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INTRODUCTION 
 

Breast cancer is the most common malignant tumor and 

is also the leading cause of cancer death among women 

around the world. According to the Global Cancer 

Statistics 2018, breast cancer accounts for 24% of the 

total female cancer cases and 15% of the total female 

cancer mortality [1]. Although incidence of breast 

cancer is markedly higher in developed countries, 

almost 50% of new breast cancer diagnoses and 

approximately 60% of breast cancer deaths occur in 

developing countries. Breast cancer survival rate also 

varies largely worldwide, 5-year survival rate is 

estimated at 80% in developed countries while 40% in 

developing countries [2]. With the improvement of  

therapeutic strategies, breast cancer-related deaths have  

decreased in recent decades. Unfortunately, some breast 

cancer patients initially diagnosed with advanced stage are 

still incurable, and nearly 30% patients diagnosed at early 

stage will eventually develop locoregional or distant 

tumor recurrence [3]. In the majority of breast cancer 

patients, metastatic disease is the underlying cause of 

death and current clinical strategies fall short in accurately 

identifying patients at high risk of recurrence. It is 

important to understand the molecular mechanisms 

underlying the recurrent process of breast cancer and 

innovative biomarkers for prognosis predication. 

 

The metabolic alterations are hallmarks of cancer 

cells, which could distinguish them from the normal 
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ABSTRACT 
 

Metabolic change is the hallmark of cancer. In the present study, we aimed to develop a glycolysis-related 
gene signature to predict the prognosis of breast cancer patients. Gene expression profiles and clinical data 
of breast cancer patients were obtained from the GEO database. A four-gene based signature (ALDH2, 
PRKACB, STMN1 and ZNF292) was developed to separate patients into high-risk and low-risk groups. Patients 
in the low-risk group had significantly better prognosis than those in the high-risk group. Time-dependent 
ROC analysis demonstrated that the glycolysis-related gene signature had excellent prognostic accuracy. We 
further confirmed the expression of the four prognostic genes in breast cancer and paracancerous tissue 
samples using qRT-PCR analysis. Expression level of PRKACB was higher in paracancerous tissues, while 
STMN1 and ZNF292 were overexpressed in tumor samples, no significant difference was observed in ALDH2 
expression level. Global proteome data of 105 TCGA breast cancer samples obtained from the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) were used to evaluate the prognostic value in protein levels. 
Consistently, high expression level of PRKACB protein was associated with favorable prognosis, while high 
ZNF292 and STMN1 protein expression levels indicated poor prognosis. The glycolysis-related gene signature 
might provide an effective prognostic predictor and a new insight for individualize management of breast 
cancer patients. 



 

www.aging-us.com 24984 AGING 

cells. This altered metabolism is necessary for cancer 

cells to sustain high proliferative rates in a hostile 

environment [4]. Under aerobic conditions, glucose is 

first processed to pyruvate in the cytosol via 

glycolysis, and thereafter to CO2 in the mitochondria. 

Under anaerobic conditions, most cells prefer the 

glycolysis, little pyruvate is dispatched to the oxygen-

consuming mitochondria. In the 1920s, Otto Warburg 

first observed a unique metabolic phenotype of cancer 

cells: even in the presence of oxygen, cancer cells can 

reprogram their glucose metabolism, thus enhance 

glycolysis and reduce oxidative phosphorylation, 

which has been termed „„aerobic glycolysis” [5, 6]. 

Upregulated glycolysis is associated with the 

capabilities of attenuation of apoptosis, avoidance of 

cytostatic controls, and cell proliferation [7]. 

Activation of oncogenes and mutations of tumor 

suppressors are implicated in the metabolism of breast 

cancer cells. The MYC proto-oncogene is a critical 

regulator of cell proliferation, differentiation, and 

apoptosis [8]. In addition, c-MYC activation 

upregulates expression of glycolytic target genes 

(PFK1, GLUT, ENO, and HK) and LDH, which 

contribute directly to the aerobic glycolysis [9]. Under 

hypoxic conditions, HIF1α upregulates glycolysis and 

downregulates phosphorylation by inducing expression 

of glucose transporters, glycolytic enzymes, pyruvate 

dehydrogenase kinase 1 and lactate dehydrogenase A 

[10–12]. Wild type TP53 inhibits the expression of 

glucose transporters and glycolytic enzymes, thereby 

suppressing glycolysis [13, 14]. Targeting glycolysis is 

a promising therapeutic strategy for cancer therapy. 

