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INTRODUCTION 
 

Breast cancer is a life-threatening disease of increasing 

clinical concern worldwide [1]. It is classified into four 

molecular subtypes; luminal A, luminal B, triple-

negative breast cancer (TNBC), and human epidermal 

growth factor receptor type 2 (HER2) positive [2, 3]. 

Treatment methods are very different for each subtype 

[4]. Endocrine therapy is effective for treating luminal 

A and B subtypes, which are therefore associated with 

good prognoses. In addition, HER-2-positive breast 

cancer is sensitive to chemotherapy and anti-HER-2 

therapy. However, prognoses are poor for TNBC 

because neither endocrine nor anti-HER-2 therapies are 

effective in this subtype. Thus, effective treatments for 

TNBC are urgently needed [5]. TNBC is characterized 

by genomic instability, high mutation load, and high 

levels of immune infiltration.  Some clinical  studies have 

 

therefore examined immunotherapy treatments for 

TNBC in recent years. 

 

Immunotherapies can target both innate and adaptive 

immune mechanisms in the treatment of breast cancer 

[5, 6]. Immunotherapy techniques, especially those 

targeting PD1 and PDL-1, have been considered for 

use in clinical practice [7]. Although immunotherapy is 

a promising treatment method for breast cancer, many 

issues still need to be addressed. Immune evasion is a 

key problem in breast cancer immunotherapy, and it  

is further complicated by substantial differences in 

immune cell infiltration processes and immune 

response in breast cancer compared to other types  

of cancer [8, 9]. Additional research is needed to 

identify immune checkpoints and immune cell 

infiltration processes that could serve as treatment 

targets. 
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ABSTRACT 
 

Advancements in immunotherapy have improved our understanding of the immune characteristics of breast 
cancer. Here, we analyzed gene expression profiles and clinical data obtained from The Cancer Genome Atlas 
database to identify genes that were differentially expressed between breast tumor tissues and normal breast 
tissues. Comparisons with the Immunology Database and Analysis Portal (ImmPort) indicated that many of the 
identified differentially expressed genes were immune-related. Risk scores calculated based on an eight-gene 
signature constructed from these immune-related genes predicted both overall survival and relapse-free 
survival outcomes in breast cancer patients. The predictive value of the eight-gene signature was validated in 
different breast cancer subtypes using external datasets. Associations between risk score and breast cancer 
immune characteristics were also identified; in vitro experiments using breast cancer cell lines confirmed those 
associations. Thus, the novel eight-gene signature described here accurately predicts breast cancer survival 
outcomes as well as immune checkpoint expression and immune cell infiltration processes. 
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Some previously identified immune-related genes and 

cells with prognostic value in breast cancer patients 

might be effective immunotherapy targets. For example, 

the immune-related gene TGFBR2 predicts prognosis in 

estrogen receptor-negative patients after chemotherapy. 

Several other genes identified as potential targets for 

cancer treatment play important roles in immune 

responses [10–12]. In addition, colocalization of 

immune and breast cancer cells predicts prognosis in 

breast cancer patients [13]. However, an immune-

related gene signature that can accurately predict breast 

cancer survival outcomes and other clinical features 

would be greatly beneficial. 

 

In this study, we explored whether immune-related 

genes influence clinical outcomes in breast cancer  

via immune-related mechanisms (Figure 1). First, we 

identified 4391 differentially expressed genes (DEGs), 

 

 
 

Figure 1. Schematic of research strategy. 



 

www.aging-us.com 16493 AGING 

of which 310 were immune-related (IRGs), in 1072 

breast tumor and 99 normal breast tissues from the 

TCGA database. Univariate Cox regression analysis of 

clinical data obtained from 1056 breast cancer patients 

revealed that the 301 IRGs were statistically significant 

predictors of survival. Eight of the 301 IRGs were 

incorporated into a model capable of predicting breast 

cancer survival outcomes based on Lasso regression 

analysis. This eight-gene signature was validated in  

two other breast cancer datasets, and its ability to 

predict immune checkpoint expression and immune cell 

infiltration was confirmed using breast cancer cell lines 

in vitro. 

