. These 

results are supported by previous diffusion tensor 

imaging (DTI) tractography showing that the CN body 

(analogous to “dorsal caudate”) is linked with the 

DLPFC [18]. Repeated transcranial magnetic 

stimulation (rTMS) of the DLPFC modulates dopamine 

release specifically in the dorsal caudate nucleus [30]. 

Our current findings in the CN body network showed 

that functional connectivity strength between the CN 

body and the frontoparietal cortex was disrupted in 

concert with dopamine depletion. In patients with PD, 

an increase in functional connectivity between the CN 

body and the DLPFC was restored to the average level 

after dopamine administration. This compensated for 

dopaminergic loss with increased neuronal firing and, 

consequently, increased intrinsic functional 

connectivity. This increased connection strength was 

positively associated with the cognitive function 

measured with MoCA and implicates the DLPFC-

caudate body circuit in the neural pathomechanisms 

underlying the cognitive decline in this disease. 

 

The function of the CN tail has received less attention. 

However, there have been several intriguing findings that 

imply the tail plays a vital role in visual processing, in 

particular visual memory/learning processes [19, 20, 31–

33]. We found that the CN tail was strongly connected to 

the hippocampus and occipital cortex bilaterally in HEs. 

Compared to HEs, PD patients showed significantly less 

bilateral hippocampal connection in the CN tail network. 

No significant changes were found in the CN tail network 

after dopamine treatment in PD patients.  

 

Only PD patients with early-stage disease were included 

in the present study. This was an effort to eliminate 

heterogeneity and reduce the effect of long-term 

dopaminergic medication on brain networks. Several 

studies have shown that L-dopa modulates caudate 

activity in PD, even at moderate and advanced stages 

[34, 35]. This requires further investigation if the 

observed effect of L-dopa during early stages of PD 

continues to demonstrate a protective effect at later 

stages. 

Previous studies have reported loss of caudate volume 

in patients with PD, but lack consistency. For example, 

caudate atrophy was previously reported in early drug-

naive PD patients [1]. By contrast, Hattori et al. failed 

to detect any differences between PD patients and 

healthy controls [36]. These inconsistences might be 

due to heterogeneity among patients, including 

differences in disease stage and medications. In line 

with previous studies [36, 37], we detected no 

volumetric differences in the CN subdivision between 

PD patients and HEs. The caudate volume loss may not 

be specific to PD patients, but may be part of normal 

aging [1]. Nonetheless, this caudate volume loss may 

worsen in advanced PD due to the severe striatal 

dopaminergic deficiency.  

 

The present study characterized the abnormalities in the 

functional connectivity within each caudate subdivision 

network that occurs with striatal dopamine depletion in 

PD. The amelioration in these connection networks after 

dopamine administration highlights that the neural 

substrates for the pathophysiological changes associates 

with this disease. These findings show that PD patients 

have dysfunctional caudate coupling affecting the 

caudate head, body, and tail in different ways. They also 

shed light on the pathophysiological mechanisms 

underlying PD and provide insight into the therapeutics 

of the non-motor symptoms in this disease. The lack of 

comprehensive neuropsychological assessments cur-

rently hampers our ability to examine the associations 

between the CN subdivision networks and specific 

cognitive domains. This will be addressed in a future 

study.  

 

MATERIALS AND METHODS 
 

Participants 
 

In this study, 34 early stage PD patients (18 males, 

57.11 ± 11.85 years old vs. 16 females, 64.13 ± 9.27 

years old) with Hoehn and Yahr (H&Y) stage of I or II, 

meeting the UK Bank criteria for the diagnosis of PD 

[21], were recruited. All PD participants were examined 

in their ON-medication and OFF-medication states (at 

least after a 12-hour withdrawal of anti-Parkinson 

medication). Patients received L-dopa 30 minutes after 

receiving 10 mg domperidone on an empty stomach in 

the morning. L-dopa dosage was determined by the 

regular effective dosage of the patient. ON-medication 

examinations were administered an hour later when L-

dopa reaches its peak plasma dose. The HE comprised 

26 volunteers (10 males, 56.12 ± 10.07 years old), who 

were matched for age and sex ratio. This study was 

approved by the Research Ethics Committee of Beijing 

Tiantan Hospital, Capital Medical University. Written 

informed consent was obtained from each participant. 
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Neuropsychological assessments 
 

The clinical characteristics were assessed ON-medication 

except UPDRS part-III which was evaluated both ON- 

and OFF-medication. The disease stage was scored using 

the H&Y stage score and disease severity was captured 

by the UPDRS part-III. Assessments of the neuro-

psychological state included the Montreal Cognitive 

Assessment (MoCA) and the Hamilton Depression 

Rating Scale (HAMD-24) [22].  