 

In the present study, we identified a glycolysis-related 

risk signature and constructed a nomogram for patients 

with breast cancer. These results might provide an 

effective prognostic predictor and a new view for 

individual treatment of breast cancer patients. 

 

RESULTS 
 

Patient characteristics 

 

A flow chart of this study was shown in Figure 1. A 

total of 878 patients from three datasets (GSE21653, 

GSE20685, and GSE25055) were included in our 

analysis. 241 patients from GSE21653 were assigned 

as the training set, 327 patients from GSE20685 and 

310 patients from GSE25055 were assigned in the 

validation sets. In GSE21653, median follow-up time 

was 5.73 years in the low-risk group and 2.99 years in 

the high-risk group. 28 patients in the low-risk group 

(20.1%) and 48 patients in the high-risk group  

(47.1%) had locoregional or distant recurrence during

 

 
 

Figure 1. Flow chart and 10‐time cross‐validation for tuning parameter selection. (A). Flow chart indicating the process of selecting 

target genes in this study. (B) Ten‐time cross validation for tuning parameter selection in the lasso model. (C). LASSO coefficient profiles of 
the 129 prognostic genes. A vertical line is drawn at the value chosen by 10-fold cross-validation. Abbreviations: AIC (Akaike information 
criterion), RFS (relapse-free survival). 
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Table 1. Clinicopathologic characteristics of three sets of breast cancer patients according to the integrated mRNA 
signature. 

Variables 
GSE21653 (n=241) GSE20685 (n=327) GSE25055 (n=310) 

Low risk (%) High risk (%) Low risk (%) High risk (%) Low risk (%) High risk (%) 

Age at diagnosis (years)       

 Median 55 56 47 44 48 50 

≤ 50 44(31.7) 38(37.3) 120(63.5) 89(64.5) 100(55.2) 68(52.7) 

> 50 95(68.3) 64(62.7) 69(36.5) 49(35.5) 81(44.8) 61(47.3) 

T stage       

T0 0 0 0 0 0 2(1.6) 

T1 32(23.0) 23(22.5) 68(36.0) 33(23.9) 16(8.8) 4(3.1) 

T2 73(52.5) 48(47.1) 108(57.1) 80(58.0) 101(55.8) 64(49.6) 

T3 34(24.5) 31(30.4) 9(4.8) 17(12.3) 39(21.5) 35(27.1) 

T4 0 0 4(2.1) 8(5.8) 25(13.8) 24(18.6) 

Lymph node status       

Negative 62(44.6) 51(50.0) 94(49.7) 43(31.2) 67(37.0) 20(15.5) 

Positive 77(55.4) 51(50.0) 95(50.3) 95(68.8) 114(63.0) 109(84.5) 

Metastases status       

Negative   188(58.9) 1(12.5)   

Positive   131(41.1) 7(87.5)   

Grade       

I 37(26.6) 6(5.9)   16(8.8) 3(2.3) 

II 60(43.2) 23(22.5)   90(49.7) 27(20.9) 

III 42(30.2) 73(71.6)   65(35.9) 86(66.7) 

Indeterminate     10(5.5) 13(10.1) 

Molecular subtype       

Basal 20(14.4) 53(52.0)   29(16.0) 93(72.1) 

ERBB2 11(7.9) 10(9.8)   13(7.2) 7(5.4) 

Luminal 90(64.7) 33(32.3)   109(65.7) 24(18.6) 

Normal like 18(12.9) 6(5.9)   20(11.0) 5(3.9) 

Disease-relapse event 28(20.1) 48(47.1) 75(30.7) 63(75.9) 14(7.7) 52(40.3) 

Median Follow-up (years) 5.73 2.99 8.7 5.7 3.0 1.8 

 

the follow-up period. Similar results were found in the 

validation sets (Table 1).  

 

Establishment of the prognostic glycolysis-related 

gene signature 
 

Based on the univariate Cox regression analysis, 129 

glycolysis-related genes significantly associated with 

the prognosis of breast cancer patients were considered 

as prognostic genes and they were included in the 

subsequent analysis. After primary filtration, we used 

Lasso regression analysis to further narrow the genes 

for the construction of prognostic model. As a result, 26 

glycolysis related genes were screened out for the 

stepwise multivariate Cox regression analysis. And four 

genes were finally selected to construct a prognostic 

model. Prognostic score was calculated for every patient 

based on the expression levels of the four genes and 

weighted by the multivariate Cox regression 

coefficients as follows: prognostic score = (-0.34 × 

expression level of ALDH2) + (-0.28 × expression level 

of PRKACB) + (0.33 × expression level of ZNF292) + 

(0.32 × expression level of STMN1). Consistent with 

the univariate Cox regression analysis, ALDH2 and 

PRKACA showed negative coefficients in the 

prognostic model, indicating their expression was 
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associated with better relapse free survival (RFS). 

