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INTRODUCTION 
 

The product of the FRAS1-related extracellular matrix 1 

(FREM1) gene was first identified as a secretory protein 

excreted by mesenchymal cells that play a critical role 

in the development of multiple organs [1]. Multiple 

FREM1 transcripts can be found in the mammalian 

system [2]. In a previous study, TILRR (Toll-like/IL-1 

receptor regulator) was identified as the IL-1R co-

receptor, a 715-amino acid heparan sulfate glycoprotein 

encoded within the gene for the extracellular matrix 

protein FREM1 [2]. Hence, in the National Center for 

Biotechnology database, TILRR is annotated as FREM1 

(isoform 2).  
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ABSTRACT 
 

In atherosclerosis, upregulated TILRR (FREM1 isoform 2) expression increases immune cell infiltration. We 
hypothesized that TILRR expression is also correlated with cancer progression. By analyzing data from Oncomine 
and the Tumor Immune Estimation Resource, we found that TILRR mRNA expression was significantly lower in 
breast cancer tissue than adjacent normal tissue. Kaplan-Meier survival analysis and immunohistochemical 
staining revealed shortened overall survival and disease-free survival in patients with low TILRR expression. TILRR 
transcript expression was positively correlated with immune score, immune cell biomarkers and the expression of 
CXCL10 and CXCL11. TILRR expression was also positively correlated with CD8+ and CD4+ T-cell infiltration. These 
correlations were verified using the ESTIMATE algorithm, gene set enrichment analysis and Q-PCR. We concluded 
that impaired TILRR expression is correlated with breast cancer prognosis and immune cell infiltration. 
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TILRR binds to the cell membrane through a  

C-terminal lectin domain, and partners with IL-1R1  

as its co-receptor to enhance ligand binding. 

Overexpressed TILRR interacts with IL-1R1 via its 

TIR domain. This association potentiates the 

recruitment of the MyD88 adapter protein, and the 

signal amplification enhances activation of NF-ĸB and 

pro-inflammatory genes [3].  

 

Recently, it was reported that TILRR upregulates pro-

inflammatory gene expression in the progression of 

atherosclerosis [4]. Because TILRR induces immune 

cell infiltration, we wondered if TILRR expression 

might contribute to tumor progression. We 

hypothesized that the influence of TILRR on pro-

inflammatory gene expression might have a prognostic 

value in cancer treatment.  

 

First, we examined the correlation between FREM1 

expression and the prognosis of cancer patients. 

Subsequently, we investigated the expression of TILRR 

in tumor cells within different tumor 

microenvironments. The findings shed light on the 

crucial role of TILRR in breast cancers. The protein 

may be useful as a prognostic biomarker. 

 

RESULTS 
 

FREM1 mRNA expression levels in human breast 

cancer tumors 
 

To investigate the role of FREM1 gene expression in 

cancer, we determined the FREM1 mRNA levels in 

tumor and normal adjacent tissues of 20 cancer types. 

Data obtained from Oncomine was analyzed using the 

following threshold criteria: 2-fold change, P value < 

0.0001 and a gene rank of 10%. Downregulation of 

FREM1 gene expression was found in breast cancer, 

ovarian cancer and pancreatic cancer tissues. In breast 

cancer tissues, 9 out of 43 samples met the threshold 

criteria in 4 out of 10 datasets. In the other two cancer 

types, only a single event reached threshold criteria 

(Figure 1A). 

 

Further evaluation of FREM1 expression in multiple 

malignancies was carried out using the gene expression 

data from The Cancer Genome Atlas (TCGA). 

Differential FREM1 expression between the tumor and 

adjacent normal tissues is illustrated in Figure 1B. In 

most types of cancer, FREM1 expression is significantly 

lower (P value < 0.001) than in adjacent normal tissues 

(Figure 1B). 

 

FREM1 expression in breast cancer was further 

investigated using TCGA and Gene 

Expression Omnibus (GEO) data (Figure 1C and 1D). 

FREM1 expression in tumor tissues was 1.25-fold (GEO) 

and 4.18-fold (TCGA) lower than in normal adjacent 

tissues. These findings were confirmed in paired patient 

biopsy samples via Q-PCR (N = 36, P = 0.0336) (Figure 

1D and 1E). In tumor biopsy samples, FREM1 expression 

was reduced by as much as 6.16-fold (P < 0.001). In 17 

samples (47.2%), expression was decreased more than 2-

fold (Figure 1E). We expanded our analysis of FREM1 

expression to various subtypes of breast cancer (Figure 

1G and 1H). This analysis compared normal tissue (n = 

120/n = 75) with tissues from the following breast cancer 

subtypes: Basal-like (n = 168/n = 75), HER2-enriched (n 

= 78/n=24), Luminal-like A (n = 493/n = 89) and 

Luminal-like B (n = 194/n = 49). These data showed 

decreased FREM1 expression in Basal-like (6.07-

fold/1.11-fold with mean), HER2-enriched [6.79-

fold/1.09-fold with mean (P = 0.0279)], Luminal-like A 

(3.46-fold/1.08-fold with mean) and Luminal-like B 

(7.54-fold/1.11-fold with mean) tissues. Hence, FREM1 

expression is downregulated in breast cancer tissue. 

