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INTRODUCTION 
 

Current understanding of cancer immunology has 

promoted the stratification of patients for identifying and 

exploring new cancer immunotherapeutic strategies [1, 

2]. Immunohistochemical staining-based immunoscore 

system is a possible approach in the classification of 

malignant tumors [3–5]. For example, lymphocyte 

infiltration and high expression level of IFN-γ (T cell-

inflamed tumors, i.e., hot tumors) may segregate tumors, 

indicate patients may benefit from PD-1/PD-L1 

inhibitors, and help predict immunotherapy 

responsiveness [6, 7]. On the contrary, the non-T cell-

inflamed phenotype, i.e., cold tumors, lacks expression 

of the type I IFN signature, CD8+ T cells, and IFN-

inducible inhibitory factors, correlated with treatment 

resistance. In addition, bulk gene expression profiling 

methods, such as CIBERSORT, TIMER, and integrated 

immunogenomic methods [8–13] have also been 

developed to characterize the immune landscape of 

cancer and to help guide cancer immunotherapy. 

However, these stratification approaches are mainly 
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ABSTRACT 
 

In recent years, personalized cancer immunotherapy, especially stratification-driven precision treatments have 
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gene profiling, associated with distinct molecular characteristics and clinical outcomes. Then, the weighted gene 
co-expression network analysis (WGCNA) algorithm was used to identify co-expression modules of each groups. 
We focused on C3 group which is characterized by low immune infiltration (cold tumor) and wild-type EGFR, 
posing a significant challenge for treatment of LUAD. Five drug candidates against the C3 status were identified 
which have potential dual functions to correct aberrant immune microenvironment and also halt tumorigenesis. 
Furthermore, their steady binding affinity against the targets was verified through molecular docking analysis. In 
sum, our findings suggest that such coupled analysis could be a promising methodology for identification and 
exploration of therapeutic candidates in the practice of personalized immunotherapy. 
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limited by heterogeneity in clinical cohorts, probably 

leading to confusion in determining ideal therapeutic 

options. Theoretically, the limitations can be partially 

offset by coupled analysis of stratification/therapeutics, 

which is relatively straightforward and efficient. 

However, no attempt has been undertaken. 

 

Drug repurposing is a strategy for identifying new uses 

for approved or investigational drugs that are outside 

the scope of the original medical indication [14, 15]. 

Compared to de novo drug discovery, drug repurposing 

can significantly reduce the cost and time to bring a new 

treatment to patients. It is possible now to link gene-

expression profiling data and screens for drug 

repurposing [16, 17]. Moreover, the Connectivity Map 

(CMap) database, based on a computational drug 

repurposing approach, has been demonstrated as an 

efficient tool for drug repurposing [18–20]. Therefore, 

combining genome polymorphisms and pharmacology 

may lead to promising new therapeutic strategies [21], 

and several drugs have been repurposed to treat cancers 

[22–24]. Of note, a careful selection of pertinent groups 

for evaluation of drug candidates remains essential, 

which reversely requires the rational stratification 

before drug repurposing. In this work, patient 

stratification and drug repurposing were coupled to 

explore novel therapeutic candidates for treatment of 

LUAD which accompanied with marked genetic and 

genomic heterogeneity [25, 26]. Following the steps 

shown in Figure 1, we categorized the patients into four 

groups based on immune gene profiling and then 

identified five drugs targeting four known targets with a 

computational drug repurposing approach. These 

identified agents could correct aberrant gene expression 

in a class of patients referred to as the C3 group, which 

is characterized by cold tumors and expression of wild-

type EGFR. The binding affinity between these 

potential drugs and paired targets were also investigated 

with molecular docking methods. 

 

RESULTS 
 

Four LUAD subtypes were delineated based on the 

immune-associated genes 
 

The gene expression profiles of 790 immune-associated 

genes were used to classify the TCGA cohort data into 

different LUAD subtypes. Initially, we assigned all 

 

 
 

Figure 1. The workflow of the study. CMap, connectivity Map; WGCNA, Weighted correlation network analysis; CP, compound; Genes 
KD/OE, genes knockdown/overexpress. 
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tumor specimens into k (k = 2, 3, 4, 5, 6, 7, 8) subtypes. 

A value of k = 4 was set to represent stable clusters 

according to the CDF curves of the consensus score 

(Figure 2A and Supplementary Figure 1). A total of 513 

LUAD tumor samples were finally assigned to four 

categories. The Kolmogorov-Smirnov test was used to 

calculate the upregulated genes in each subtype (FDR < 

0.05). Of the 790 immune-associated genes, 133, 135, 

276, and 233 genes were remarkably enriched in 

subtypes C1, C2, C3, and C4, respectively (Figure 2B). 

It is worth noting that only a few genes overlapped 

between pairs of subsets (Figure 2B). Next, principal 

component analysis (PCA) was employed to calculate 

the top 100 highly expressed genes in each cluster. The 

four subsets were distinguished from each other based 

on the two-dimensional scaling plotting of the first two 

principal components (Figure 2C). Furthermore, the top 

100 enriched genes in each subtype were used to 

describe their immune gene expression profiles (Figure 

2D). In addition, the R package sigclust was utilized to 

analyze the clustering significance between the four 

consensus clusters. It was found that the comparison 

between C2 and C3 was not significant (p=0.192), but 

marked differences were observed in expression 

distribution of C1 vs C4, C3 vs C4 (p < 0.05) 

(Supplementary Table 1). Therefore, the 513 LUAD 

patients extracted from TCGA cohort were classified 

into five molecular subtypes depending on the 

expression pattern of immune-associated genes. 