ZNF292 and STMN1 had positive coefficients, their 

high expression implying a shorter RFS (Figure 2). 

Patients in training set were divided into low-risk group 

and high-risk group based on the optimal cut-off value 

of prognostic score (0.05). As shown in Figure 3, time-

dependent ROC analysis demonstrated that this 

signature had good prognostic accuracy. AUCs of the 

four-gene prognostic model were 0.771, 0.825 and 

0.810 at 1, 3, and 5-year RFS time. Kaplan-Meier 

survival analysis indicated patients in the high-risk 

group had significantly poor RFS rate. To confirm the 

prognostic value of the glycolysis-related signature in 

different population, we stratified patients by 

clinicopathological risk factors. We also found that 

prognosis of patients in the low-risk group was more 

favorable than those in the high-risk group (Figure 4). 

We further developed a nomogram combining the 

glycolysis-related signature and clinicopathological risk 

factors to provide a quantitative method for prediction 

of 3- and 5-year RFS. Calibration plots indicated that 

the nomogram had a similar performance compare to 

the ideal model (Figure 5). When adjusting for the 

classical clinicopathologic factors, multivariate Cox 

regression analysis demonstrated that the glycolysis-

related gene signature was independently associated 

with the RFS time of breast cancer patients (Table 2). 

 

Validation of the signature 
 

We used two external validation sets (GSE20685 and 

GSE 25055) to further access the prognostic value of 

glycolysis-related signature. Patients in the two 

validation sets were separated into low-risk group and 

high-risk group according to the glycolysis-related 

signature identified above. Consistently, patients in the 

low-risk group showed significantly higher survival rate 

as compared with those in the high-risk group. In 

 

 
 

Figure 2. Univariate Cox regression analysis of the four prognostic genes in the signature. (A) ALDH2. (B) PRKACB. (C) STMN1. (D) 

ZNF292. Abbreviations: RFS (relapse-free survival). 
 

 
 

Figure 3. Validation of prognostic risk score model in training set. (A) Time-dependent ROC curves of the glycolysis-related signature. 

(B) Kaplan-Meier survival analysis of the glycolysis-related signature. Abbreviations: RFS (relapse-free survival). 
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Figure 4. Kaplan-Meier survival analysis for patients according to the glycolysis-related signature stratified by 
clinicopathological risk factors. (A, B) Age. (C, D) Tumor size. (E, F) Lymph node status. (G, H). Tumor grade. Abbreviations: RFS (relapse-

free survival). 
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addition, the 1-year, 3-year, and 5-year AUCs 

demonstrated that this glycolysis-related signature had 

excellent prognostic accuracy (Figure 6). 

 

Expression validation of the four genes 
 

To further confirm the expression of the four prognostic 

genes, we collected breast cancer and paracancerous 

samples from patients undergoing modified radical 

mastectomy and performed qRT-PCR analysis. As 

show in Figure 7, expression level of PRKACB was 

higher in paracancerous samples, while STMN1 and 

ZNF292 were overexpressed in tumor samples. No 

difference was found in ALDH2 expression. We then 

investigated the prognostic value of these four genes in 

protein levels. High expression of PRKACB protein 

was associated with better RFS, while high ZNF292 and 

STMN1 protein expression levels indicated poor 

prognosis, expression of ALDH2 protein was not 

associated with the RFS of breast cancer patients  

(Figure 7E–7G). Immunohistochemistry data from the 

Human Protein Atlas were also used to validate the 

expression of prognostic genes. Consistent with our 

qRT-PCR results, ZNF292 and STMN1 staining were 

higher in tumor samples, while staining of PRKACB 

was lower in tumor. No difference was found in 

ALDH2 staining (Figure 8). 