 

RESULTS 
 

DEGs and IRGs in breast cancer 
 

Gene expression data were downloaded from TCGA, 

and a total of 4391 differentially expressed genes 

(DEGs) were identified between breast tumor and 

normal breast tissues (Figure 2A). Out of these 4391 

 

 
 

Figure 2. Identification of DEGs and IRGs between breast tumor and normal breast tissues from the TCGA database. (A, C) 
Heatmap and volcano plot of DEGs between breast tumor and normal breast tissues. (B, D) Heat map and volcano plot of IRGs between 
breast tumor and normal breast tissues. 
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DEGs, 2042 DEGs were over-expressed and 2349 were 

under-expressed in breast tumor tissues compared to 

normal tissues (Figure 2C). Using the ImmPort gene 

list, 310 of the DEGs were identified as immune-related 

genes IRGs (Figure 2B); of these, 195 genes were 

under-expressed and 115 were over-expressed in breast 

tumor tissues compared to normal tissues. 

 

GO and KEGG enrichment analyses 

 

To further explore their functions, the 310 IRGs that 

were differentially expressed between tumor and normal 

tissues were subjected to GO and KEGG enrichment 

analyses. GO enrichment analysis indicated that the 

IRGs were enriched in the following five GO terms: 

inflammatory response, immune response, response to 

lipopolysaccharide, chemokine-mediated signaling 

pathway, and chemotaxis (Figure 3A). These GO terms 

are associated with immune functions, confirming that 

these DEGs are immune-related. 

 

KEGG enrichment analysis indicated that the IRGs 

were enriched in the following five KEGG terms: 

cytokine-cytokine receptor interaction, chemokine 

signaling pathway, legionellosis, salmonella infection, 

and TNF signaling pathway (Figure 3B). These results 

 

 
 

Figure 3. Enrichment analysis of differentially expressed IRGs between breast tumor and normal breast tissues. (A) GO 
enrichment analysis results. (B) KEGG enrichment analysis results. 
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suggested that these genes might have functions in cell 

interaction, infection, and other immune related pathways 

and further validated the GO enrichment analysis results. 

 

Construction of the eight-IRG signature 

 

The analysis process is depicted in Figure 1. As shown 

in the flow chart, the 310 IRGs were subjected to single 

factor Cox regression analysis. After considering the 

statistical significance of associations with OS, five 

IRGs were selected for further consideration. IRGs that 

were involved in breast cancer pathogenesis and 

progression were identified only among the 30 IRGs 

that were significantly associated with clinical outcomes 

(Table 1). Finally, using LASSO regression analysis, an 

eight-IRG signature was constructed in which risk score 

was calculated using the following formula (Figure 4A): 

 

risk score (0.1775 ULBP2) (0.1140

ADRB1) – (0.0231 TSLP) – (0.0324

MIA) (0.1522 IL27) – (0.1013 IFNE)

(0.1413 SCG2) – (0.1017 NR0B1)

  

 

   

    
 

Hazard ratios and expression levels for each of the eight 

genes as well as risk score distributions are shown in 

Figure 4B–4E. Breast cancer patients were divided into 

high-risk and low-risk groups using the median risk 

score as a cut-off point. OS and RFS were shorter in 

high-risk patients than in low-risk patients (p<0.001) 

(Figure 5A and 4C). Time-dependent ROC curves 

indicated that the AUC for three-year and five-year OS 

were 0.753 and 0.720, while the AUC for three-year and 

five-year RFS were 0.643 and 0.603 (Figure 5B, 5D). 

Incorporation of the important clinical variables age, 

HER2/ER/PR status, stage, TP53 mutation status, 

therapy type, and risk score into a multivariate re-

gression analysis revealed that risk score was an 

independent prognostic factor (p=0.003). 

 

Validation of the eight-gene signature 
 

To further validate the predictive power of our model, 

we re-evaluated its prediction accuracy in two 

additional data sets from GEO, GSE20685 and 

GSE21653. KM curves and survival information 

revealed significant differences in survival outcomes 

between high-risk and low-risk patients, confirming the 

robustness of the eight-IRG signature (Supplementary 

Figure 1A, 1B). 
 

Evaluating predictive accuracy of survival outcomes 

in breast cancer patients 
 

To further explore the predictive capacity of the eight-

gene signature, we used it to predict survival outcomes 

of in different breast cancer patient subgroups 

(Supplementary Figure 1). Mutations in oncogenes and 

tumor suppressor genes contribute to malignant behavior 

in cancer cells [14], and TP53 mutations are very 

common in breast cancer [15]. Our results revealed a 

significant difference in survival between high-risk and 

low-risk patients regardless of TP53 mutation status 

(Supplementary Figure 1C, 1D). Survival analysis of the 

breast cancer patients with different disease stages 

indicated that survival outcomes were significantly 

worse for both stage I-II and stage III-IV high-risk breast 

cancer patients than for low-risk breast cancer patients 

(Supplementary Figure 1E, 1F). This demonstrated that 

the eight-gene signature could accurately predict 

survival outcomes in patients with different stages of 

breast cancer. 