 

Clinical profile of the four subtypes 

 

To investigate the clinical relevance of tumor immune 

microenvironment, demographic distributions of age, 

gender, smoking status, tumor stage and the degree of 

progression of the primary tumor (T), tumor cells 

invasion into regional lymph nodes (N) and metastatic 

dissemination (M) were compared between patients 

with the four immune subtypes. Clinically, we 

observed that C3 subtype have a markedly lower 

median age at diagnosis (p = 0.025 Pearson’s chi-

square test, Figure 2E), and the highest proportion of 

male patients (p=0.028 Pearson’s chi-square test, 

Figure 2F) and smokers (1.77 × 10−9 Pearson’s chi-

square test, Figure 2G). Groups C2 and C3 showed a 

similar frequency of Stage II, Stage III and Stage IV, 

which is significantly higher than that of group C3 or 

C4 (p=3.172 × 10−5 Pearson’s chi-square test, Figure 

2H). Specifically, groups C2 and C3 displayed a higher 

proportion of T3 and T4 (p=0.025 Pearson’s chi-square 

test, Figure 2I), and a much lower percentage of N0 

(p=0.001 Pearson’s chi-square test, Figure 2J) 

compared to C1 or C4. Interestingly, the metastatic 

dissemination rate at diagnosis was not different among 

the four groups (p =0.762 Pearson’s chi-square test, 

Figure 2K). 

Distinct characteristics of immunogenicity of the 

LUAD subtypes 

 

We further examined the immunogenic and 

microenvironmental variables including immune cell 

metagene expression level, immune cells, tumor purity, 

immune and stromal score, and the abundance of tumor-

infiltrating lymphocytes using RNA expression data as 

previously described [27]. All immunogenic and 

microenvironmental factors scores were considerably 

lower in subtype C3 compared to C4. Immune 

metagenes corresponding to macrophages, NK, Treg, 

Tfh and LCK cells, and expression of co-stimulation/co-

inhibition signal-associated genes, MHC class I/II, 

interferon and interferon regulated genes (STAT1) were 

markedly lower in subtype C3 than in C4 (Figure 3A 

and Supplementary Figure 2). In terms of tumor 

microenvironment factors (stomal score, immune score, 

tumor purity), subtypes C2 and C4 showed upregulated 

stromal and immune genes and estimated tumor purity, 

while the subtype C3 tumors exhibited low levels of 

immune and stromal genes and estimated tumor cell 

fraction (Figure 3B and Supplementary Figure 2). 

 

Additionally, a higher number of immune-associated 

cells such as, B lineage cells, monocytic lineage cells, T 

cells, and CD8 T cells were produced in subtype C4 than 

in other subtypes, while endothelial cells and myeloid 

dendritic cells responded more aggressively to subtype 

C3 (Figure 3C and Supplementary Figure 2). Molecular-

tumor interactions were comprehensively assessed with 

TIMER (https://cistrome.shinyapps.io/timer/). Similarly, 

we compared the number immune infiltrating cells 

(dendritic cells, neutrophils, B, CD8+ T, CD4+ T, 

macrophages) in TCGA LUAD samples. We found that 

these immune cells were fewer in subtype C3 than in C4 

(Figure 3D and Supplementary Figure 2). It was also 

noted that there was significant immune infiltration and 

higher expression of immune-associated genes in subtype 

4, showing an enhanced immune microenvironment and 

disrupted immune microenvironment in subtype C3. 

 

The expression profiles of eight immune checkpoint 

genes, which are crucial for immune modulation, were 

further examined (Figure 3E). The following genes were 

considerably lower in subtype C3 compared to C4, i.e., 

PDCD1 (PD1), CTLA4, CD274 (PDL1), PDCD1LG2 

(PDL2), CD80 and CD86. Interestingly, the expression 

value of CD276 was markedly downregulated in subtype 

C4 whereas the expression level of VTCN1 was similar 

among the four subtypes. 

 

Prognostic values of the four LUAD subtypes 
 

We then explored whether the immune-associated genes 

can predict the prognosis of patients with the four 

https://cistrome.shinyapps.io/timer/
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Figure 2. Four immune subtypes of LUAD in TCGA cohort and their clinical profiles. (A) Heatmap of consensus values when k=4.  
(B) Venn diagram showing the upregulated genes (FDR < 0.05) in each cluster. (C) The scatter plot of the top 100 upregulated genes in each 
cluster, distinguished by the first two principal components (PCs). (D) Gene expression profile of the top 100 upregulated genes in each 
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cluster. Heat maps showing relative gene expression values, red indicates high expression, and blue indicates low expression. (E) Age at 
diagnosis of the four subtypes (Kruskal-Wallis test). The Boxplot centerlines indicating the median value; box limits show the 25th (Q1) and 
75th (Q3) percentiles, lower and upper whiskers extend 1.5 times the interquartile range (IQR) from Q1 and Q3, respectively. (F) Distribution 
of gender among the four subtypes (chi-square test). (G) Distribution of smoking status across the four subtypes (chi-square test). (H) 
Distribution of stage at diagnosis in the four subtypes (chi-square test). (I) The degree of progression of the primary tumor (T) at diagnosis in 
the four subtypes (chi-square test). (J) The degree of the invasion of regional lymph nodes (N) at diagnosis among the four subtypes (chi-
square test). (K) Incidence of metastatic (M) dissemination at diagnosis among the four subtypes (chi-square test). 
 

subtypes. The Kaplan-Meier curves were plotted to 

reveal the overall survival (OS) rates of patients (log-

rank test, OS, p=0.00172, Figure 4A). Notably, C4 had 

the highest OS rate among the four subtypes. In 

comparison, patients with subtype C3 had a worse OS 

than those in other subtypes, especially in C4 (log-rank 

test, OS, p=0.00172, Figure 4A; log-rank test, OS, 

p=0.00171, Figure 4B). 

