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INTRODUCTION 
 

Cellular senescence is a cell state implicated in various 

physiological processes and also in many age-related 

diseases [1], described for the first time by Hayflick in 

1961 [2]. In 2019, the International Cell Senescence 

Association (ICSA) released a consensus paper on the 

definition of what constitutes senescent cells: cell 

senescence is regarded as a state triggered by stress or 

certain physiological processes, characterized by a 

stable cell-cycle arrest with secretory features,  

 

macromolecular damage, and altered energy 

metabolism [1]. Conversely, many criteria that define 

senescent cells have also been observed in a wide range 

of post-mitotic cells, suggesting that senescence as a 

stress response can occur in non-dividing cells 

temporally uncoupled from cell cycle arrest [3, 4]. 

Rapid gain of interest in cellular senescence is rising 

from the possibility of therapeutically targeting it to 

improve healthy aging and age-related disease, using 

among others drugs called senolytics [5, 6], and from 

the creation a systematic and comprehensive approach 
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ABSTRACT 
 

Staining mice tissues for β-galactosidase activity is a fundamental tool to detect age- or disease-associated 
cellular senescence. However, reported analyses of positivity for senescence-associated β-galactosidase activity 
or for other markers of senescence in post-mitotic cells of healthy murine tissues have been fragmentary or 
inconclusive. Here, we attempted to independently deepen this knowledge using multiple senescence markers 
within the same cells of wild type mice entering middle age (9 months of age). A histochemistry protocol for the 
pH-dependent detection of β-galactosidase activity in several tissues was used. At pH 6, routinely utilized to 
detect senescence-associated β-galactosidase activity, only specific cellular populations in the mouse body 
(including Purkinje cells and choroid plexus in the central nervous system) were detected as strongly positive 
for β-galactosidase activity. These post-mitotic cells were also positive for other established markers of 
senescence (p16, p21 and DPP4), detected by immunofluorescence, confirming a potential senescent 
phenotype. These data might contribute to understanding the functional relation between the senescence-
associated β-galactosidase activity and senescence markers in post-mitotic cells in absence of disease or 
advanced aging. 
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to the classification and staging of organismal 

senescence in order to guide aging science policy and 

gerontology practice [7].  

 

There is currently no single marker with absolute 

specificity for senescent cells. Some markers have more 

universal validity while others are related to specific 

senescent cell types. ICSA advised multi-marker 

approach, which combines broad and more specific 

markers for robust detection of senescent cells in 

tissues. One of the most frequently used marker of cell 

senescence is the activity of senescence-associated beta-

galactosidase (SA-β-gal), hydrolase enzyme that 

catalyzes the hydrolysis of β-galactosides into 

monosaccharides [8]. pH is a classic and fundamental 

factor to discriminate SA-β-gal – operating at pH 6, 

from bacterial β-Gal – operating at pH 7.4, and from the 

endogenous β-gal - operating at pH 3–5 [9, 10]. More 

specific markers include nuclear proteins (i.e., p16, p21) 

and senescence-associated heterochromatin foci 

(SAHF), which are specialized domains of facultative 

heterochromatin that contribute to silencing of 

proliferation-promoting genes in senescent cells [1, 11, 

12].  Moreover, senescent cells are characterized by a 

secretory associated secretory phenotype (SASP, which 

includes various interleukins, chemokines, growth 

factors, inflammatory molecules, ligands and insoluble 

factors), which can help to confirm the senescent 

phenotype [1]. SA-β-gal was the first marker allowing 

the identification of senescent cells in culture and 

mammalian tissues, and connecting senescence with 

aging [13, 14]. Since 1995, the wide use of SA-β-gal to 

study senescence in human or mice tissues in situ has 

been accompanied by controversies and technical 

challenges. It has been proposed that SA-β-Gal staining 

does not depend on age but on the presence of certain 

pathologies and on the proliferative status of the cells 

studied, appearing even in “young” cells as long as they 

are not proliferative [15–17].  

 

In this respect, while senescent features have been 

found to be activated in a range of post-mitotic cells, 

independent multi-marker integration and confirmation 

of these results is still lacking for most of them [3, 4]. 

 

RESULTS 
 

Here, we performed an analysis for SA-β-gal (pH 6.0) 

staining on a range of tissues of healthy mice entering 

middle age (9 months old): heart muscle, skeletal 

muscle, bone-femur, brain-cortex, brain-hippocampus, 

brain-cerebellum, choroid plexus, lymph nodes, 

intestine, pancreas, kidney, visceral adipose tissue, liver 

and lungs; according to a well-established protocol  

[18, 19]. The majority of tissues analyzed exhibited 

cellular populations with strong diffuse β-gal positivity 

at low pH values (4 to 5), which fainted or disappeared 

at pH 6 to 7, indicating a non SA-β-gal activity: 

examples of tissues following this pattern included the 

hippocampus and the testes (Figures 1 and 2). 