 

Next, we performed survival analysis for breast cancer 

patients of different pathological subtypes: ER positive 

or negative, PR positive or negative, and HER2 positive 

or negative (Supplementary Figure 1E–1L). Survival 

outcomes were significantly worse for high-risk patients 

than for low-risk patients regardless of ER and PR 

status as well as in HER2-negative patients, indicating 

that the eight-gene signature accurately predicted 

survival for these pathological types. In addition, 

although the p value for HER2-positive patients was 

greater than 0.05, there was an obvious trend towards 

poorer survival outcomes in high-risk patients compared 

to low-risk patients of this subtype. 

 

Associations between eight-gene signature and 

adjuvant therapies 
 

Adjuvant radiotherapy is often an important component 

of breast cancer treatment [16]. In addition, 

radiotherapy can not only reduce the risk of breast 

cancer recurrence, but also improve prognosis [17]. 

Targeted molecular therapy has also improved the 

prognosis of early and advanced stage breast cancer 

patients over the past 15 years [18]. To explore the 

relationship between the eight-gene signature and these 

two treatments, we conducted a subgroup analysis of 

low-risk and high-risk patients based on treatment type. 

The results showed that targeted molecular therapy had 

therapeutic benefits only in low-risk patients, while 

radiotherapy had therapeutic benefits only in high-risk 

patients (Figure 6). 

 

Associations between eight-gene signature and 

degree of cancer stemness 

 

Next, we tested associations between the eight-gene 

signature and levels of G1 phase, high PKH26, and low 

PKH26 cells in breast cancer patients using single cell 

sequencing data [19]. An increase in the population of 
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Table 1. General characteristics of breast cancer-specific immune-related genes. 

Gene logFC FDR HR z-value p-value 

ULBP2 1·334234 1·44E-15 1·213258 3·787657 0·000152 

ADRB1 -2·43947 6·59E-25 0·865577 -3·58362 0·000339 

TSLP -3·85142 3·11E-90 0·856824 -3·29241 0·000993 

MIA -2·20894 3·00E-14 0·901339 -3·13967 0·001691 

IL27 1·777017 1·51E-37 1·213428 2·945851 0·003221 

IFNE -1·07249 7·13E-13 0·826754 -2·86661 0·004149 

IL33 -3·65911 3·67E-63 0·90004 -2·77615 0·005501 

ULBP1 2·464382 3·77E-32 1·118432 2·665098 0·007697 

RXFP1 1·42523 2·38E-17 1·162835 2·630139 0·008535 

SCG2 2·309767 1·41E-39 1·13489 2·616983 0·008871 

SDC1 2·064759 1·23E-45 1·220534 2·586434 0·009697 

IL17B -2·70568 1·21E-47 0·87877 -2·57143 0·010128 

CXCL1 -1·71462 1·07E-12 0·907549 -2·57002 0·010169 

VGF 3·344907 5·84E-42 1·093142 2·52823 0·011464 

CXCL6 -1·64242 3·68E-13 0·901633 -2·49364 0·012644 

NR0B1 -1·87465 5·36E-20 0·88259 -2·48448 0·012974 

CXCL2 -4·28926 2·02E-90 0·90192 -2·46882 0·013556 

LIFR -2·94302 2·24E-98 0·852014 -2·46877 0·013558 

JUN -1·55224 5·11E-40 0·826904 -2·42568 0·01528 

LGR6 -2·50792 1·59E-23 0·916671 -2·42018 0·015513 

TACR1 -3·49715 5·23E-64 0·903367 -2·40346 0·016241 

CXCL14 -1·97421 1·45E-14 0·924163 -2·37137 0·017722 

NGFR -2·72487 1·26E-41 0·900896 -2·33917 0·019327 

BMP5 -3·63872 7·19E-43 0·923655 -2·25647 0·024041 

CXCL3 -2·30754 2·21E-36 0·900084 -2·20137 0·02771 

C3 -1·39465 1·49E-20 0·888334 -2·16518 0·030374 

SEMA3G -2·91638 3·15E-91 0·873563 -2·07498 0·037988 

TNFRSF8 -1·24776 6·80E-23 0·86757 -2·07424 0·038057 

EDN3 -4·4653 4·90E-42 0·944592 -2·05427 0·039949 

CCL23 -1·59865 1·44E-25 0·890331 -2·04987 0·040377 

 

cells in the G1 cell cycle phase indicates increased 

proliferation of cancer cells. PKH26 is a biomarker of 

cancer cell proliferation; cell growth rates and cancer 

sameness are higher in cancer cells with lower PKH26 

expression [19]. Our results revealed that G1 phase 

cell numbers were slightly increased, low PKH26 cell 

numbers were increased, and high PKH26 cell 

numbers were decreased in high-risk breast cancer 

patients (Figure 7A). Furthermore, risk score was 

positively correlated with low PKH26 cell numbers 

and negatively correlated with high PKH26 cell 

numbers (Figure 7B, 7C). These associations between 

the eight-gene signature and cancer cell stemness are 

consistent with the ability of the risk score to predict 

survival outcomes. 