 

Comparison of EGFR, KRAS and ALK mutations 

among the four subtypes 

 

Aberrant changes in KRAS, EGFR, ALK have been 

recognized as key drivers of lung cancer, and are 

frequently identified in LUAD [28]. To evaluate the 

relevance of EGFR, KRAS and ALK mutations to these 

four subtypes, we characterized the patterns of the 

EGFR, KRAS and ALK mutations in LUAD data from 

TCGA. Subtype C3 and C4 showed a markedly lower 

proportion of EGFR mutations compared to C1 and C2 

(p=9.54×10−5, Pearson’s chi-square test, Figure 4C). 

However, the KRAS mutation rate of subtype C4 was 

much lower than that of C1 and C3 (p=0.014, Pearson’s 

chi-square test, Figure 4C). Interestingly, the ALK 

mutation did not differ in our grouping, which indicates 

that it is not an immune-sensitive gene. (p=0.352, 

Pearson’s chi-square test, Figure 4C). We further 

analyzed the distribution of the number of all mutant 

genes in these four subtypes. Figure 4D shows that there 

were significant differences in the frequency of 

mutations among these groups (p=0, Pearson’s chi-

square test). Genetic mutations were more likely to 

appear in C3, and less so in C1 and C4. 

 

Gene co-expression network analysis for the four 

subtypes 
 

To classify genes with similar expression patterns into 

different modules for the four subtypes. Firstly, data of 

655 differentially expressed immune-related genes of the 

four subtypes was grouped on the basis of similarity 

using the weighted gene co-expression network analysis 

(WGCNA) method [29]. In this analysis, a soft 

thresholding power of 5 was used and the best parameter 

β was 5 (Figure 5A, 5B). Then, we converted the 

expression matrix into an adjacency matrix, and the 

adjacency matrix into a topological matrix (TOM). 

Based on TOM, we used the average-linkage 

hierarchical clustering method to cluster genes according 

to their expression patterns across the subtypes. The 

dynamic shear method was employed to determine the 

gene modules, after which the eigengenes of each 

module were calculated. Subsequently, we clustered the 

modules and merged similar modules into one, then set 

height=0.25, deepSplit = 2, minModuleSize = 30. Four 

modules were acquired as shown in Figure 5C. 

 

For better visualization, each gene cluster was assigned 

a specific color and a color code. A total of 655 genes 

were assigned into three co-expression modules (brown, 

turquoise, blue), while 316 genes that did not fit into 

other clusters were grouped into the fourth “grey” 

module. A key network was constructed using the 

Pearson correlation coefficients values of the four 

subtypes and modules (Figure 5D). Two modules were 

connected if they showed an absolute value of 

correlation > 0.45. Notably, the brown module was 

positively correlated with C3 (r=0.68, p=2e-71) and 

negatively correlated with C4 (r= -0.31, p=1e-12). In 

contrast, the blue module was strongly positively 

correlated with C4 (r=-0.78, p=4e-36) and negatively 

correlated with C3 (r=-0.35, p=1e-16). The turquoise 

module was also correlated with C4 (r=0.52, p=4e-36). 

 

The KEGG enrichment analysis was performed to 

investigate the biological functions of the genes. Results 

showed that the blue module was enriched in 25 

pathways, including immune-associated pathways such 

as primary immunodeficiency, the intestinal immune 

network for IgA production and T cell receptor 

signaling pathway. These observations were in 

agreement with previous reports [30, 31]. (Figure 5E). 

The genes in turquoise module were enriched in 32 

pathways, and the top 20 pathways are shown in Figure 

5F, including immune and inflammatory pathways such 

as Phagosome, Tuberculosis, and Inflammatory bowel 

disease (IBD). Interestingly, the genes in brown 

modules were not associated with KEGG pathways, 

indicating that the formation and pathogenesis of the 

subtype C3 are much more complicated and unknown. 

 

Validation of four molecular subtypes in the LUAD 

cohort 

 

To validate the four molecular subtypes, we first 

selected the genes in the blue, turquoise, and brown 



 

www.aging-us.com 16519 AGING 

 
 

Figure 3. Immune signature of the four subtypes in the TCGA cohort. (A–D) Heatmaps showing the gene expression scores of 
immune profiles of the four subtypes. A two-color scale was used, with red indicating high expression and blue representing low expression. 



 

www.aging-us.com 16520 AGING 

(A) The expression levels of 13 immune metagenes among the four subtypes. The 13 immune metagenes: IF1, macrophages, MHC2, MHC1, 
NK, T regulatory cells, lymphocyte-specific kinase (LCK), STAT1, T follicular cells, T cell inhibitory and stimulatory activity, and immune score 
and cytolytic activity. (B) The expression scores of genes included in the ESTIMATE algorithm for determination of stromal and immune gene 
signatures. (C) The expression scores of 10 groups of immune-associated cells. (D) The expression levels of genes included in the TIMER 
algorithm for assessment of immune infiltrates. (E) Differential expression of checkpoint molecules among the four immune subtypes. 
Boxplots indicate 5%, 25%, 50%, 75%, and 95%, respectively. Comparisons between subtypes were performed by Analysis of Variance 
(ANOVA). P-values were corrected by the Bonferroni method. 

 

modules closely related to C3 and C4 subtypes to 

calculate the correlation between genes and modules. 

Thirty-eight genes with correlation coefficients > 0.8 

were identified and their expression profiles were 

extracted as training sets. The samples were clustered 

with the support vector machine, at a classification 

accuracy of 98.83%. Subsequently, GSE68465 data was 

downloaded from the GEO database and standardized 

into quantiles. A total of 462 samples were included, 

comprising 19 normal samples and 442 LUAD samples. 