Conversely, we report strong SA-β-gal staining (pH 6) 

in cerebellum (Figure 3), choroid plexus (Figure 4), 

pancreatic islets (Figure 5) and basal/stem cells in the 

intestinal crypts (Figure 6) of adult wild type mice. A 

distinct β-galactosidase staining was detected from pH 4 

to SA-β-gal-associated pH 6 specifically for the 

Purkinje cell layer, containing the large GABAergic 

neurons constituting the output of all motor coordination 

in the cerebellar cortex, and not for small granule 

neurons (Figure 3). Obesity or high fat diet results in the 

accumulation of senescent cells in the mouse brain [1, 

20]. We found a SA-β-gal staining pattern in the 

cerebellum of 9 weeks old adult leptin receptor deficient 

ob/ob mice that was identical to the one observed in 

 

 
 

Figure 1. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of 9 months old C57/Bl6J mice hippocampus. Nuclear 

Fast Red was used for counterstaining. At pH 6, specific for SA-β-gal, no marked β-gal activity is evident. Representative images from 3 
different mice are shown. 
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Figure 2. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of 9 months old C57/Bl6J mice testes. Nuclear Fast Red 

was used for counterstaining. At pH 6, specific for SA-β-gal, no marked β-gal activity is evident. Representative images from 3 different mice 
are shown. 

 

 
 

Figure 3. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of mouse cerebellum. 9 months old C57/Bl6J. Nuclear Fast 

Red was used for counterstaining. At pH 6, specific for SA-β-gal, bluish color from β-gal activity is evident specifically in the Purkinje cell layer. 
Representative images from 3 different mice are shown. 

 

 
 

Figure 4. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of mouse choroid plexus. 9 months old C57/Bl6J. Nuclear 
Fast Red was used for counterstaining. At pH 6, specific for SA-β-gal, bluish color from β-gal activity is evident specifically in ependymal cells 
in the choroid plexus. Representative images from 3 different mice are shown. 
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wild type mice (Supplementary Figure 1), thus obesity-

independent. Next, we tested the positivity of Purkinje 

cell layer for β-gal and for other established positive 

(p16, p21 and DPP4 [19, 21–24]) and negative 

(H3K4me3 [25]) markers of cell senescence by 

immunofluorescence staining in wild type mice, as 

recommended recently to verify a senescent phenotype 

[1]. Surprisingly, in the cerebellum, Purkinje cells were 

strongly immunopositive for p16, p21 and DPP4 

expression, while they were negative for H3K4me3 that 

instead stained intensely small granule neurons (Figure 

7). Within the central nervous system (CNS) of wild 

type mice, we detected a distinct β-gal staining at pH 4 

and SA-β-gal staining at pH 6 specifically in the 

choroid plexus, which produces the cerebrospinal fluid 

in the ventricles of the brain and consists of modified 

ependymal cells (Figure 4). The observed β-

galactosidase staining pattern was identical in the 

choroid plexus of ob/ob mice (Supplementary Figure 2). 

Ependymal cells were found strongly immunopositive 

for p16, p21 and DPP4 expression, while staining for 

H3K4me3 was present but irregular and patchy 

compared to the other markers (Figure 8). Altogether, 

our findings demonstrate a bona fide senescent-like 

phenotype of adult mouse cell types/tissues (Purkjnie 

cell layer, choroid plexus, pancreatic islets and 

intestinal crypts), based on SA-β-gal staining and other 

markers of senescence.  

 

 
 

Figure 5. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of 9 months old C57/Bl6J mouse pancreas. Nuclear Fast 
Red was used for counterstaining. At pH 6, specific for SA-β-gal, bluish color from β-gal activity is evident specifically in pancreatic islets. 
Representative images from 3 different mice are shown. 

 

 
 

Figure 6. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of 9 months old C57/Bl6J mouse intestine. Nuclear Fast 
Red was used for counterstaining. At pH 6, specific for SA- β-gal, bluish color from β-gal activity is evident specifically in cells located basally in 
the intestinal crypts. Representative images from 3 different mice are shown. 
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Figure 7. (A) Immunofluorescent staining of senescence markers in Purkinje cells of 9 months old C57/Bl6J mouse cerebellar cortex. Images 
display H3K4me3 (blue), β-gal (purple), p21 (green), DPP4 (cyan) p16 (red) and DAPI-stained nuclei (white) fluorescence signals. The 
corresponding multichannel overlaid images are shown in the right column. All these markers, except H3K4me3, show an increased 
localization and expression in Purkinje cells. Representative images from 3 different mice are shown. (B) Frequency of positive cells for each 
marker as in (A), indicated in %.  
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Figure 8. (A) Immunofluorescent staining of senescence markers of 9 months old C57/Bl6J mouse choroid plexus. Images display H3K4me3 
(blue), β-gal (purple), p21 (green), DPP4 (cyan) p16 (red) and DAPI-stained nuclei (white) fluorescence signals. The corresponding 
multichannel overlaid images are shown in the right column. All these markers show an increased localization and expression in choroid 
plexus cells. Representative images from 3 different mice are shown. (B) Frequency of positive cells for each marker as in (A), indicated in %.  
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DISCUSSION 
 