 

MRI data acquisition 

 

MRI data were acquired using a Siemens 3 Tesla 

Prisma MRI system (Siemens, Erlangen, Germany) by 

using a 32-channel head coil. Foam padding and 

headphones were used to limit head motion and reduce 

scanner noise. Participants were instructed to keep still 

and remain motionless. High-resolution structural 

images were acquired using 3D T1-weighted mag-

netization-prepared rapid gradient echo (MPRAGE). 

Scan parameters were as follows: TR = 2300 ms, TE = 

2.3 ms, flip angle = 8°, matrix size =256 × 256, 192 1 

mm sagittal slices. Resting-state functional MR 

imaging (rs-fMRI) data were obtained by using an 

echo-planar imaging sequence that lasted 8 minutes 20 

seconds (200 volumes) with the parameters: TR = 2500 

ms, TE = 30 ms, flip angle = 90°, FOV = 200 mm × 200 

mm, matrix size =70 × 70, 43 slices, and slice thickness 

= 3 mm.  

 

Voxel-based morphometry (VBM) analysis 
 

To determine the structural abnormalities in patients, we 

performed a VBM analysis for all anatomical images of 

PD and HE using SPM12 (http://www.fil.ion. 

ucl.ac.uk/spm) and CAT12 (http://www.neuro.uni-

jena.de/cat/). T1-weighted images were segmented 

using the unified segmentation model into gray matter 

(GM), white matter (WM), and cerebrospinal fluid 

(CSF) based on tissue probability maps (TPMs) in MNI 

space. The spatially normalized GM maps were 

modulated by the Jacobian determinant of the 

deformation field and corrected for individual brain 

sizes. The modulated, normalized GM images (voxel 

size 1.5 × 1.5 × 1.5 mm3) were smoothed with an 8-mm 

full width at half maximum isotropic Gaussian kernel. 

 

Rs-functional connectivity analysis 

 

Rs-fMRI data were preprocessed using SPM12. Seed-to-

voxel correlation analysis was carried out by Data 

Processing and Analysis for (Resting-State) Brain Imaging 

(DPABI) V4.3 [23]. The first ten functional images were 

discarded to minimize the fluctuation of the MRI signal in 

the initial stage of scanning. The remaining 190 images of 

each subject were first corrected for slice timing to reduce 

the within-scan acquisition time differences between slices 

and then realigned to eliminate the influence of head 

motion during the experiment. All subjects included in the 

present study exhibited head motion less than 1.5 mm in 

any of the x, y, or z directions and less than 1.5° of any 

angular dimensions. Next, the realigned images were co-

registered to T1 images, spatially normalized into MNI 

space using transformations from segmentation, and 

resampled voxel size into 3 × 3 × 3 mm3. Subsequently, 

the functional images were smoothed with a 4-mm 

FWHM isotropic Gaussian kernel. After preprocessing, 

images were then band-pass filtered to 0.008 ~ 0.09 Hz to 

reduce noise. Further denoising steps included regression 

of six motion parameters and their first-order derivatives, 

regression of WM and CSF signals following the 

CompCor strategy [24] and a linear detrending. The seed-

regions of the bilateral caudate head, body, and tail were 

defined based on WFU_PickAtlas [25] (Figure 4).  

The correlation coefficients between the seed voxels and 

all other brain voxels were computed to generate 

correlation maps. For group analyses, the correlation 

coefficients were converted to z-value using Fisher's r-to-z 

transformation [26]. 