 

FREM1 transcription level is correlated with 

survival and progression in breast cancer patients  
 

We further analyzed TGCA data to determine if there is 

a relationship between FREM1 expression and overall 

survival (OS) or disease-free survival (DFS) in breast 

cancer patients. Patients were divided into high- or low-

level groups over the median value of FREM1 

expression in breast cancer tissues. Patients with high 

FREM1 expression in their tumors experienced a 

prolonged OS and DFS compared with those who with 

low FREM1 expression (Figures 2A and 2B). 

Additionally, KM analysis revealed that HER2-positive 

BRCA patients in the low-level FREM1 expression 

group generally demonstrated shorter DFS (Figures 2C 

and 2D). To confirm the clinical significance of 

downregulated FREM1 expression in breast cancer 

patients, the correlation between survival rate and 

FREM1 transcription was determined. Survival analysis 

of GEO data indicated that low-level FREM1 

expression was correlated with reduced OS and DFS 

(Figure 2E and 2F), and the same scenario was shown 

in HER2-positive BRCA patients (Figure 2G and 2H). 

This data was consistent with the results obtained from 

TCGA cohort. These results suggest that reduced 

FREM1 transcription influences breast cancer tumor 

progression and is associated with shortened patient 

survival. 

 

Downregulation of the FREM1 protein in primary 

human breast cancer tissues correlates with disease 

progression 
 

To determine the clinical significance of the  

FREM1 protein, we performed representative 
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immunohistochemical (IHC) staining in primary human 

breast cancer tumor and adjacent normal tissue  

(N = 47). FREM1 staining in human primary breast 

cancer was scored as follows: +++, high; ++, moderate; 

+, weak; −, negative. FREM1 expression was 

significantly decreased in tumors, as indicated by lower 

IHC staining scores (P < 0.001) (Figure 3A and 3B). 

Among the 47 breast cancer samples, FREM1 staining 

 

 
 

Figure 1. FREM1 expression levels in different types of human cancers. (A) Expression levels of FREM1 in different types of 
cancer compared with normal tissues. Data is from the Oncomine database. (B) Expression levels of FREM1 in different tumor types from 
the TCGA database were analyzed by TIMER. (C, D) FREM1 expression levels analyze by TIMER in normal and tumor samples from the 
TCGA and GEO databases. (E, F) FREM1 expression levels were analyzed by Q-PCR in paired normal and tumor tissues. (G, H) FREM1 
expression levels in normal and subtypes of breast cancer samples from the TCGA and GEO databases were analyzed by TIMER. (*P <0.05, 
** P < 0.01, ***P < 0.001). 
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was high in 4 samples (8.5%), moderate in 22 samples 

(46.8%) and weak or undetectable in 21 samples 

(44.7%) (Figure 3C and 3D). The AOD (average optical 

density) quantified data set was plotted in 

Supplementary Figure 1. 

 

From the clinical information provided with the tissue 

chip, the survival rate was analyzed. High FREM1 

expression correlated with a prolonged OS and DFS 

compared with low FREM1 expression, but the 

statistical significance of the DFS prolongation was 

weak (P = 0.0509) (Figure 3E and 3F). When data was 

re-analyzed only using HER2-enriched samples, the 

correlation between FREM1 expression and survival 

rate was robustly significant in both OS (P = 0.0006) 

and DFS (P = 0.0035) (Figure 3G and 3H). Thus, 

FREM1 downregulation in breast cancer tissue, 

especially in HER2-enriched samples, was correlated 

with shorter survival times. This finding from IHC 

staining is consistent with our database analysis. 

 

TILRR is the clinically relevant isoform of FREM1 in 

breast cancer 
 

Previously, TILRR has been identified as isoform 2 of 

the FREM1 gene [3]. We wanted to determine if TILRR 

is the dominate isoform that is downregulated in breast 

cancer. In the Ensembl and Gene Expression Profiling 

Interactive Analysis 2 (GEPIA2) databases, three 

different FREM1 isoforms are described. In these 

isoforms, ENST00000422223.6 and ENST000003 

80880.3 encode a protein with 2179 amino acids, and 

the much shorter version of ENST00000380894.5 

encodes a protein with 715 amino acids. 