 

DISCUSSION 
 

It is well known that high rate of energy metabolism is 

the hallmark of cancer. In order to fuel cell growth and 

division, glucose uptake and utilization is markedly 

increased in various human cancer types. Interestingly, 

even in the presence of enough oxygen, malignant 

tumors prefer glycolysis rather than oxidative 

phosphorylation in the mitochondria [6]. The high rate 

of glycolysis not only ensures an adequate amount of 

energy for cancer cells, but also provide ample 

intermediate macromolecules to sustain a rapid cell 

proliferation and tumor mass expansion [15]. Thus, 

targeting tumor metabolism is a promising therapeutic 

strategy for cancer treatment. However, limited studies 

have systematically investigated the metabolic process 

of tumor and its prognostic values. And most prognostic 

biomarkers are identified in a wide range. Here, we 

investigate the associations between tumor and 

glycolysis to further understand the mechanism of 

tumorigenesis. 

 

In the present study, we used high-throughput expression 

data downloaded from GEO database and constructed a 

glycolysis-related signature for predicting the prognosis 

of patients with breast cancer. After univariate, Lasso 

and multivariate Cox analysis, four genes (ALDH2, 

PRKACB, STMN1, and ZNF292) were screened out as 

prognostic genes for the construction of prognostic 

model. We first examined the prognostic value of this 

signature in the training set. Patients were divided into 

low-risk and high-risk group based on the optimal cut-

off value of risk score. Kaplan-Meier survival analysis 

with log-rank test demonstrated that patients in low-risk 

group had significantly better RFS than those in the 

high-risk group. When stratified by clinicopathological 

risk factor, this glycolysis-related signature was still a 

significant prognostic model. The prognostic accuracy of 

this prognostic signature was assessed with time-

dependent ROC analysis at various RFS times, AUCs of 

the four-gene prognostic model were 0.771 at 1 year, 

0.825 at 3 years and 0.810 at 5 years. A nomogram 

 

 
 

Figure 5. Nomogram to predict risk of cancer recurrence. (A) Nomograms to predict risk of cancer recurrence. (B) 3-year nomogram 

calibration curves in training set. (C) 5-year nomogram calibration curves in training set. Abbreviations: RFS (relapse-free survival). 
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Table 2. Multivariate Cox proportional hazards regression analysis of the clinicopathologic characteristics and the 
glycolysis-related signature with RFS. 

Variable Training set Validation set I Validation set II 

 HR (95%Cl) P HR (95%Cl) P HR (95%Cl) P 

Age (> 50 vs. ≤ 50 y) 0.706(0.479,1.041) 0.079 0.951(0.624,1.449) 0.814 0.994(0.951,1.039) 0.785 

Tumor size (≤ 2 cm vs. > 2 cm) 1.924(1.355,2.730) 0.001 1.832(1.254,2.677) 0.002 1.267(0.959,1.674) 0.096 

Lymph node status (Negative vs. Positive) 1.283(0.970,1.814) 0.159 1.432(0.988,2.074) 0.058 1.175(0.512,2.696) 0.703 

Tumor grade (Grade I vs. Grade II & III) 1.271(0.986,1.640) 0.064   0.978(0.542,1.763) 0.940 

Estrogen receptor (Negative vs. Positive) 1.475(0.935, 2.327) 0.095   0.725 (0.072, 7.250) 0.784 

Progesterone receptor (Negative vs. Positive) 0.548 (0.224, 1.341) 0.188   0.926 (0.093, 9.238) 0.948 

HER2 (Negative vs. Positive) 1.012 (0.671, 1.526) 0.601   1.958 (0.383, 10.010) 0.419 

Integrated RNA signature (low risk vs. high 

risk) 

3.453(2.412,4.943) <0.001 4.402(2.937,6.598) <0.001 7.902(2.846,21.941) <0.001 

 

 
 

Figure 6. Validation of glycolysis-related signature in validation sets. (A) Time-dependent ROC curves of the glycolysis-related 

signature in validation set GSE20685. (B) Kaplan-Meier survival analysis of the glycolysis-related signature in validation set GSE20685. (C). 
Time-dependent ROC curves of the glycolysis-related signature in validation set GSE25055. (D). Kaplan-Meier survival analysis of the 
glycolysis-related signature in validation set GSE25055. Abbreviations: RFS (relapse-free survival). 
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Figure 7. Validation of the four prognostic genes. (A–D). Relative mRNA expression of ALDH2, PRKACB, STMN1 and ZNF292 in breast 
cancer and paracancerous tissues samples. (E–G). Prognostic value of PRKACB, STMN1 and ZNF292 protein levels. Abbreviations: RFS 
(relapse-free survival) 

 

 
 

Figure 8. Immunohistochemistry of the four prognostic genes based on the Human Protein Atlas. (A) IHC staining of ALDH2 in 

normal tissue. (B) IHC staining of ALDH2 in tumor tissue. (C) IHC staining of PRKACB in normal tissue. (D) IHC staining of PRKACB in tumor 
tissue. (E) IHC staining of STMN1 in normal tissue. (F) IHC staining of STMN1 in tumor tissue. (G) IHC staining of ZNF292 in normal tissue. (H) 
IHC staining of ZNF292 in tumor tissue. 
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combining the glycolysis-related signature and 

clinicopathological risk factors was developed to 

provide a quantitative method for prediction of 3- and 

5-year RFS. The calibration plots demonstrated that 

actual survival corresponded closely with predicted 

survival, suggesting good predictive performance of the 

nomogram. Two external validation sets were used to 

further estimate the prognostic value of the signature. 