After exclusion of 19 normal samples, 442 LUAD 

samples were analyzed. The expression profiles of genes 

in the blue, turquoise, and brown modules were 

extracted. The samples were subdivided into the model, 

of which 123, 72, 196, and 52 samples were predicted 

for subtype C1, C2, C3, C4, respectively. First, we 

analyzed the expression distribution of 13 immune 

metagenes in each subtype. As shown in Supplementary 

Figure 3, most metagenes were highly expressed in C4 

and lowly expressed in C3, and this matched with the 

 

 
 

Figure 4. Kaplan–Meier curves and mutation status of the four immune subtypes. (A) Overall survival (OS) of the four subtypes 
(log-rank test). (B) Five-year Kaplan–Meier curves for OS of subtypes C3 and C4 (log-rank test). (C) Distribution of EGFR, KRAS and ALK mutant 
among the four subtypes. The lower half represents the number of EGFR/KRAS mutant and wild-type of different subtypes (chi-square test). 
(D) Distribution of the number of mutant genes in the four samples (Analysis of Variance, p<0. 0001). 
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validation set. Consistent with TCGA cohort, subtype 

C4 in the GEO cohort was considered to be highly 

expressed among the immune signatures (Supplementary 

Figure 3A–3D). Most immune metagenes were  

highly expressed in C4 but lowly expressed in C3 

(Supplementary Figure 3A). Analysis of immune 

microenvironmental factors suggested that the stromal 

score, immune score, and tumor purity were highest in 

 

 
 

Figure 5. Result of weighted gene correlation network analysis (WGCNA) analysis. (A) The scale independence of WGCNA analysis 
and determination of parameter β of the adjacency function in the WGCNA algorithm. (B) The mean connectivity of WGCNA analysis. (C) 
Cluster results and trait heatmap of data samples. (D) Module-immune subtype weight correlations and corresponding P-values (in 
parenthesis). The left panel shows the four modules and the number of module member genes. (E) The top 20 pathways of genes in the blue 
module (ranked by FDR ≤ 0.05) in the KEGG database. (F) The top 20 pathways of genes in the turquoise module (ranked by FDR ≤ 0.05) in the 
KEGG database. 
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subtype C4, but relatively lower in C3 (Supplementary 

Figure 3B). Besides, B lineage cells, NK cells, T cells, 

cytotoxic lymphocytes and myeloid dendritic cells were 

higher in C4 than in C3 (Supplementary Figure 3C). In 

the GEO cohort, subtype C4 had higher expression 

levels of checkpoint receptors PD1, CTLA-4, CD86 and 

CD80 and lower expression of VTCN1, compared with 

other subtypes (Supplementary Figure 3D). The 

expression value of CD276 and CD274, were not 

detected in the GEO dataset. In addition, significant 

survival differences were observed among the four 

subtypes in the GEO cohort (Supplementary Figure 3E, 

p=0.01973, log-rank). In particular, C4 was associated 

with enhanced immune microenvironment and showed 

the best prognosis. Further analysis of the relationship 

between the four subtypes in the GEO dataset and 

smoking history was conducted. As shown in 

Supplementary Figure 3F, the smoking degree differs 

among the subtypes (p=0.004, Pearson’s chi-square test). 

We further validate the four subtypes in GSE40419 

dataset. Samples from GSE40419 were classified by the 

same method, of which 43, 40, 53, and 18 samples were 

predicted for subtype C1, C2, C3, C4, respectively. 

Consistently, most immune signatures were highly 

expressed in subtype C4 but lowly expressed in C3 

(Supplementary Figure 4A–4D). Collectively, the 

findings from the GEO cohorts are in agreement with 

those from the TCGA cohort. 

 

CMap analysis for perturbagen signatures that 

reverse C3 immune subtype 

 

Among the four subtypes, we focused on patients  

with subtype C3. Their immunosuppressive status, 

accompanied by EGFR wild type, has been challenging 

to clinical treatment due to the lack of targets for 

tyrosine kinase inhibitor (TKI) and immunotherapy [6, 

32]. To investigate potential drugs for this subtype, we 

applied computational drug repurposing strategies. 

Subsequently, we performed CMap analysis to identify 

new drugs that can reverse immune-suppressed status of 

subtype C3. Genes in the brown module that positively 

correlated with C3 (Supplementary Table 2) were 

recognized as up-regulated genes, and genes in blue 

module (Supplementary Table 2) were down-regulated 

genes. After being queried by the next-generation CMap 

database (CLUE, https://clue.io/), small molecule 

compounds (CPs) and genes knockdown or overexpress 

(KD/OE) with positive and negative scores and 

exhibiting similar or opposing gene expression 

signatures in group C3 are shown in Figure 6A, 6B. Our 

analysis was carried out using cell lines A549 and 

HCC515, two LUAD cell lines. We then selected  

CPs with enrichment scores of less than -80 in  

both adenocarcinoma cell lines as potentially capable  

of reversing the C3 aberrant gene expression 

(Supplementary Table 3). We next screened knockdown 

genes with scores lower than -80 and overexpressed 

genes with scores higher than 80 in the two cell lines as 

potential therapeutic targets against LUAD 

(Supplementary Table 4). This analysis identified four 

overlapping genes (IKBKE, KDR, HDAC11, BIRC5) 

among the known target genes of the selected CPs and 

screened genes (KD or OE). These candidates were 

confirmed as targets for C3 reversal and the CPs 

identified above (Figure 6C, 6D). Our analysis further 

revealed that, BX-795, ENMD-2076, midostaurin, JNJ-

26854165 and alvocidib potently reverse the C3 subtype 

signature (Figure 6D, 6E). Interestingly, three drug 

candidates were identified for KDR. The connectivity 

scores for BX-795 and IKBKE knockdown were 

relatively similar in A549 and HCC515 cells. 