ENST00000380894.5 is the FREM1 isoform 2 

transcript, which we referred to previously as TILRR 

(Figure 4A). The correlation between breast cancer 

survival rate and FREM1 usage was investigated  

using the GEPIA2 database. In Figure 4B, the violin-

plot and bar-plot panels present the expression 

distribution and usage of each FREM1 isoform. TILRR, 

or FREM1 isoform 2, shows convincing cancer 

specificity with strong usage and a significantly low 

hazard ratio (HR).  

 

Using a TILRR-specific primer (Figure 4C), TILRR 

expression in 30 paired breast cancer samples was 

investigated using Q-PCR. The data showed a 4.39-fold 

decrease (P = 0.0274) in expression in tumor tissue 

compared with normal tissue (Figure 4D and 4E), which 

confirmed that TILRR is downregulated in breast cancer 

tissues. The protein expression identity of FREM1 and 

TILRR was verified using four paired breast cancer 

tissues (sample numbers: 160, 172, 109 and 164) (Figure 

4F and 4G). The FREM1 commercial polyclonal 

antibody blotting pattern was identical to that of the 

TILRR polyclonal antibody, which detected a 75 KDa 

peptide with an approximately 4.76- and 9.09-fold 

 

 
 

Figure 2. Comparing the low and high expression levels of FREM1 by Kaplan-Meier survival analysis in breast cancer and the 
HER2 subtype. (A–D) Survival curves of OS and DFS in breast cancer and HER2 from the TCGA database. (E–H) Survival curves of OS and DFS 
in breast cancer and HER2 from the GEO database. OS, overall survival; DFS, disease-free survival. 
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Figure 3. FREM1 expression is reduced in tumor tissues, which is associated with poor survival. (A) Representative IHC staining of 
FREM1 in human primary tumor and adjacent non-tumor tissue. Magnifications: 4X; boxed area is 40X. Scale bar: 4X, 200 µm; 40X, 20 µm. (B) 
FREM1 level is higher in adjacent tissues than in tumor tissues. Magnifications: 4X; and boxed area is 40X. Scale bar: 4X, 200 µm; 40X, 20 µm. 
(C, D) Analysis of FREM1 IHC staining scores in adjacent non-tumor (n = 48) and tumor tissue (n = 56). (*P < 0.05, **P < 0.01, ***P < 0.001). 
(E–H) Survival curves of OS and DFS in breast cancer and HER2 with low and high FREM1 expression. Median survival time of the high-
expression group versus low-expression group. 
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reduction in expression in tumor tissues. A similar 

finding was discovered using TILRR monoclonal 

probes (data not shown). These results confirm that 

downregulation of TILRR is associated with breast 

cancer prognosis. 

 

Analysis of TILRR transcript level associated with 

tumor-infiltrating lymphocytes  
 

As shown above, TILRR is the dominant isoform of 

FREM1 expressed in breast cancer tissues. A prior 

study found that TILRR is related to monocyte 

infiltration in atherosclerosis plaque development [4]. 

Moreover, the lymphocyte-specific immune (LYM) 

recruitment metagene signature is related to tumor 

infiltration by lymphocytes, and it is associated with a 

favorable prognosis in breast cancer. To investigate the 

role of TILRR in the mediation of immune cell 

infiltration, the correlation between TILRR expression 

and LYM was evaluated in TCGA breast cancer data. 

The LYM metagene sets PTPRC (CD45), CD53, LCP2 

(SLP-76), LAPTM5, DOCK2, IL10RA, CYBB, CD48, 

ITGB2 (LFA-1) and EVI2B were positively correlated 

with expression of FREM1 (Spearman r = 0.42 P = 

3.5e-47; Pearson r = 0.3 P = 0) (Figure 5A).  

 

The estimation of stromal and immune cells in 

malignant tumor tissues using expression 

data(ESTIMATE) algorithm can calculate the gene 

expression signature in tumor cells and normal, tumor-

associated epithelial and stromal cells, immune cells 

and vascular cells [5]. Stromal cells are thought to  

have essential roles in tumor growth, disease 

progression and drug resistance, and ESTIMATE 

 

 
 

Figure 4. TILRR, the FREM1 isoform 2 transcript, is clinically relevant in breast cancer. (A) The three FREM1 isoforms. (B) TILRR, the 
gene encoding isoform 2, shows convincing cancer specificity with strong usage and significantly low hazard ratio. (C) TILRR-specific primer of 
human DNA. (D, E) TILRR expression levels were analyzed by Q-PCR in paired normal and tumor tissues (*P < 0.05, **P < 0.01, ***P < 0.001). 
(F, G) TILRR immunoblotting (indicated by the FREM1 or TILRR antibody) in paired normal and tumor tissues. The band intensities are 
normalized to GAPDH. 
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immune scores could serve as an indicator for 

immunotherapy response [5]. Tumor purity and the 

expression of TILRR were analyzed using the 

ESTIMATE algorithm to investigate in GEO (N = 237) 

and TCGA (N = 1097) data. The results showed that the 

expression of TILRR was negatively correlated with 

tumor purity, but positively correlated with immune 

score and stromal score (Figure 5B). This correlation 

was confirmed with the 50 highest and 50 lowest 

TILRR-expressing tumor tissue samples (Figure 5C and 

5D).  