Associations between eight-gene signature and 

immune characteristics 
 

Associations between risk score and breast cancer 

immune characteristics, such as immune checkpoints 

and immune cell infiltration, were examined  

(Figures 8, 9). Expression levels were significantly 

different for 13 of the 18 immune checkpoints tested 

between high-risk and low-risk breast cancer patients 

(Figure 8). Among these 13 immune checkpoints, 

PD1, PDL2, PDL1, B7H3, CTLA4, IDO1, LAG3, 

TIM3, CD28, ICOS, OX40, and X41BB were 

expressed at higher levels, while VSIR expression was 

lower, in high-risk patients compared to low-risk 

patients. 
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The CIBERSORT algorithm was then used to identify 

eight immune cells for which infiltration differed 

between high-risk and low-risk patients (Figure 9A). 

The results revealed that naïve B cells, CD8 T cells, 

resting CD4 memory T cells, and monocytes showed 

less infiltration, while T follicular helper cells and M0, 

M1, and M2 macrophages showed more infiltration, in 

the high-risk group. In an analysis using the xCell 

algorithm, which uses more detailed immune cell 

classifications compared to CIBERSORT, a total of 21 

immune cells showed significant differences in 

infiltration between low- and high-risk patients (Figure 

9B). Five immune cells with the same definition were 

identified based on two algorithms, including naïve B 

cells, monocytes, and M0, M1, and M2 macrophages. 

The infiltration differences were consistent between the 

algorithms for four of these five immune cells; although 

infiltration changes for monocytes were inconsistent 

between the algorithms, these immune cells show very 

low infiltration levels overall. In general, the eight-gene 

signature is therefore predictive of changes in immune 

cell infiltration. 

 

 
 

Figure 4. Construction of the eight-gene signature and performance analysis. (A) Construction of the eight-gene signature.  
(B) Hazard ratio of each gene in the eight-gene signature. (C) Risk score distribution and cut-off point. (D) Distribution of breast cancer patient 
survival outcomes. (E) Heat map showing expression levels of the eight genes in breast cancer patients. 
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Figure 5. Survival analysis of high- and low-risk breast cancer patients. (A, B) Analysis of OS in high- and low-risk breast cancer 
patients. (C, D) Analysis of RFS in high- and low-risk breast cancer patients. (E) Hazard ratio of the eight-gene signature and important clinical 
variables. 
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Predictive value of the eight-gene signature in TNBC 
 

Additional analyses of both survival outcomes and 

immune checkpoints were performed in the TNBC 

subgroup. The results indicated that high-risk non-TNBC 

patients had poorer survival outcomes than low-risk non-

TNBC patients; although the p-value for this comparison 

was slightly greater than 0.05 in TNBC patients, this 

trend would likely have reached statistical significance 

in a larger group of TNBC patients (Supplementary 

Figure 2A, 2B). Risk score also predicted expression of 

several immune checkpoints, including PD1, PDL1, 

PDL2, TIM3, CD28, ICOS, IL2RB, and 41BB, in 

TNBC patients, and its predictive value in these patients 

was similar to that observed in the overall breast cancer 

patient cohort (Supplementary Figure 2C, 2D). 

 

 
 

Figure 6. Survival analysis of adjuvant therapy in high- and low-risk patients. (A, B) Survival analysis of targeted molecular therapy 
and radiation in low-risk patients. (C, D) Survival analysis of targeted molecular therapy and radiation in high-risk patients. 
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Validation of eight-gene signature in vitro 
 

Associations between the eight-gene immune signature 

and immune checkpoint levels were examined in four 

breast cancer cell lines (Figure 10). The results 

indicated that expression of the five immune check-

points PD1, PDL1, B7H3, LAG-3, and OX40 tended to 

be lower in cells with higher risk scores. This agrees 

with our finding that higher risk scores predict higher 

expression of four immune checkpoints in breast cancer 

patients. 