 

 
 

Figure 4. Anatomical seeds of caudate nucleus (CN) subdivisions. Red color represents CN head; Green color represents CN body; 
Violet color represents CN tail. 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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Identifying the CN subdivision networks 
 

The three individual connectivity maps (obtained from 

the CN head, body, and tail) of each HE were entered 

into a factorial model in SPM12 with age and sex as 

nuisance variates. The whole CN network was first 

identified (defined as the regions connected with any of 

the three CN subdivisions with F-contrast in SPM). 

Functional connectivity maps specific to each seed 

region were obtained by comparing to the other two CN 

subdivisions. 

 

Confirmatory analysis of changes in CN subdivision 

network and dopamine effect in PD 

 

These regions within each specific CN subdivision 

network were defined as regions of interest (ROIs) for the 

confirmatory analyses. Two sample t-tests were performed 

to explore the dysconnectivity in PD compared to HE. 

Paired t-test was conducted to examine the dopamine 

modulation within each subdivision network in PD ON-

medication compared to OFF-medication.  

 

Exploratory analysis for dopamine modulation in 

the CN subdivision networks 

 

An exploratory analysis was performed additionally to 

ascertain which voxels were affected by the dopamine 

administration within each CN subdivision network. 

Partial correlation analyses were examined between the 

mean functional connectivity values in these voxels and 

clinical performances controlled for nuisance variables.  

 

Statistical analysis 
 

Two-sample t-test was performed for the demographic, 

clinical measurements, and extracted CN subdivision 

volume between PD patients and HE using SPSS 22. GM 

volume and functional connectivity results were reported 

based on an uncorrected voxel-wise height threshold of p 

< 0.001 combined with an FWE-corrected cluster-wise 

threshold of p < 0.001. Brain regions were localized with 

xjView (http://www.alivelearn.net/xjview). Correlations 

between these alterations and neuropsychological 

performances were examined. Results for confirmatory 

ROIs analysis and correlations were corrected for multiple 

comparisons using the Bonferroni correction (p < 0.05). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 

 

 

 
 

Supplementary Figure 1. Intrinsic connectivity networks of caudate nucleus (CN) subdivisions in PD. (A) CN head network; 
(B) CN body network; (C) CN tail network. Results were illustrated at an uncorrected voxel-wise height threshold of p < 0.001 combined with 
an FWE-corrected cluster-wise threshold of p < 0.001. Abbreviations: PD-OFF, PD OFF-medication; PD-ON, PD ON-medication. 
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Supplementary Table 
 

 

Supplementary Table 1. Intrinsic connectivity networks of the whole caudate nucleus. 

Anatomical regions Cluster size (voxel) MNI (x, y, z) F-value 

HE 
   

    Bi.MPFC/ACC/Frontal_Mid/CN/Thal 6732 (9, 15, 0) 217.28 

    Bi.PCu/PCC 662 (-6, -42, 39) 14.80 

    Lt.AG 352 (-48, -78, 33) 10.38 

    Rt.AG 390 (54, -63, 36) 12.30 

    Lt.Temporal_Mid 165 (-66, -24, -9) 10.36 

PD ON-medication 
   

    Bi.MPFC/ACC/Frontal_Mid/CN/Thal 6882 (9, 12, 0) 336.00 

    Lt.AG 180 (-54, -51, 39) 9.02 

    Lt.Temporal_Sup 146 (-54, -18, 6) 15.31 

    Rt.Temporal_Sup 136 (60, 0, -3) 13.55 

PD OFF-medication 
   

    Bi.MPFC/ACC/Frontal_Mid/CN/Thal 6034 (12, 6, 12) 312.26 

    Lt.Precental 276 (-39, 6, 51) 14.81 

    Lt.AG 112 (-54, -57, 36) 11.93 

    Rt.Temporal_Sup 169 (-51, -30, 12) 10.33 

Note: Results were reported at an uncorrected voxel-wise height threshold of p < 0.001 combined with an 
FWE-corrected cluster-wise threshold of p < 0001. Abbreviations:  
CN, caudate nucleus; ACC, anterior cingulate cortex; MPFC, medial prefrontal cortex; PCu, precuenus;  
PCC, posterior cingulate cortex; Thal, thalamus; AG, angular gyrus; Mid, middle; Sup, superior; Bi,  
bilateral; Lt, left; Rt, right; HE, healthy elderly; PD, Parkinson’s disease. 