 

Validation of affinity of the candidate drugs by 

molecular docking analysis 
 

To evaluate the affinity of the candidate drugs for their 

targets, we performed molecular docking analysis. First, 

3D models of HDAC11 and IKBKE protein structure 

were predicted using the template-based homology 

modeling approach. Consequently, 6HSK-A and 4IM0-

A (PDB structures) were identified as ideal templates 

for modeling as they demonstrated high sequence 

similarity (32% and 44%) [33]. Ramachandran plot 

analysis demonstrated existence of 92.5% of all residues 

in the allowed regions for HDAC11 and 94.7% for 

IKBKE, highlighting the accuracy of the predicted 

structures (Figure 7). The binding poses and interactions 

of five drug candidates with four protein were obtained 

with Autodock Vina v.1.1.2 and binding energy for 

each interaction was generated (Figure 8, 

Supplementary Figure 5 and Table 1). Results showed 

that each drug candidates bound to its protein targets 

through visible hydrogen bonds and strong electrostatic 

interactions. Moreover, the hydrophobic pockets of each 

targets were occupied successfully by the five candidate 

drugs. For KDR, two candidates, JNJ-26854165 and 

BX-795 had low binding energy of -9.7 and -9.3 

kcal/mol, indicating highly stable binding (Table 1). 

 

DISCUSSION 
 

In recent years, increasing studies identifying and 

stratifying the immune characteristics of patients with 

LUAD have been reported [34–37]. Yet, most of them 

focused solely on the clinical relevance such as survival 

and prognosis, and have not been translated into routine 

clinical practice. This calls for a further exploration and 

summarization of the LUAD microenvironment to 

expose the molecular events underlying tumor cell–

immunocyte interactions, in particular, the relevance 

study of drug development. 

https://clue.io/
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In this study, we report a model for the practice of 

personalized immunotherapy, which is to couple patient 

grouping and exploration of novel therapeutic 

candidates. The four LUAD immune subtypes grouped 

on the basis of immune related gene expression profiles 

were associated with distinct molecular characteristics 

and clinical outcomes. Subtype C4 showed high levels 

of infiltration and expression of PD1, CTLA-4 and their 

receptors, meeting the criteria for classification as “hot” 

tumors. Of the four subgroups, patients belonging to 

subgroup C3 exhibited poor lymphocyte infiltration and 

the lowest expression of immune checkpoint proteins 

meeting the criteria for classification as “cold” tumors. 

Additionally, subtype C3 showed significantly lower 

median age at diagnosis, the highest proportion of male 

patients, smokers and the highest frequency of mutant 

genes. Interestingly, although C3 group had the highest 

frequency of gene mutation among the four subtypes, it 

harbored much fewer therapeutically important EGFR 

alterations, indicating that patients with this subtype can 

hardly benefit from immunotherapy or tyrosine kinase 

inhibitor (TKI) alone. 

 

Nowadays, the combination of priming therapy to 

enhance T cell responses along with the removal of 

inhibitory signals (and/or the supply of co-stimulatory 

signals) has been proposed to convert “old” tumors into 

“hot” tumors and overcome the lack of pre-existing 

immune responses [7]. However, the development  

of novel drugs is costly and time-consuming. 

Consequently, drug repurposing, where existing 

medication are utilized for the treatment of conditions 

other than their original targets has emerged as a 

potential solution to these challenges. 

 

 
 

Figure 6. Connectivity mapping for the gene signature in C3 immune subtype. (A, B) Connections of C3-driven gene signature with 
the small molecule compounds (A) and gene knockdown/overexpression (B) were analyzed by querying the CLUE database. Connections 
were viewed as a heat map ranked by the summary connectivity score. (C) The venn diagram indicating the number of target genes of 
screened small molecule compounds (enrichment score<-80) and gene knockdown/overexpression (gene knockdown, enrichment score<-80; 
gene overexpression, enrichment score>80), and the overlap between each set of genes. (D) Descriptions of overlapped gene and their 
corresponding drugs from screened small molecule compounds. (E) Connections of C3-driven gene signature with screened small molecules 
and gene knockdown/overexpression were analyzed by querying the CLUE database. Connections were viewed as a heat map with each 
connectivity score in individual cell line. CP, compounds. KD, knockdown. OE, overexpression. 
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A critical assumption of CMap analyses is that a drug 

that induces changes in gene expression that are 

opposite to those caused by a disease may have 

potential therapeutic benefits against the disease. 

Therefore, the outputs from inputting the blue and 

brown modules into CMap are potential targets and 

drugs that can reverse the cold tumor status of the C3 

subgroup. Here, we identified five drugs against four 

targets associated with the C3 status. IKBKE has been 

described to impact on inflammatory and metabolic 

diseases as well as on cell proliferation and 

transformation [38]. BIRC5 (baculoviral IAP repeat 

containing 5) is overexpressed in various tumors and 

associated with poor cancer survival [39]. KDR (also 

called VEGFR2) is a key modulator of angiogenesis and 

its overexpression is frequently associated with poorer 

prognoses in lung cancer patients [40]. It is notable that 

inhibition of KDR alleviates hypoxia and remodels the 

immunosuppressive tumor microenvironment [41]. It 

has also been reported that HDAC11 inhibition might 

regulate immune activation by increasing type I 

interferon signaling [42]. These indicates that the 

inhibition of these four targets has potential dual 

functions to correct aberrant immune microenvironment 

also halt tumorigenesis at the same time. 