Endogenous β-galactosidase staining (pH 4) has been 

described in murine pancreatic islets [10]. To our 

knowledge ours is the first study reporting SA-β-gal in 

pancreatic islets: cells residing in the islets of 

Langerhans are terminally differentiated cells and 

almost entirely in a post-mitotic state [26]. Positive SA-

β-gal staining in intestinal crypts is in agreement with 

previous findings showing increasing γH2AX foci-

positive crypt enterocytes in old mice [27–29];  in this 

respect, SA-β-gal positive cells within the intestinal 

crypts could be Paneth cells, which are entirely post-

mitotic cells [30]. Future studies of colocalization of 

SA-β-gal staining and Paneth cells specific markers (i.e 

lysozyme) will shed light on this issue.  

 

Post-mitotic cells are essential for the function of the 

brain. Recently, it was shown that Purkinje cells from 

old (32 months of age), but not from young (4 months 

of age), displayed oxidative stress, γH2AX and SA-β-

gal staining: a co-localization of multiple senescence 

markers in the same neurons [31]. This was the first 

study describing a “senescence-like phenotype” in post-

mitotic cells of old, but not young, healthy mice. Our 

data are fully consistent and demonstrate that the 

senescence-like phenotype of Purkinje cell layer might 

actually start before middle age in mice, as middle age 

in mice is considered to start around 10 months of age 

[32]. Low bacterial β-gal staining was previously 

detected in the choroid plexus in mice [33, 34]. Our data 

on SA-β-gal stained choroid plexus are reminiscent of 

those showing increased expression of markers of 

senescence, particularly those related to obesity-induced 

inflammation, in the periventricular area adjacent to the 

lateral ventricle, which is located near the root of the 

choroid plexus [20]. Choroid plexus produces CSF and 

participate in brain immunosurveillance. During ageing, 

CSF secretion decreases as much as 50%. These 

modifications are concurrent with subnormal brain 

activity, reduced beta-amyloid clearance, and increased 

glycation phenomena as well as oxidative stress [35]. 

The potential interplay between senescent phenotype of 

the choroid plexus at young/mid age and its functional 

decline at older age is unknown. Senescence markers 

have been observed in neurons in the CNS also in a 

pathological context, during ischemia or Alzheimer’s 

disease [36, 37]. 

 

Accumulation of multiple senescence markers in aging 

mice has been shown for major post-mitotic cells types 

residing in different tissues, such as retinal ganglion 

cells, cardiomyocytes, skeletal myofibers, cochlear cells 

and osteocytes (reviewed in [3]) The physiological or 

aging role of the potential senescent phenotype – as we 

identified by SA-β-gal, p16, p21 and DPP4 marker 

expression levels - in the different functions performed 

by Purkinje cells and ependymal cells, specialized post-

mitotic neuronal cell types positive, in not aged healthy 

mice remains unclear. During rat post-natal cerebella 

development, the period of maximal differentiation 

between days 9 to 13 was associated with a change in 

p21 and p16 staining from the external granular and 

Purkinje cells to a primarily Purkinje cell distribution 

[38]. Expression levels of H3K4me3 and DPP4 and 

their signaling pathways have been implicated in 

several aspects of murine brain homeostasis, from 

development to aging [39–42]. To our knowledge, ours 

is the first report to detect expression of DPP4 in 

Purkinje cells; DPP4 inhibitors are new promising 

therapeutic approach against Alzheimer’s disease [41]. 

Future research on senescent post-mitotic cells should 

encompass also the crucial role of mammalian target of 

rapamycin (mTOR) pathway. During cell cycle arrest 

caused by contact inhibition cells do not undergo a fully 

senescent phenotype. It was demonstrated that the 

conversion from cell cycle arrest to senescence, a 

phenomenon called geroconversion, requires 

stimulation of mTOR and downstream effectors, such as 

pS6K, concomitantly to p16/p21 activation [43, 44]. 