 

DISCUSSION 
 

In this study, we constructed an eight-gene IRG 

signature that predicted both survival and immune 

characteristics in breast cancer patients. Enrichment 

analysis confirmed that these eight genes were involved 

 

 
 

Figure 7. Associations between eight-gene signature and cancer stemness. (A) Infiltration of G1 phase, high PKH26, and low PKH26 
single cells between high- and low-risk patients. (B) Analysis of associations between risk score and high PKH26 single cells. (C) Analysis of 
associations between risk score and low PKH26 single cells. 
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in immune responses, suggesting that they function by 

interacting with immune checkpoints or immune cells. 

Additionally, the gene signature was validated using 

datasets containing different types of breast cancers, 

indicating that it may be broadly applicable for many 

breast cancer patients. 

 

Previous studies have demonstrated that some of the 

eight genes comprising our signature play important 

roles in cancer pathology and clinical assessment. 

ULBP2, a ligand of NKG2D, is associated with poor 

prognosis in a number of human cancers, and surface 

expression of this protein is often lost in many human 

cancer cell types during NK cell-mediated cytolysis 

[20–22]. The TSLP signaling pathway interacts with 

other immune pathways and may promote survival of 

breast and pancreatic cancer cells, although its effects in 

breast cancer remain poorly understood [23–25]. The 

 

 

 

Figure 8. Associations between eight-gene signature and 18 immune checkpoints. (A) Heatmap showing associations between risk 
score, clinical variables, and 18 immune checkpoints. (B) Predictive value of the eight-gene signature for PD1, PDL2, PDL1, B7H3, CTLA4, IDO1, 
LAG3, VSIR, TIM3, CD28, ICOS, OX40, and X41BB. 
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MIA gene family is considered a useful marker for 

many types of cancers, and its upregulation has been 

associated with shorter progression free survival times 

[26, 27]. Here, we found that upregulation of TSLP and 

MIA was associated with better survival outcomes, 

which contradicts previous studies indicating that these 

genes interact with other pathways to promote 

proliferation and growth of breast cancer cells. IL27 has 

been identified as a potentially useful target for anti-

cancer clinical applications, probably due to its ability 

to regulate CD8+ T cells, natural killer cells, macro-

phages, and other immune checkpoints [28, 29]; our 

present findings regarding IL27 are consistent with 

these prior studies. NR0B1 sensitizes lung cancer cells 

to chemotherapy and inhibits their invasive abilities [30, 

31]; similar effects might explain the poorer survival 

outcomes observed here in breast cancer patients upon 

downregulation of this gene. 

 

 
 

Figure 9. Associations between eight-gene signature and immune cell infiltration. (A) Predictive value of the eight-gene signature 
for 8 immune cells based on the CIBERSORT algorithm. (B) Predictive value of the eight-gene signature for 21 immune cells based on the xCell 
algorithm. 
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Although some of the genes included in our signature 

may not play important roles in clinical cancer 

pathology and assessment, they do play roles in other 

diseases. ADRB1 is implicated in cognitive neural 

diseases, possibly due to its role in neuroinflammatory 

processes, and is also associated with heart failure [32–

34]. These effects might also have contributed to the 

survival outcomes seen here. IFNE is a member of the 

interferon family that inhibits proliferation in various 

cells by regulating NK cells and the JAK-STAT 

pathway [35]. Upregulation of this gene in the present 

study might therefore contribute to improved survival 

outcomes. SCG2 may be a biomarker of bipolar disease 

and is known to regulate hypertension in humans [36], 

perhaps explaining the poorer survival outcomes 

observed here following upregulation of this gene. 

 

In this study, we also identified pathways through 

which the eight IRGs might affect breast cancer 

outcomes. Several proteins from the TNF signaling 

 

 

 

Figure 10. In vitro breast cancer cell line experiments validate the predictive value of the eight-gene signature for immune 
checkpoints. (A) Raw data (Ct value) from Rt-PCR analysis of the eight genes in four breast cancer cell lines and one normal breast cell line. 
(B) Risk scores of the four breast cell lines calculated based on Rt-PCR results. Western blot results for (C) PD1, (D) OX40, (E) B7H3, (F) LAG-3, 
and (G) PDL1 expression in the four breast cancer cell lines. 
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pathway play important roles in breast cancer and its 

treatment [37]. For example, TNF-α is implicated in 

immune responses in breast cancer and might therefore 

serve as a treatment target in triple negative breast 

cancer [38, 39]. Moreover, chemokine signaling 

pathway members, especially CCL5, are involved in the 

pathogenesis and development of breast cancer [40–42]. 