 

Of all drug candidates, midostaurin needs special 

attention because it has gained approval by the FDA for 

the treatment of acute myeloid leukemia (AML) [43]. 

Interestingly, midostaurin has been found to displayed 

potent antiproliferative activity in several lung cell lines 

[44]. Another concern is BX-795, a known multi-target 

kinase inhibitor [45, 46]. Researches in recent years 

found that it exhibited inhibitory activity against virus 

infection and various cancer [47–49]. In this work, we 

found that BX795 can inhibit IKBKE and KDR at the 

same time correct aberrant gene expression in the C3 

subgroup. The only oral drug among all 

 

 
 

Figure 7. Homologous modeling of HDAC11 and IKBKE protein structure. (A) 3D structure of HDAC11 and IKBKE. (B) Ramachandran 
plot analysis. 
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Figure 8. Binding mode of screened drugs to their targets by molecular docking. (A) Binding mode of BX795 to IKBKE. (B) Binding 
mode of BX795 to KDR. (C) Binding mode of JNJ26854165 to HDAC11. (D) Binding mode of Alvocidib to BIRC5. (i), Cartoon representation, 
overlay of the crystal structures of small molecule compounds and their targets were illustrated by Molecule of the Month feature. (ii), 2D 
interactions of compounds and their targets. (iii, iv) Three-dimensional structures of the binding pockets were showed by PyMOL software. 
(iii), Coloring is from carmine (for strong H-bonds) to green (for poor H-bonds). (iv), Coloring is from magenta (for strong hydrophobic 
regions) to blue (for poor hydrophobic regions). 
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Table 1. Binding Energy for targets with their drugs. 

Target Drug Binding Energy (kcal/mol) 

IKBKE BX-975 -8.3 

KDR ENMD-2076 -7.8 

KDR BX-795 -9.3 

KDR Midostaurin -0.8 

HDAC11 JNJ-26854165 -8.9 

BIRC5 Alvocidib -5.4 

 

candidates is ENMD-2076. This is a multi-target kinase 

inhibitor with antitumor activities against breast cancer, 

melanoma, colorectal cancer [50–53]. Alvocidib can be 

used as a metastasis inhibitor and an apoptosis inducer in 

KRAS mutant population especially since KRAS 

mutation rate of C3 group was high [54]. Over all, all 

identified compounds including JNJ-26854165 [55] have 

previously shown the potential to inhibit a variety of 

tumors, of which midostaurin has been clinically 

approved for the treatment of hematological diseases. 

Furthermore, their steady binding affinity against the 

targets was verified through molecular docking analysis at 

a molecular level, thus warranting further investigation to 

validate. 

 

This strategy can also be used to immunotype other tumor 

patients and to screen for potential personalized drugs. 

Recently, immunotherapy, especially immune checkpoint 

blockade (ICB, e.g. anti-PD1/PD-L1 antibodies), has been 

used to treat multiple cancers, including NSCLC, 

melanoma, renal cell cancer, colorectal cancer, recurrent 

head and neck cancer (squamous cell), urothelial 

carcinoma, gastric cancer cervical cancer [56]. However, 

response to current immunotherapies and survival benefits 

are often seen in a subset of patients. The key to solving 

this problem lies in determining the individual's ability to 

respond to immunotherapy and to design a rational, 

individualized immunotherapy combined strategy. 

Therefore, to enhance and improve the efficacy of current 

immunotherapy, a better understanding of tumor immune 

microenvironment is required. As shown in this paper, in 

other tumors such as melanoma, we can also use 

unsupervised consensus cluster analysis, which relies on 

the expression profiles of immune-related genes, to reveal 

the immune landscape and characteristics within the 

tumor. Furthermore, based on immunophenotypic 

features, WGCNA analysis can be applied to construct co-

expression networks and identify hub genes. After drug 

repurposing, the identified potential therapeutic 

candidates may help facilitate personalized 

immunotherapy for patients with different molecular 

subtypes. In conclusion, it is evident that this method can 

be applied to other tumor types in which therapeutic 

response is dependent on the immune microenvironment. 

In summary, this study highlights the potential of 

coupling patient stratification with drug repurposing 

strategy as an alternative means for developing 

personalized immunotherapy. 

 

MATERIALS AND METHODS 
 

Sample datasets and clinical profiles 

 

The clinical data and gene expression profiles of 513 

LUAD data obtained from The Cancer Genome Atlas 

(TCGA) were used to analyze the immune 

microenvironment and molecular subtype of LUAD [57]. 

Data on overall survival (OS) (distant or locoregional 

recurrence after surgical treatment) was extracted from the 

TCGA cohort. The two LUAD expression datasets, 

including GSE68465 and GSE40419, as well as the 

corresponding clinical information in Gene Expression 

Omnibus (GEO) [58] were included to validate our 

results. The OS data were extracted from the GEO cohort. 

 

Processing of gene expression data 
 

For the TCGA cohort, data of the fragments per kilobase 

of gene per million fragments (FPKM) was derived  

from the TCGA data portal. Next, the expression values 

of FPKM were converted to transcripts Per Kilobase  

of exon model per Million mapped reads (TPM) for 

subsequent analysis. The genes were annotated using the 

Ensembl database. The clinical information and 

normalized expression data of the GEO cohort was 

obtained from the Gene Expression Omnibus (GEO) 

(GSE68465). Probe annotations of BeadChips were 

derived from the GEO database. The expression data of 

the two cohorts were mapped using the Entrez Gene. 