Our results indicated that this glycolysis-based classifier 

was still a clinically and statistically significant 

prognostic model. The expression levels of the four 

prognostic genes were further validated using breast 

cancer and paracancerous samples from patients 

undergoing modified radical mastectomy. Our qRT-

PCR analysis demonstrated that STMN1 and ZNF292 

were overexpressed in tumor samples, while PRKACB 

expression was higher in paracancerous samples. Due to 

the small size of the patients, no difference was found in 

ALDH2 expression. The same results were observed in 

the IHC data from the human protein atlas. Global 

proteome data of 105 TCGA breast cancer samples 

obtained from the Clinical Proteomic Tumor Analysis 

Consortium were used to evaluate the prognostic value 

of their protein levels. Consistently, high expression of 

PRKACB protein level was associated with better RFS, 

while high ZNF292 and STMN1 protein expression 

levels indicated poor prognosis.  

 

The biological functions of genes in our panel have been 

roughly illustrated in previous studies. ALDH2 encodes 

a protein belonging to the aldehyde dehydrogenase 

family which is the second enzyme of the major 

oxidative pathway of alcohol metabolism. The major 

role of ALDH2 is to detoxify acetaldehyde (ACE) to 

non-toxic acetic acid. Accumulating evidences indicate 

that dysfunction of ALDH2 may contribute to human 

cancer [16, 17]. ALDH2 is suppressed in human lung 

adenocarcinoma, its repression leads to ACE 

accumulation in lung adenocarcinoma cells and induces 

DNA damage and metastatic features. ALDH2 

suppression also promotes proliferation and stemness of 

lung adenocarcinoma cells both in vitro and in vivo. 

When Lung adenocarcinoma cells treated with ALDH2 

agonist, they have suppressed proliferation, stemness 

and migration features [18]. In hepatocellular carcinoma, 

ALDH2 expression is significantly lower in tumor 

tissues, especially in tumors exhibited enhanced 

migratory capacity. Molecular biology experiments 

indicate that ALDH2 inhibits tumor progression largely 

by modulating the activity of the ALDH2-acetaldehyde-

redox-AMPK axis. Thereby activating ALDH2 might be 

a potential strategy for the treatment of human cancers 

[19]. In the present study, expression of ALDH2 was 

negatively correlated with the RFS of breast cancer 

patients, while the underlying mechanisms have not been 

clearly investigated. The protein encoded by PRKACB 

is a catalytic subunit of cAMP (cyclic AMP)-dependent 

protein kinase. It has been demonstrated that PRKACB 

variants play various roles in the differentiation and 

proliferation of prostate cancer [20]. PRKACB is 

downregulated in non-small cell lung cancer (NSCLC), 

exogenous PRKACB inhibits the proliferation and 

invasion of lung cancer cells [21]. However, the 

molecular mechanisms for these processes remain 

largely unknown. Stathmin 1 (STMN1) is specifically 

located in cytoplasm and belongs to the Stathmin family 

[22]. STMN1 contributes to the microtubule catastrophe 

or the sequestration of alpha/beta-tubulin heterodimers. 

It is a critical element in regulating microtubules 

dynamics, which are essential for the progression of cell 

cycle [23, 24]. Thus, STMN1 plays a pivotal role in cell 

division and proliferation in cancer cells [25, 26]. The 

mRNA and protein level of STMN1 were significantly 

higher in various types of cancer, including colon 

cancer, lung cancer, pancreatic ductal adenocarcinoma, 

and hepatocellular carcinoma. In colon cancer patients, 

STMN1 expression is significantly related to lymph 

node metastasis and TNM staging. Prognosis 

of STMN1-positive patients is significantly poorer 

than STMN1-negative patients [27–30]. ZNF292 is a 

transcription factor-encoding gene and is considered as a 

candidate tumor suppressor in gastric and colorectal 

cancer [31]. However, high expression of ZNF292 is 

significantly correlated with reduced time of disease-free 

status in melanoma [32]. In the present study, ZNF292 

expression is associated with decreased RFS of breast 

cancer patients. More in-depth experiments are 

necessary to explore the underlying mechanism of 

ZNF292. 