Although not all of the genes included in the enrichment 

analysis were incorporated into the eight-IRG signature, 

they were differentially expressed in breast tumor and 

normal tissues. Because the signature was constructed 

from these genes, the pathways in which they are 

enriched are relevant to the eight-IRG signature and may 

represent important differences between the two tissue 

types. These pathways might therefore reveal biological 

processes responsible for the immune functions of these 

genes as well as potential mechanisms that contribute to 

survival outcomes in breast cancer patients. 

 

The eight-gene signature was capable of predicting both 

a number of immune checkpoints which may serve as 

biomarkers and the infiltration of immune cells that can 

act as therapeutic targets in breast cancer. Previous 

studies strongly support the use of PD1 and PDL1 as 

targets for breast cancer treatment [43, 44]. 

Overexpression of CTLA4 can increase numbers of Treg 

cells and thereby influence breast cancer pathogenesis 

and development [45]. In addition, tumor-associated 

macrophages are associated with poor prognosis in 

breast cancer patients [46], which is consistent with our 

present finding that increased infiltration of M0, M1, and 

M2 macrophages was associated with poorer survival 

outcomes. Evidence also suggests that CD4 and CD8 T 

cells can act as biomarkers and therapeutic targets for 

breast cancer treatment [47, 48], which is in keeping 

with our finding that higher risk scores based on the 

eight-IRG signature were associated with higher levels 

of CD8 and resting CD4 memory T cells. Since these 

immune checkpoints and cells can serve as targets for 

immunotherapy [49], the ability of our eight-IRG 

signature to predict these immune characteristics might 

prove valuable in the clinical setting. 

 

Programmed death receptor 1 (PD1), which is mainly 

expressed in activated T lymphocytes and myeloid cells, 

and its ligand PD-L1 are important immunosuppressive 

molecules [50, 51]. The binding of PD1 to its ligand can 

inactivate T cells, leading to immune escape reactions  

in tumors [50]. Single or combined drug therapies  

using immune checkpoint inhibitors (ICIs) play  

anti-tumor roles by blocking the transmission of 

immunosuppressive signals, reactivating the immune 

response of T cells to tumors, and restoring immune 

activity in the tumor microenvironment [52]. The advent 

of immunotherapy has changed treatment regimens for 

many tumors, including breast cancer, and clinical trials 

of TNBC inhibitors have yielded encouraging results. 

Higher risk scores based on our eight-IRG model tended 

to be associated with poorer survival outcomes in TNBC 

group, indicating that this gene signature might help 

predict prognosis in TNBC patients. 

 

In conclusion, we developed an eight-gene signature 

using IRGs that were differentially expressed between 

breast tumor and normal breast tissues. This signature 

predicted breast cancer survival outcomes for various 

pathological types at different clinical stages. The genes 

included in the signature were also associated with 

immune checkpoint expression and immune cell 

infiltration. Our eight-gene signature therefore 

accurately predicted both immune characteristics and 

survival outcomes in breast cancer patients. 

 

MATERIALS AND METHODS 
 

Accessing gene expression data from TCGA 
 

TCGA is a cancer gene expression database accessible 

to all cancer researchers and clinicians. We downloaded 

clinical data for 1056 breast cancer patients and mRNA 

level gene expression data for 1072 breast tumor tissues 

and 99 normal breast tissues from the TCGA database. 

Clinical data was reordered and is summarized in Table 2. 

Because TCGA is open access and contains publicly 

available, ethical approval is not required before use. 

 

Differential expression analysis and identification of 

IRGs 

 

ImmPort is a publicly available database accessible to 

professionals specializing in immunology [53]. 

Differential expression analysis of RNA-Seq data from 

the 1072 breast tumor and 99 normal breast tissues was 

conducted using the R package “limma” from 

Bioconductor [54]. We applied |logFC|<1 and P<0.01 as 

the criteria to identify DEGs and determined which 

DEGs were also IRGs based on the IRG list 

downloaded from ImmPort. 

 

Enrichment analysis 
 

GO enrichment analysis was performed to identify 

biological functions, while KEGG enrichment analysis 

was used to identify both biological functions and 

pathways, associated with the DEGs [55, 56]. The R 

package “ClusterProfiler” was used for both enrichment 

analyses [57]. 
 

Construction and validation of the IRG signature 
 

Cox regression is a widely used tool for survival 

analysis [58]. Based on differential expression data, 
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Table 2. Clinical characteristics of the patients in TCGA data sets. 