 

Characterization of molecular subtypes of LUAD 

using immune genes 
 

We analyzed whether the expression profile of global 

immune-related genes in the TCGA cohort could 

distinguish the LUAD subtypes. The expression data of 

immune-associated genes was derived from the 

Immunology Database and Analysis Portal (ImmPort) 
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database (https://immport.niaid.nih.gov). The immune-

related genes with expression level > 0 (FPKM>0) in 

more than 30% of samples were included, resulting in 790 

genes selected for subsequent Consensus Cluster Plus 

analysis. The similarity distance between samples was 

calculated by the Euclidean distance metric. The samples 

were clustered using the k-means clustering algorithm, 

with 1000 iterations by sampling 80% of the samples in 

each iteration. The cluster numbers varied from 2 to 8, 

and the optimal partition was determined by evaluating 

the consensus cumulative distribution function (CDF) 

[59]. The pair comparisons between the identified 

subtypes were determined by SigClust analysis. 

Bonferroni correction was applied for multiple testing. 

The Kolmogorov-Smirnov test was used to identify 

highly expressed genes among the subtypes. The false 

discovery rate (FDR) was determined by the Benjamini-

Hochberg method. FDR<0.05 was set as the threshold. In 

each subtype, the top 100 upregulated genes were 

employed to distinguish among the immune molecular 

subtypes. 

 

Immune signature analysis in LUAD molecular 

subtypes 
 

Thirteen immune metagenes corresponding to various 

immune cells and related immune functions were derived 

from a previous publication [27]. The expression scores of 

micro-environmental factors (tumor, immune, and stromal 

purity) were obtained using the ESTIMATE algorithm 

[60]. The association among the tumor samples and six 

tumor-infiltrating lymphocytes including B, and dendritic 

cells, neutrophils, CD8+ T, macrophages, CD4+ T, was 

analyzed using TIMER (https://cistrome.shinyapps. 

io/timer). The Microenvironment Cell Populations 

(MCP)-counter method developed by Etienne Becht et al. 

was used to validate the immune profiles [61]. MCP-

counter was used to estimate the inter-sample relative 

abundance of immune infiltrates based on gene expression 

profiles. The R package “MCPcounter” was utilized to 

calculate the MCP-counter scores. The expression score 

of immune signatures in each tumor sample was 

calculated using the log2 transformed and median-

centered FPKM expression values and then visualized by 

heatmap. The immune signature and expression level of 

checkpoint genes were also analyzed in all molecular 

subtypes. Different LUAD subtypes were compared by 

Analysis of Variance (ANOVA) test. Multiple testing was 

performed by Bonferroni correction. 

 

Analysis of mutations in each subtype 

 

The EGFR-mutant, KRAS-mutant and ALK mutant 

data were extracted from the SNP dataset in TCGA after 

processing with MuTect method (http://www.broad 

institute.org/cancer/cga/mutect) [62]. The frequency of 

mutations was assessed by calculating the number of 

variants annotated by ANNOVAR [63, 64]. 

 

Weighted Gene Co-expression Network Analysis 

(WGCNA) Analysis 

 

The WGCNA package in R software was employed to 

execute WGCNA analysis. Initially, Pearson correlation 

coefficients (ranging from − 1 to 1) were used to 

calculate the co-expression of all gene pairs. Due to the 

small sample size enrolled in the present study, Pearson 

correlations measuring linear relationships were chosen 

to minimize overfitting. To convert the correlation 

coefficients into a weighted adjacency matrix (values 

ranging from 0 to 1), we raised the co-expression 

similarity to a power β = 5. The adjacency matrix 

enables the determination of the strengths of connection 

between two nodes. The matrix is therefore used to 

establish a topological overlap matrix (TOM) which 

addresses the topological similarity factor. Here, we 

used the TOM to determine the corresponding 

dissimilarity (1-TOM) for cluster formation. Genes with 

clear expression patterns were classified into modules 

using the average linkage hierarchical clustering in 

concert with TOM-based dissimilarity. Specifically, 

gene modules (clusters of densely interconnected genes 

in terms of co-expression) were detected using the 

dynamic tree-cutting algorithm (deep split = 2, 

minimum number of genes per module = 30, cut 

height = 0.25). Unassigned genes were represented by 

gray color, while all other modules were assigned 

different colors in a random manner. Determination of 

modules highly correlated with subtypes was achieved 

using the module eigengenes (MEs). All analyses were 

carried out using the WGCNA package. 

 

Functional group analysis 
 

ClusterProfiler software 3.6.0 was employed for KEGG 

pathway enrichment analysis of the genes in each 

module and subtype. The R package of this software 

helps to determine the biological functions of gene 

clusters and to compare several gene clusters [65]. 

 

Connectivity map analysis 
 

The next generation Connectivity Map (CMap, 

https://clue.io/) is a database that catalogs gene 

expression profiles of various human cell lines upon 

exposure to various small molecule compounds and 

genetic perturbations [66, 67]. To find perturbagens that 

reverse the immune-suppressed status of subtype C3, 

the genes listed in Supplementary Table 2 were inputted 

as query into the CLUE database and results 

downloaded from the CMap database. Compounds 

(CPs) with potential to reverse the C3 phenotype were 

https://immport.niaid.nih.gov/
https://cistrome.shinyapps.io/timer
https://cistrome.shinyapps.io/timer
http://www.broadinstitute.org/cancer/cga/mutect
http://www.broadinstitute.org/cancer/cga/mutect
https://clue.io/
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further screened by filtering for an enrichment score of 

<−80 in both A549 and HCC515 cell lines. Gene 

knockdown (KD) with enrichment scores below -80 and 

overexpressed genes (OE) with scores above 80 in both 

A549 and HCC515 were also identified. Overlapping 

genes between target genes of CPs and genes KD or OE 

that perturb the C3 signature were determined by Venn 

diagram analysis. The overlapping genes were 

considered potential drug targets for C3 group. We 

hypothesized that these candidate genes can be 

pharmacologically targeted with the identified CPs with 

scores of <−80. Connections of C3 driven gene 

signature to CPs or gene KD/OE were obtained from 

the results and presented in the form of a heat map. 