 

To understand the underlying mechanism of FREM1 in 

breast cancer, we analyzed differentially expressed  

data from the 50 highest and 50 lowest FREM1-

expressing tumor tissue samples. The gene expression 

enrichment of several signal pathways was analyzed 

using gene set enrichment analysis (GSEA). TILRR is 

positively correlated with Toll-like receptor signaling 

and cytokine-to-cytokine receptor interactions (Figure 

5E), which is consistent with our previous finding [3]. 

We also found that leukocyte transendothelial 

migration, chemokine signaling, T-cell receptor 

signaling and JAK-STAT signaling are associated with 

the migration and infiltration of immune cells (Figure 

5E). To verify these pathways, RNA-seq analysis of the 

BT474 cancer cell line overexpressing TILRR was 

performed using an empty GFP construct as a control. 

The analysis showed that TILRR overexpression not 

only potentiates IL-6 and CXCL8 immune- and 

inflammation-induced gene expression, but it also 

induces the expression of other cytokine genes such as 

CCL5/2 and chemokine genes such as CXCL10 (Figure 

5F). JAK-STAT signaling pathways and interferon-

stimulated genes (further detailed analysis will be 

published elsewhere) were also upregulated (Figure 5F). 

This upregulation of pro-inflammatory secretory factors 

and pathway activation indicated that enhanced TILRR 

expression might cause long distal immune recruitment. 

Q-PCR was performed to confirm RNA-seq detection 

among expression of CXCL8, CXCL10, CXCL11, MX1 

and the interferon stimulation gene, ISG15 (Figure 5G). 

 

Furthermore, we analyzed the 50 highest TILRR-

expressing and 50 lowest TILRR-expressing tumor 

tissue samples (TCGA database) to determine the 

relationship between the expression of CXCL10 and 

CXCL11 and the expression of TILRR in cancer tissues. 

The results showed that high expression of TILRR 

positively correlates with CXCL10 and CXCL11 

expression (Supplementary Figure 2). These findings 

strengthened the hypothesis that TILRR expression is 

associated with breast cancer progression and 

prognosis, likely through signaling pathways that 

regulate the distal recruitment of immune cell 

infiltration. 

Expression of TILRR is correlated with immune cell 

infiltration in breast cancer 

 

Increasing evidence suggests that tumor-infiltrating 

immune cells can be an indicator in the clinical analysis 

of tumor samples [6, 7]. Gene expression profiling of 

heterogeneous cell populations in cancer tissue, 

including tumor-infiltrating lymphocytes, serves as an 

independent predictor of survival in prognostic cancer 

models [8, 9]. Thus, we used the TIMER database to 

evaluate the correlation between FREM1 mRNA 

expression and six different infiltrating immune cell 

types (B cells, CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils and dendritic cells) in 

different subtypes of breast cancer. Data showed that 

the TILRR transcription level was inversely related to 

the purity of tumor tissue in breast cancer subtypes 

(Figure 6A–6D, first line on the left). The low 

heterogeneity in tumor tissue correlated with high 

expression of FREM1 in all but one subtype, which is 

consistent with the positive association between TILRR 

expression and level of immune cell infiltration (Figure 

6). The exception was macrophage cells of the HER2 

subtype (r = -0.107, P = 4.23e-01). The infiltration 

levels of CD8+ and CD4+ cells were significantly 

positively correlated with TILRR transcription. The 

level of CD8+ T-cell infiltration with TILRR expression 

in BRCA (r = 0.379, P = 16e-34), BRCA-Basel (r = 

0.275, P = 2.10e-03), and BRCA-HER2 (r = 0.406, P = 

1.2e-03), and BRCA-Luminal (r = 0.48, P = 7.89e-28) 

were all significantly strong, respectively, which is 

similar to the CD4+ T-cell infiltration levels (BRCA: r = 

0.369, P = 2.07e-32; Basal: r = 0.181, P = 4.57e-02; 

HER2: r = 0.595, P = 8.37e-07; luminal: r = 0.42, P = 

2.44-24e). On the other hand, in the tumor tissue, the 

infiltration level from B cells, macrophages, neutrophils 

and dendritic cells correlated more weakly with TILRR 

transcription in subtypes of breast cancer (Figure 6). To 

verify the expression of TILRR and the infiltration of 

immune cells, the 50 highest TILRR-expressing and 50 

lowest TILRR-expressing tumor tissue samples were 

selected (TCGA database) to analyze the expression of 

marker genes for CD8+, CD4+ and T cells (general). 