 

In conclusion, we identified a novel glycolysis-related 

gene signature and constructed a nomogram that can 

predict the outcome of patients with breast cancer. Our 

results indicated this signature could be a promising 

prognostic target in clinical practice and provide new 

insights into the underlying mechanism of breast cancer. 

 

MATERIALS AND METHODS 
 

Patient clinical parameter and the gene expression 

data 
 

Gene expression profiles and clinical data of breast 

cancer patients (GSE21653, GSE20685, and 

GSE25055) were downloaded from the GEO database, 

cases with unknown survival information were excluded 

from our study. GSE21653 was assigned as the training 

set, GSE20685 and GSE25055 were used for validation. 

We used the Robust Multi-array Average (RMA) 

method to normalize raw microarray datasets, including 

background correction, log2 transformation and 

normalization. Probes were changed into gene symbols 
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using corresponding annotation files. We scaled the 

RNA expression data with a standard deviation of 1 and 

a mean of 0. A total of 290 glycolysis-related genes 

were obtained from the Molecular Signature Database 

v7.0. 

 

Construction of the prognostic gene signature and 

nomogram 

 

Lasso regression analysis and Cox regression analysis 

were performed to identify the prognostic gene 

signature. Firstly, univariate Cox regression analysis 

was carried out to investigate the correlation between 

the expression level of each gene and patient survival. 

Genes with P value <0.05 in the univariate Cox 

regression analysis were considered as prognostic genes 

and selected for further analysis. Then we performed 

Lasso-penalized Cox analysis with 10-fold cross-

validation to narrow the genes for prognostic prediction. 

26 glycolysis-related genes were screened out. Finally, 

we conducted a stepwise multivariate Cox regression 

analysis to assess the contribution of a gene as an 

independent prognostic factor for patient survival. The 

predictive model was established by the expression 

levels of the glycolysis-related genes and their relative 

coefficient (β) derived from the multivariate Cox 

regression model. The prognostic score = (β × 

expression level of ALDH2) + (β × expression level of 

PRKACB) + (β × expression level of ZNF292) + (β × 

expression level of STMN1). Subsequently, we 

constructed a nomogram using “rms” R package and 

plotted the calibrate curve. 

 

Validation using proteomic data 

 

To explore the prognostic value of the prognostic gene 

signature in protein levels, global proteome data of 105 

TCGA breast cancer samples and corresponding clinical 

data were downloaded from the Clinical Proteomic 

Tumor Analysis Consortium (https://cptac-data-portal. 

georgetown.edu/cptacPublic/). The Human Protein 

Atlas (http://www.proteinatlas.org) was also used to 

validate the immunohistochemistry of prognostic genes. 

 

Validation in human breast cancer samples 

 

25 paired breast cancer and paracancerous tissues 

samples were collected from patients undergoing 

modified radical mastectomy at Zhongnan Hospital of 

Wuhan University. All the breast tumors samples were 

confirmed by two pathological specialists 

independently. The samples were immediately frozen 

and stored in liquid nitrogen. We isolated total RNA 

from breast cancer and paracancerous tissue samples 

and performed qRT-PCR analysis to validate the 

expression of prognostic genes in human samples. This 

study was reviewed and approved by the Ethical Board 

at the Zhongnan Hospital of Wuhan University with 

written informed consent from all the patients. 

 

Statistical analysis 

 

To investigate the prediction accuracy of the 

glycolysis-related classifier, we performed time-

dependent receiver operating characteristic (ROC) 

analysis using the “survivalROC” package in R 

software. Patients were separated into low-risk group 

and high-risk groups based on the optimal cut-off 

value of the prognostic score calculated by „survminer‟ 

package. Kaplan-Meier survival analysis was 

conducted to assess the survival differences between 

low-/high-risk groups. A two-sided log-rank test was 

performed using „survival‟ package in R. Student's t 

test was used to compare the difference between two 

groups. We performed all statistical analysis using R 

software 3.6.1 and P < 0.05 was set as the probability 

value of statistical significance. 

 

Ethics approval  
 

The research was carried out according to the World 

Medical Association Declaration of Helsinki and was 

approved by the Ethics Committee at Zhongnan 

Hospital of Wuhan University.  
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