Therefore, our study thus encourages exploring the 

function of post-mitotic cells positive for SA-β-gal 

activity and other senescence markers in healthy adult 

or middle age organisms, by simultaneous assessment 

of related phenomena (including SASP, the last step of 

the proposed multi-marker, three-step workflow for 

detecting senescent cells [1]), to understand whether 

post-mitotic senescence plays a significant role as driver 

of ageing phenotypes. 

 

MATERIALS AND METHODS 
 

Mice  
 

The C57BL/6 mice strains were purchased from AnLab, 

Czech Republic. All animal work was conducted in 

accordance with Act No 246/1992 Coll., on the 

protection of animals against cruelty under the 

supervision of the Central Commission for Animal 

Welfare, approval 39197/2018-MZE-17214. Mice were 

housed under controlled conditions (light-dark cycle 12 

h, 21 ± 2 °C, 40–50% humidity) with food and water 

available ad libitum. Obese (ob/ob) male mice in BL6 

background (Charles River, MA, US) were housed in 

the University of Brescia animal facility (Brescia, Italy). 

Mice of 9-weeks-of-age were then euthanized and 

organs were removed. The experimental protocol 

n°516/2018-PR granted was approved by the University 

of Brescia Institutional Animal Care Committee 

(Brescia, Italy) and was conducted in accordance with 

national and European regulations. After mice sacrifice 

all tissues were collected, washed in PBS, fixed in 4% 
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paraformaldehyde for 24h and de-hydrate in sucrose 5% 

at least for 24hr. Finally, they were embedded in OCT 

and sectioned in 10µM slices with a frozen microtome. 

 

Histochemistry 

 

B-galactosidase detection method was performed as 

previously described [18, 19]. Briefly, tissues sections 

were fixed in 1% formalin in PBS for 1 min at RT, 

washed three times in PBS and incubated overnight on 

X-gal staining solution [1 mg/mL of X-gal (VWR), 40 

mM citric acid/sodium phosphate buffer, 5 mM 

potassium ferricyanide (Sigma), 5 mM potassium 

ferrocyanide (Sigma), 150 mM NaCl, and 2 mM 

MgCl2] at 37°C in a humidified chamber. The 

experiments were carried out using staining solutions at 

different pH (from 4 to 7) to assess the SA-β-gal 

activity. Samples were rinsed with distilled water and 

counterstained with Nuclear Fast Red (Sigma) for 5 

minutes. Images were acquired using Pia-Apochromat 

20x 0.8 M27objective on Axio scan Z1 (Zeiss).  

 

Immunofluorescence 
 

Immunofluorescence staining was performed on mice 

tissues sections as previously described [45–48]. Mice 

tissues sections were re-hydrate in PBS for 10 min and 

treated with the TrueBlack Autofluorescence quencher 

(Biotium) for 30 sec. After careful washing in PBS, 

sections were blocked for 60 min in M.O.M blocking 

solution (Vector Laboratories) and then incubated with 

primary antibody overnight. Two primary antibodies co-

staining solutions were used on adjacent sections to detect 

target proteins: one mix containing p21 (ab80633), B-gal 

(ab9361) and H3K4me3 (ab213224); and another mix 

containing CDKN2A/p16INK4a (ab189034) and anti-

DPPIV/CD26 (R&D Systems MAB1180). All the 

antibodies were used at 1:500 dilution except for anti-

DPPIV/CD26 that was used at 1:1000. The staining was 

developed using Alexa fluorescent (488, 555, 647) 

conjugated secondary antibodies, and images were 

acquired using Axio scan Z1 (Zeiss).  

 

Data analysis 

 

Image analysis was performed using ImageJ 

(http://rsb.info.nih.gov/ij/), ZEN 2011 SP1 (black 

edition) version 8.1., or ZEN 2 version 2.0.0.0. (Carl 

Zeiss Microscopy GmbH).  

 

Positivity for each marker was decided if the cellular 

signal intensity was clearly above background intensity 

seen in the isotype negative controls. Greater than 80 

Purkinje cells and > 200 choroid plexus cells were 

counted per animal and stained marker. Data were 

presented as means ± SD of 3  animals for group.  
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Supplementary Figure 1. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of mouse cerebellum from 3 month 
old leptin receptor-deficient ob/ob mice. Nuclear Fast Red was used for counterstaining. At pH 6, specific for SA-β-gal, bluish color from 
β-gal activity is evident specifically in the Purkinje cell layer. Representative images from 3 different mice per genotype are shown. 

 

 
 

Supplementary Figure 2. pH-dependent (pH 4 to pH 7) β-gal activity in frozen sections of choroid plexus from 3 months old 
leptin receptor-deficient ob/ob mice. Nuclear Fast Red was used for counterstaining. At pH 6, specific for SA-β-gal, bluish color from β-
gal activity is evident specifically in ependymal cells in the choroid plexus. Representative images from 3 different mice are shown. 
 