The results showed that CD8A, CD8B was expressed in 

tissues with high TILRR expression. (Figure 6E). 

Analysis of GEO data generated similar results 

(Supplementary Figure 3). To further verify this result, 

we selected the 5 samples with the highest TILRR 

expression and the 5 with the lowest TILRR expression 

patients shown in Figure 4D to evaluate the expression 

of marker genes in CD4- and CD8-expressing cells. 

Among these 10 samples, the expression of CD8A, 

CD8B and CD4 in TILRR high- and low-expressing 

samples were positively correlated (Figure 6F). We also 

investigated the correlation between TILRR expression 

and biomarkers from other immune cells. Strong 
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Figure 5. FREM1 mRNA levels were associated with tumor infiltrating lymphocytes. (A) The average expression of the LYM 
metagene signature [PTPRC (CD45), CD53, LCP2 (SLP-76), LAPTM5, DOCK2, IL10RA, CYBB and CD48, ITGB2 (LFA-1) and EVI2B] in breast 
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cancers from the TCGA database relative to the FREM1 mRNA level. (B–D) Tumor purity, immune score and stromal score were analyzed 
using the ESTIMATE algorithm from GEO (N = 237) and TCGA (N = 1097) database. (E) GSEA analysis was used to demonstrate the correlation 
between FREM1 expression and the KEGG enriched pathway. (F) Immune and inflammation response genes, the JAK-STAT signaling pathway 
and interferon-stimulated genes were analyzed by RNA-seq in BT474 cancer cells. (G) CXCL8, CXCL10, CXCL11 and the interferon stimulation 
genes, ISG15 and MX1, were analyzed by Q-PCR in BT474 cancer cells. 
 

associations were found between NK cells, Treg cells, 

T-cell exhaustion and TILRR expression 

(Supplementary Table 1). Consequently, it is likely that 

TILRR expression in breast cancer tissue is involved in 

immune cell recruitment. 

 

DISCUSSION 
 

In the present study, we observed that TILRR expression 

level was associated with the survival of patients in breast 

cancer. Database analysis revealed that TILRR mRNA 

expression was significantly lower in breast cancer tissue 

and correlated with shorter OS and DFS. The TCGA and 

GEO data analysis were confirmed by IHC staining and 

Q-PCR. TILRR transcript expression is correlated with 

immune score, immune cell biomarkers and LYM 

metagene signature, which was verified using the 

ESTIMATE algorithm and GEPIA2 database analysis. 

This consistent association between increased TILRR 

mRNA levels and a favorable prognosis for the patient is 

shown in Figure 4. Two of five patients with higher 

TILRR mRNA levels had a favorable prognosis (Figure 

6F). However, in the group with lower TILRR mRNA, 3 

out of 5 patients were dead due to cancer (data not 

shown). To our knowledge, this is the first study to 

describe TILRR expression in cancer tissue. 

 

In this study, we found that TILRR expression is 

profoundly downregulated in breast cancer and 

correlated with disease-specific survival. The PyMT 

mouse, a genetically engineered mouse model that is 

widely used to study human breast cancer, gene 

profiling and expression analysis has illustrated the 

effects of TILRR downregulation [10]. In PyMT/ Il1a-/- 

and PyMT/Il1r1-/- mice, IL-1R1 signaling suppresses 

mammary tumor cell proliferation early in tumorigenesis 

and facilitates breast cancer outgrowth with pulmonary 

metastasis [11]. IL-1Ra is overexpressed in multiple 

cancers, including multiple myeloma, leukemia, 

cervical, ovarian, colorectal, pancreatic and breast 

cancer, but is downregulated in others [11–15]. This is 

consistent with the idea that TILRR enhances IL-1 alpha 

affinity binding to IL-1R1, as IL-1R1 is a low-copy, 

high-affinity receptor [3, 16]. Interestingly, the IL-1R1 

signaling pathway has been reported to promote tumor 

growth, angiogenesis and metastasis in some contexts 

[17], while stimulating anti-tumor immunity or directly 

suppressing tumorigenesis in others [11]. TILRR 

activates oncogene RAS upstream of TRAF6 in the IL-

1R1-mediated pathway, and TILRR overexpression 

enhances AKT phosphorylation and HeLa-cell survival 

via the TILRR R425 site [18]. Previously it was reported 

that under LDLR-/- or APOE-/- genetic conditions, 

monocyte activation and infiltration were reduced in 

atherosclerosis and in the lung of TILRR KO mice or 

mice injected with TILRR-blocking antibody [4]. As 

reported, under LDLR-/- conditions, mouse models of 

hypercholesterolemia developed a smaller tumor. These 

mice were characterized by increased LDLR expression, 

as well as shorter OS and decreased DFS [19]. 