Characteristics Number(%) 

Age  

<=60 586(55·5) 

>60 470(44·5) 

HER2  

Positive 108(14·7) 

Negative 625(85·3) 

ER  

Positive 777(77·0) 

Negative 232(23·0) 

PR  

Positive 676(67·2) 

Negative 330(32·8) 

Stage  

I~II 773(74·7) 

III~IV 262(25·3) 

TP53 status  

Wildtype 513(67.0) 

mutant 253(33.0) 

Radiation  

Yes 540(55.6) 

No 432(44.4) 

Targeted molecular therapy  

Yes 516(91.7) 

No 47(8.3) 

Survival status  

Survival 907(85·9) 

Dead 149(14·1) 

Relapse status  

Relapse-free 793(89·6) 

Relapse 92(10·4) 

 

30 IRGs were identified that contributed to survival 

outcomes in the 1056 breast cancer patients for which 

clinical data was available. Least Absolute Shrinkage 

and Selection Operator (Lasso) regression is a useful 

method for weighting model parameters and helps 

identify the most important variables to generate the 

best predictive model. The “glmnet” R package was 

used to carry out the LASSO Cox regression analysis 

[59]. This analysis identified an eight-gene signature 

that we used to construct a model that predicted both 

immune characteristics and clinical outcomes in breast 

cancer patients. Risk scores were calculated for each 

sample based on coefficients assigned to each 

prognostic IRG in the signature. The median risk score 

was used as a cut-off value for dividing training and 

validation group patients into high- and low-risk groups. 

Performance analysis 

 

The Kaplan-Meier (KM) survival curve is a powerful 

tool for analyzing patient survival outcomes [60]. In this 

study, the R package “survival” was used to generate 

the KM survival curve. A Receiver Operating 

Characteristic (ROC) curve is often used to evaluate the 

sensitivity and specificity of a model in predicting 

outcome events [61]. We used the R package “survival 

ROC” to conduct ROC analysis. Using the median risk 

score as a cut-off and plotting clinical outcome data for 

breast cancer patients against their risk scores, we 

generated an ROC curve and calculated area under 

curve (AUC) values for both 3- and 5-year survival. An 

AUC value between 0·5 and 0·7 indicates evidence of a 

successful model, values between 0·7 and 0·9 indicate 
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strong evidence of a successful model, and values 

greater than 0·9 indicate very strong evidence of a 

successful model. 

 

Validation using the GEO database 

 

The Gene Expression Omnibus (GEO) database is an 

open access database containing datasets from 

published projects [62, 63]. In our study, OS data for 

328 patients from the GSE20685 dataset and RFS data 

for 249 patients from the GSE21653 dataset were used 

as validation groups [64–66]. 

 

Analysis of cancer stemness using single cell 

sequencing data 

 

Single cell sequencing is a new method for generating 

sequencing profiles for specific cell types [67]. 

GSE124989 includes single cell sequencing data from 

three breast cancer cell subtypes, enabling analysis of 

degree of stemness in breast cancer cells [19]. The 

CIBERSORTX algorithm generates signatures from 

single cell sequencing data that allow the calculation of 

numbers of individual cell types from bulk RNA 

sequencing data [68]. We used the CIBERSORTX 

algorithm to analyze GSE124989 data and constructed 

signatures for the following breast cancer cell subtypes: 

G1 phase, high PKH26, and low PKH26 single cells. 

We then used the signatures of these three cell types to 

evaluate cancer stemness in breast cancer patients. 

 

Evaluation of predictive accuracy among different 

clinical stages and pathological types of breast cancer 
 

Clinical stage and pathological type are important 

factors that influence clinical decisions. We therefore 

tested the ability of the eight-gene signature to predict 

the survival outcomes in patients with different clinical 

stages and pathological types of breast cancer. Clinical 

stages were grouped as stage I-II and stage III-IV, while 

the pathological types were classified as ER positive or 

negative, PR positive or negative, and HER2 positive or 

negative. KM survival analysis was used to analyze 

clinical outcomes in the different breast cancer patient 

subgroups. 

 

Associations between eight-gene signature and 

immune characteristics 

 

Correlation analysis was then conducted to explore the 

eight-gene signature’s ability to predict immune 

checkpoint expression and immune cell infiltration. 

Breast cancer patients were divided into high- and  

low-risk groups the based on the cut-off risk score  

value before analyzing associations with immune 

characteristics. 

We analyzed the correlation between the eight-gene 

signature and the expression of the 18 immune 

checkpoints identified as existing or potential targets for 

cancer immunotherapy. T-tests were used to compare 

the mean immune checkpoint expression levels between 

high- and low-risk patients. 