 

Homologous modeling 
 

To analyze the binding affinities and modes of 

interaction between the CPs and their targets, we used 

an in silico protein-ligand docking software 

(AutodockVina 1.1.2) [68]. To date, there is no 

complete crystal structure of HDAC11 and IKBKE, so 

their amino acids sequences were analyzed by EXpasy 

(http://swissmodel.expasy.org/) [69] Ramachandran 

plots were used to assess stereo-chemical quality [70]. 

The parameters were set to default. 

 

Molecular docking 

 

The molecular structures of ENMD-2076, BX-795, JNJ-

26854165, midostaurin and alvocidib were retrieved 

from PubChem Compound (https://pubchem. 

ncbi.nlm.nih.gov/) [71]. The 3D coordinates of KDR 

(PDB ID, 5EW3; resolution, 2.5 Å) and BIRC5(PDB 

ID, 4AOI; resolution, 1.9Å) were downloaded from the 

PDB (http://www.rcsb.org/pdb/home/home.do). For 

docking analysis, all protein and molecular files were 

converted into PDBQT format with all water molecules 

excluded and polar hydrogen atoms were added using 

MGLTools (version 1.5.6). The grid box was centered 

to cover the domain of each protein and to 

accommodate free molecular movement. The grid box 

was set to 30 Å × 30 Å × 30 Å, and grid point distance 

was 0.05nm. Molecular docking studies were performed 

by Autodock Vina 1.1.2 (http://autodock.scripps.edu/) 

and Pymol software 2.3 (DeLano Scientific, Portland, 

USA) was used for model visualization. 

 

Statistical methods 
 

Fisher’s exact test or chi-square test was used to 

evaluate the correlation between molecular subtypes 

and conventional clinical variables. Benjamini-

Hochberg’s FDR was used for corrected multiple 

testing. The log-rank tests and Kaplan-Meier curves 

were used to calculate the OS rates for each molecular 

subtype. These statistics were two-sided and were 

performed using R software. 

 

Availability of supporting data 
 

The datasets analyzed during the current study are 

available in the Genomic Data Commons (GDC, 

https://gdc.cancer.gov/access-data/gdc-data-portal) and 

Gene Expression Omnibus (GEO, https://www.ncbi. 

nlm.nih.gov/geo/) repositories. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The cumulative distribution function (CDF) curves. (A) The CDF curves in unsupervised consensus cluster 
analysis. The cluster numbers (k = 2, 3, 4, 5, 6, 7, 8) and their corresponding consensus scores. (B) Relative changes of the area under CDF 
curves. The number of clusters are shown on the x-axis. The y-axis indicates the proportion of areas under CDF curve. 
 

 
 

Supplementary Figure 2. Boxplots showing the gene expression scores of immune profiles of the four subtypes. Boxplots show 
5%, 25%, 50%, 75%, and 95%, respectively. 
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Supplementary Figure 3. Validation of the four immune-associated subtypes in the GEO LUAD cohort. (A) The expression levels 
of 13 immune metagenes. (B) The expression levels of genes included in the ESTIMATE algorithm for determination of stromal and immune 
gene signatures. (C) The expression scores of genes related to 10 groups of immune cells. (D) The expression scores of checkpoint molecules 
among the four subtypes in the GEO LUAD cohort. (E) Kaplan–Meier curves showing the overall survival (OS) of the four subtypes (log-rank 
test). (F) Distribution of smoking status among the four subtypes. 
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Supplementary Figure 4. Validation of the four immune-associated subtypes in the GSE40419 dataset. (A) The expression levels 
of 13 immune metagenes. (B) The expression levels of genes included in the ESTIMATE algorithm for determination of stromal and immune 
gene signatures. (C) The expression scores of genes related to 10 groups of immune cells. (D) The expression scores of checkpoint molecules 
among the four subtypes. 
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Supplementary Figure 5. Binding mode of screened drugs to KDR protein by molecular docking. (A) Binding mode of midostaurin 
to KDR. (B) Binding mode of ENMD-2076 to KDR. (i), Cartoon representation, overlay of the crystal structures of small molecule compounds 
and their targets were illustrated by Molecule of the Month feature. (ii), 2D interactions of compounds and their targets. (iii, iv) Three-
dimensional structures of the binding pockets were showed by PyMOL software. (iii), Coloring is from carmine (for strong H-bonds) to green 
(for poor H-bonds). (iv), Coloring is from magenta (for strong hydrophobic regions) to blue (for poor hydrophobic regions). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2 to 4. 

 

Supplementary Table 1. The clustering significance between the four subtypes. 

P-values C1 C2 C3 C4 

C1 1 0.140006283 0.062373838 0.00755249 

C2 0.140006283 1 0.19246147 0.123329892 

C3 0.062373838 0.19246147 1 0.000127256 

C4 0.00755249 0.123329892 0.000127256 1 

 

Supplementary Table 2. Gens in blue, turquoise, brown and grey modules. 

 

Supplementary Table 3. CPs with enrichment scores of less than -80 in A549 and HCC515 cell lines. 

 

Supplementary Table 4. Knockdown genes with scores lower than -80 and overexpressed genes with scores higher 
than 80 in A549 and HCC515 cell lines. 