Interestingly, TILRR expression level is low in healthy 

tissue; however, it is remarkably enhanced in 

atherosclerotic plaques with a high level of immune cell 

infiltration [4].  

 

Another important aspect of this study is the correlation 

between TILRR expression and the level of immune 

infiltration. Through data analysis, we observed 

associations between TILRR mRNA levels and immune 

score, immune cell biomarkers, the LYM metagene 

signature and levels of infiltrating immune cells. In 

previous studies, TILRR expression was correlated with 

monocyte infiltration; notably, TILRR-/- mice showed 

less recruitment of immune cells in atherosclerosis 

plaques [4]. ESTIMATE calculation and GSEA analysis 

of the top 50 highest TILRR-expressing samples 

compared with the top 50 lowest samples showed that 

TILRR transcription played a role in immune cell 

infiltration, migration and activation. On the other hand, 

RNA-seq and Q-PCR analysis showed that TILRR 

potentiates CXCL10 and CXCL11 chemokine 

expression in the BT474 cancer cell line. In response to 

specific chemokines, immune cells can regulate 

immune responses by migrating into the tumor 

microenvironment. It has been reported that the tumor 

production of CXCL9 and CXCL10 was repressed 

by enhancement of H3K27me3 and DNMT1-mediated 

DNA methylation. Moreover, EZH2 and DNMT1 are 

negatively associated with tumor-infiltrating CD8+ T 

cells [20]. In the tumor microenvironment, CXCL11 

upregulation enhanced CD8+ T-cell recruitment [21]. 

Collectively, we speculate that, in the tumor 

microenvironment, TILRR can enhance immune 

infiltration by regulating the CXCL10 and CXCL11 

chemokines. 

 

It has been confirmed that IL-18 potentiates IFN-γ-

induced CXCL9, CXCL10, and CXCL11 mRNA 

expression and secretion by activating the NF-ĸB and 

JAK-STAT signaling pathways [22]. Our previous 
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studies showed that TILRR overexpression can increase 

the activation of the NF-ĸB signaling pathway, which 

agree with our RNA-seq data in this study. 

Interestingly, we also observed IFN-γ-induced gene 

expression; however, whether the TILRR effect on the 

upregulation of CXCL-10 and CXCL-11 was through an 

indirect cytokine chain reaction of multiple cell types 

remains unknown. We found in these tissues a positive 

 

 
 

Figure 6. Correlation of FREM1 expression with immune infiltration level in the subtypes of breast cancer. (A) FREM1 
expression is negatively related to tumor purity and has significant positive correlations with infiltrating levels of B cells, CD8+ T cells, CD4+ T 
cells, macrophages, neutrophils and dendritic cells in BRCA. (B) FREM1 expression is negatively related to tumor purity and has positive 
correlations with infiltrating levels of B cells and CD8+ T cells, but not CD4+ T cells, macrophages, neutrophils and dendritic cells in BRCA-
Basal. (C) FREM1 expression is significantly negatively related to tumor purity and has significant positive correlations with infiltrating levels 
of CD8+ T cells, CD4+ T cells and dendritic cells, but not B cells, macrophages and neutrophils in BRCA-HER2. (D) FREM1 expression is 
negatively related to tumor purity and has significant positive correlations with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils and dendritic cells, but not B cells in BRCA-Luminal. (E) The top 50 highest TILRR-expressing and top 50 lowest TILRR-expressing 
tumor tissue samples were selected (TCGA database) to analyze the expression of marker genes in CD8+, CD4+ and T cells (general). (F) CD8A, 
CD8B and CD4 expression levels were analyzed by Q-PCR in the 5 highest TILRR expressing and the 5 lowest TILRR expressions samples. 
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correlation between TILRR upregulation and IFN-γ-

related signaling pathways. These results proved that 

the TILRR transcription level could indicate lymphocyte 

infiltration in breast cancer.  

 

TILRR-related immune cell recruitment in breast cancer 

showed the strongest correlation with CD8+ positive 

cells and the T cell-related pathway. In cancer 

treatment, inhibiting immune checkpoint mediators, 

such as CTLA-4 and PD-1, has achieved noteworthy 

clinical outcomes in several malignancies [23–26]. 

Cardiovascular disease is also the consequence of 

targeted cancer therapies and chemotherapies in several 

clinical settings [27, 28]. TILRR expression related to 

chemokine secretion and NF-ĸB activation is well 

documented in cardiovascular disease [4]. Therefore, 

we conclude that TILRR might recruit immune cells 

through a similar cellular mechanism in breast cancer 

and atherosclerosis. We believe that TILRR could play 

different roles in different organs but may share a 

similar mechanism in breast cancer and atherosclerosis. 