 

The CIBERSORT algorithm is used to estimate the 

proportion of specific cell types based on bulk gene 

expression data [68]. LM22 is a leukocyte gene 

signature comprised of 547 genes that distinguishes 22 

human immune cell subsets with high accuracy. The 

XCell algorithm calculates infiltration of 64 immune 

cells from based on RNA-seq data [69]. Using these 

algorithms, we evaluated amounts of immune cells 

belonging to these 22 and 64 immune cell subsets in 

each sample at a significance level of p<0.05; only 

samples that exceeded that threshold were included in 

our study. Infiltration of the 22 and 64 immune cell 

subsets was compared between high- and low-risk 

breast cancer patients using t-tests. 

 

In vivo validation of results 
 
In vitro experiments using MCF7, MDA-MB-468, 

T47D, and MDA-MB-231 breast cancer cell lines as 

well as the MCF10A normal breast cell line as external 

reference (all from Genechem, Shanghai) were 

conducted to further validate the immune-checkpoint 

prediction accuracy of the eight-gene signature. Real-

time quantitative PCR (Rt-PCR) was performed to 

quantify expression of the eight genes in the signature 

using GAPDH as an internal reference gene (Table 3). 

Relative RNA expression levels for genes in the 

signature were calculated via the 2-∆∆Ct method. Promega 

M-MLV and Trizol (Pufei, Shanghai) kits were used in 

this experiment, and primers were obtained from 

Ribobio (Guangzhou). 

 

The R package “sva” was used for batch normalization 

of the Rt-PCR results with TCGA data. Risk scores 

were then calculated for each breast cancer cell line. 

Protein expression levels for the immune checkpoints 

PD1, B7H3, LAG-3, OX40, and PDL1, and the internal 

reference GAPDH in the breast cancer cell lines were 

assessed by western blot, and associations with risk 

score were examined. Antibodies for these proteins 

were purchased from Abcam (Shanghai). 

 

Statistical analysis 
 

Statistical analyses were conducted using the R program 

from the R project for statistical computing 

(https://www.r-project.org/) and SPSS. The R package 

“pheatmap” was used to plot heatmaps, and “ggpubr” 

was used to generate boxplots. Unless otherwise 

https://www.r-project.org/
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Table 3. Primer sequences used in qPCR in the cell experiment. 

Genes Upstream primer sequence Downstream primer sequence Amplified fragment size (bp) 

GAPDH TGACTTCAACAGCGACACCCA CACCCTGTTGCTGTAGCCAAA 121 

ULBP2 CCGCTACCAAGATCCTTCTG GGATGACGGTGATGTCATAGC 109 

ADRB1 TCTCGGCCCTGGTGTCCTT GCCCGGTTGGTGACGAAGT 115 

TSLP CTAACCTTCAATCCCACCG CTGAGTTTCCGAATAGCCT 108 

MIA CGAAGTTTGGGACTGGTTTAG GGCAGACAGCAAGATGATGAC 179 

IL27 CGCTTTGCGGAATCTCACC AGGGCATGGAAGGGCTGAA 158 

IFNE AGCCGATGTCTGTTCTTTGTG CCTCGGGCTTCTAAACTCTGT 108 

SCG2 CTGAAGCAAAGACCCACTG TGTACTCCAAAGCCCTGAT 180 

NR0B1 CCAAGGAGTACGCCTACCTCA CATTTCCAGCATCATATCATCCA 272 

 

indicated, p<0.05 was used to indicate statistical 

significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Validation of the eight-gene signature using survival analysis of GEO datasets and in different 
subtypes and stages of breast cancer. (A, B) Survival analysis of the GSE20685 and GSE21653 GEO datasets. (C, D) Survival analysis of 
breast cancer patients depending on TP53 mutation status. (E, F) Survival analysis of stage I-II vs. stage III-IV breast cancer patients. (G–L) 
Survival analysis in breast cancer patients with the following subtypes: ER positive/negative, PR positive/negative, HER2 positive/negative. 
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Supplementary Figure 2. Predictive value of the eight-gene signature for survival outcomes and immune checkpoints in 
TNBC subgroup. (A) Survival analysis of high- and low-risk TNBC patients. (B) Survival analysis of high- and low-risk non-TNBC patients.  
(C) Heatmap showing associations between risk score, clinical variables, and 18 immune checkpoints. (D) Predictive value of the eight-gene 
signature for PD1, PDL1, PDL2, TIM3, CD28, ICOS, IL2RB, and 41BB. 