 

MATERIALS AND METHODS 
 

FREM1 gene expression of BRCA in the TCGA and 

GEO databases  

 

The expression level of the FREM1 gene in various 

types of cancers was identified in the Oncomine 

database (https://www.oncomine.org/resource/login. 

html) [29]. The threshold was determined according to 

the following values: P value of 0.001, fold change  

of 2. Differential expression module of TIMER 

(https://cistrome.shinyapps.io/timer/) was used to 

analyze the FREM1 differential expression between 

tumor and adjacent normal tissues of various TCGA 

tumors [30, 31]. TCGA breast cancer data was 

downloaded from the Xena browser (https:// 

xenabrowser.net/datapages/) [32]. GSE21653 data was 

downloaded from the GEO database, which contained 

266 early cancer patients [33, 34]. 

 

Immune cell infiltration analysis 
 

The correlation of FREM1 expression level with a LYM 

metagene signature [PTPRC (CD45), CD53, LCP2 
(SLP76), LAPTM5, DOCK2, IL10RA, CYBB, CD48, 

ITGB2 (LFA-1) and EVI2B] was explored via Gene 

Expression Profile Interactive Analysis (GEPIA2; 

http://gepia2.cancer-pku.cn/#index) [35–37]. The 

stromal score, immune score and tumor purity of breast 

cancer (BRCA) tumor samples from the GSE21653 

database (N = 237) and the TCGA database (N = 1097) 

were calculated by using the R 3.6.0 ESTIMATE 

package (1.0.13) [38]. The gene module of TIMER was 

used to evaluate the correlation of FERM1 expression 

with immune cell infiltration (including B cells, CD4+ 

T cells, CD8+ T cells, neutrophils, macrophages and 

dendritic cells) in BRCA, which determined the purity-

corrected partial Spearman’s correlation and statistical 

significance. The correlation module of TIMER was 

used to calculate the Spearman’s correlation and 

statistical significance between FREM1 and immune 

cell marker genes. The top 50 highest and lowest 

FREM1-expressing TCGA tumor samples were used to 

conduct GSEA and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway annotations analysis [39]. 

 

RNA isolation and real-time PCR 
 

Total mRNA of breast cancer tissue (SYSUCC, Sun 

Yat-sen University Cancer Center, Guangzhou, China) 

was extracted using TRIzol reagent (Invitrogen, 

#1556018) according to the manufacturer’s protocols. 

The quantitative, real-time PCR using SsoAdvancedTM 

Universal SYBR Green Supermix (Bio-Rad, #1725274) 

was performed in an ABI StepOnePlus (ABI, 

#1725274). FREM1 primer sequences: forward  

primer, 5’-AGAGCCCTGCCTGTGGTAAC-3’; reverse 

primer, 5’-GAAGGGGAATGCAAGAGTGTGATA-3’. 

TILRR-specific primer 5’-GCCTTGCCTCTCTTTACC 

AGAT-3’; reverse primer, 5’-GAGTGCCGATAGGC 

CACAT-3’. Relative gene expression was normalized 

to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) (forward primer, 5’-GGAGCGAGATCCCT 

CCAAAAT-3’; reverse primer, 5’-GGCTGTTGTCA 

TACTTCTCATGG-3’) expression and was analyzed 

using the 2−ΔΔCT method. 

 

Immunohistochemistry (IHC) 
 

Immunohistochemistry was performed on tissue section 

microarrays (Zhuolibiotech, #ZL-Brc Sur122). The 

staining procedure included heat-induced epitope 

retrieval using 0.1 M sodium citrate (pH 9.0, heated by 

microwave to 90-95 °C, 3 times for 5 minutes each), 

incubation with primary antibody at 4 °C overnight. 

Signal detection was performed using an IHC detection 

kit (Gene Tech, #GK500710). Microscopy of the 

immunostaining included an initial pre-screen at low 

power (4X) to identify regions with a technically 

optimal staining result. Subsequently, detailed analysis 

at high-power (40X) was performed to evaluate the 

staining according to routine algorithms employed in 

tumor diagnostics. Scoring of FREM1 staining were 

evaluated using the semi-quantitative immunostaining 

score (ISS) method by pathologist. The immunostaining 

score was defined as 0 – 3 (range: +++/3, high; ++/2, 

moderate; +/1, weak; 0, negative.) [40]. The median 

score was used as cut off for classification of patients 

into high- and low-expression groups. Semi-quantitative 

analysis of the IHC images was conducted by Image-J, 

https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
https://cistrome.shinyapps.io/timer/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://gepia2.cancer-pku.cn/#index
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by which integral optical density (IOD) and the area 

were collected. Then, average optical density (AOD) 

was calculated as IOD/area, which represented the 

staining intensity [41]. 

 

Western blot 

 

Total proteins were extracted from breast cancer and 

adjacent cancer tissue (SYSUCC, Sun Yat-sen 

University Cancer Center, Guangzhou, China) by using 

RIPA buffer (Beyotime, #P0013B) and passed the tissue 

through a 21-gauge needle more than 30 times. The cell 

lysate was centrifuged at 4 °C and 17000 g for 15 

minutes to eliminate large aggregates. A BCA Protein 

Assay Kit (Tiangen, #PA115) was used to evaluate the 

cell lysate protein concentrations. Approximately 25-50 

μg total protein, denatured with the standard SDS-

sample buffer per lane, was loaded for electrophoresis 

on 10% pre-cast mini-polyacrylamide gels (GenScript 

SurePAGE, Bis-Tris, 10 cm x 8 cm gels). The gel 

containing proteins was then transferred to a PVDF 

membrane (BioRad). The membrane was blocked with 

5% milk in 1×TBST for 2 hours, and incubated with the 

FREM1 primary antibody (1:1000 rabbit polyclonal, 

Proteintech, #13086-1-AP) and TILRR (1:2000 rabbit 

polyclonal custom, Genesript) at 4 °C overnight. Before 

incubating the membrane with a secondary antibody 

(1:10000 dilution, Jackson ImmunoResearch, #111-035-

003) for 1 hour, it was washed the with 1×PBST 5 times 

at room temperature. The blots were detected  

by chemiluminescence (Bio-Rad). The band intensity 

was quantified by ImageJ (https://imagej.nih.gov/ij/ 

download.html). 

 

Cell culture 

 

Cells were cultured (BT474, purchased from Procell 

Life Science and Technology Co., Ltd. CL-0040) at the 

density of 1×106/well in RPMI 1640 Medium (Gibco, 

#C11875500BT) with 20% FBS and insulin. Cells were 

incubated at 37 °C and 5% CO2. The day after seeding, 

cells were transfected with HA-GFP or HA-TILRR-

T2A-GFP plasmid using the Lipofectamine 3000 

Transfection Reagent (Invitrogen, #L3000-015). Cells 

were incubated at 37 °C and 5% CO2 for 24 hours, at 

which time culture medium was replaced. Forty-eight 

hours after transfection, cells were detached by 0.25% 

trypsin for 3 minutes, and then collect the cell for cell 

sorting (Flow Cytometer, Aria II, BD).  

 

RNA-seq 

 

Trizol lysate was used to lyse selective cells and extract 

RNA from the cells. To generate sequencing libraries, 1 

ug RNA per sample was used (NEBNext UltraTM RNA 

Library Prep Kit, Illumina; NE, USA). Library quality 

was assessed on the Agilent Bioanalyzer 2100 system. 

Sequencing was performed on the Illumina Novaseq 

platform, and 150 bp paired-end reads were generated. 

Raw reads were aligned to a reference genome (UCSC 

GRCh38/hg38) using Bowtie 2 (2.2.5). Gene expression 

was quantified using RSEM v1.1.22. 

 

Statistical analysis 
 

OS and DFS curves were generated by Kaplan-Meier 

survival analysis using SPSS 17.0 software. The 

results generated in Oncomine are displayed with P 

values, fold changes, and ranks. The results of the 

Kaplan-Meier plots, PrognoScan, and GEPIA2 are 

displayed with HR and P or Cox P values from a log-

rank test. The correlation of gene expression was 

evaluated by Spearman’s correlation and statistical 

significance, and the strength of the correlation was 

determined using the following guide for the absolute 

value: 0.00–0.19, very weak; 0.20–0.39, weak; 0.40–

0.59, moderate; 0.60–0.79, strong; 0.80–1.0, very 

strong. P values < 0.05 were considered as 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Semi-quantitative analysis of the IHC images was conducted by Image-J, and the integral optical 
density (IOD) and area were collected (N = 47 pairs). 
 

 
 

Supplementary Figure 2. The top 50 highest TILRR-expressing and top 50 lowest TILRR-expressing tumor tissue samples were 
used (TCGA database) to analyze the expression levels of CXCL10 and CXCL11. 
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Supplementary Figure 3. The top 50 highest TILRR-expressing and top 50 lowest TILRR-expressing tumor tissue samples were 
selected (GEO database) to analyze the expression of marker genes of CD8+, CD4+ and T cells (general). 
 

 

 

 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Correlation analysis between FREM1 and related genes and markers of immune cells in 
TIMER. 

 

 


